

A Not Too Short Introduction to Python

––––––––

Robin Wang

Copyright © 2024 by Robin Wang

This ebook is licensed for individual, educational, and institutional use. Teachers are welcome to use examples from this book in their classrooms, and schools may adopt it as a textbook. However, redistribution or sharing of the entire book outside the purchasing institution is not permitted. If you’d like to recommend this book to others, please encourage them to purchase their own copy. Thank you for supporting this resource for students learning Python.

Preface

In 2020, during the pandemic, I found myself returning to an old hobby: Python programming. What began as a simple way to pass the time quickly turned into a deeper appreciation of how often coding has reappeared in my life – picked up, put down, and rediscovered again. That cycle of returning is part of what makes programming rewarding: each time you come back, you notice more, and you build netter habits.

This book grew out of that personal return to Python, but it was shaped directly by teaching at CHES where I’ve used this manuscript as the backbone for preparing and refining my Introduction to Algorithmics classes. Teaching with it in real classrooms demands clarity: what students truly need first, where misunderstandings tend to cluster, and which tools help them build fluency. Over time, I realised the original single long chapter structure was doing too much at once. This reflection is what led to this revision. The book is now organised into two chapters with distinct roles:

	Chapter 1 – Python Foundations

The core skills students need every day: expressions, control flow, data structures, functions, recursion, tracing and debugging.

	Chapter 2 – Scaling Up in Python

Ideas that help students write larger, cleaner programs: iterators and generators, expression style, functional tools, decorators, object-oriented design, and the practical organisation of code using modules, packages, and libraries.

My goal is simple: to make Python feel learnable, useful, and genuinely enjoyable while building the habits that make algorithmic problem solving possible. This book exists thanks to my students, whose curiosity and encouragement has kept me writing.

To everyone who loves coding and those who are about to discover that they do, may this book be a good starting point.

Dr. Robin’s Python Lab

Melbourne

Chapter 1. Python Foundations

	[image:]

	
	[image:]

[image:]

1.1 A Brief History of Python

[image:]

Python was created over 30 years ago by Guido van Rossum, who initially began working on it somewhat by chance. During the Christmas holiday in December 1989, Guido van Rossum was looking for a project to keep himself occupied. At the time, he was working at the Centrum Wiskunde & Informatica (CWI) in the Netherlands and had experience with programming languages like ABC, which emphasised ease of use and readability. Inspired by ABC but wanting more flexibility and power, he began creating what would later become Python, officially releasing it to the public in 1991.

Guido Van Rossum chose the name “Python” not from the snake, but after the popular British comedy series Monty Python’s Flying Circus, which he admired for its creativity and humour. His goal was to make programming fun and accessible, aiming for a language that was both powerful and easy to learn.

Python is deeply rooted in mathematical concepts, borrowing the elegance and simplicity found in mathematics. For instance, Python supports abstraction, allowing users to define functions and classes that encapsulate complex operations, much like mathematicians using symbols to represent complex formulas or operations. Python also incorporates functional programming elements, which allow users to write concise and expressive code.

As a result, Python is known for being readable, straightforward, and ideal for beginners and experienced programmers alike. It has since become one of the world’s most popular programming languages.

	[image:]

	
	[image:]

[image:]

1.2 Why We Use Python?

[image:]

Python’s strength lies in its versatility and capability for numerical computation, making it ideal for a wide range of scientific and mathematical applications. My first encounter with Python was in 2007 while I was pursuing my PhD at RMIT University, and I was struck by its similarity to Matlab – a popular language among engineers and researchers for matrix-based calculations and data visualisation. However, Python sets itself apart as a general-purpose scripting language that also supports Object-Oriented Programming (OOP), which allows users to write modular, reusable code with ease. This adaptability has led Python to become a staple in many fields.

Python’s popularity in science and technology grew with libraries like Numpy and Scipy, which allow high-performance mathematical operations and scientific computing. With the rise of machine learning and artificial intelligence (AI), Python’s role expanded further as libraries like PyTorch and TensorFlow enabled the development of complex neural networks for deep learning (DL). Python’s easy-to-read syntax and powerful library ecosystem make it ideal for both beginners and experts in fields like data science, scientific research, and AI, solidifying its place as a core language for modern technology and innovation.

	[image:]

	
	[image:]

[image:]

1.3 Numbers and Strings

[image:]

One of the simplest ways to start learning Python is by using it as a calculator. Python code can be written in two main ways: either by creating a script file or by working directly in a shell, which functions as a REPL (Read-Eval-Print Loop) interactive environment. Thonny, a user-friendly Python IDE (Integrated Development Environment), conveniently provides both a script window and a shell (indicated by the prompt >>>)

Using Python as a calculator

>>> 1+2/3

1.6666666666666665

>>> 2**3-9**(0.5) # ** for powers

5.0

>>> 5%2 # modulus

1

>>> 5//2 # floor division

2

Python also provides many mathematical constants and functions in the math module. To use it, you must import it first.

>>> import math

>>> math.sin(math.pi/2)

1.0

Modules will be introduced more formally later, but for now you only need to remember: import first, then use module.function(...).

Variables: storing values

In programming, a variable stores a value so you can reuse it. Variables names can be a single letter (like a) or more descriptive words (like radius or total_time). You assign a value using the = operator.

>>> a=1

>>> b=2/3

>>> c=a+b

>>> c

1.6666666666666665

––––––––

[image:]

Strings: working with text

In addition to numbers, strings are also widely used in Python. A string is essentially a sequence of characters, enclosed within single or double quotes. String can include letters, digits, symbols, and spaces.

>>> a='I\'m '

>>> b='a legend'

>>> c=a+b

>>> c

"I'm a legend"

Here \’ is an escape character that lets you include an apostrophe inside a quoted string. The print function in Python is used to display the value of string or variable.

>>> print(b)

a legend

––––––––

[image:]

Getting user input

To assign a user-provided string to a variable, you can use the input function, which captures the input as a string by default.

>>> a=input('enter a string: ')

enter a string: ok

>>> a

'ok'

Note that even if the user types 123, input() still returns ‘123’ (a string), not the number 123.

Type casting: converting between strings and numbers

In Python, one can convert a string to a number or vice versa, a process known as type casting.

>>> a='1'

>>> a

'1'

>>> b=int(a)

>>> b

1

>>> c=2

>>> c

2

>>> d=str(c)

>>> d

'2'

>>> type(d)

<class 'str'>

Common conversions include: int(...) for integers, float(...) for decimals, and str(...) for strings.

Formatted string manipulation

When you create output for users, you often want to insert values into a sentence. Python offers several ways to format strings.

	
% formatting (old style)

>>> print('The factors of 15 are %d and %d' %(3,5))

The factors of 15 are 3 and 5

The %d is a placeholder for integers, like how it is used in C/C++. The above code creates a formatted string. Note that the parentheses of (3,5), they form a tuple of values to fill the placeholders. If you forget parentheses, Python interprets it differently and raises an error.

>>> print('The factors of 15 are %d and %d' %3,5)

Traceback (most recent call last):

File "<pyshell>", line 1, in <module>

TypeError: not enough arguments for format string

You’ll learn more about tuples very soon.

	
str.format() (modern style)

>>> print('The factors of 15 are {} and {}'.format(3, 5))

The factors of 15 are 3 and 5

	Concatenation (joining strings)

You can also build strings by joining them with +, but numbers must be converted first.

>>> a=str(12)+' years old'

>>> a

'12 years old'

	[image:]

	
	[image:]

[image:]

1.4 Booleans, Conditions, and Control Flow

[image:]

Most programs do more than run line by line from top to bottom. They make decisions and repeat actions. This ability to choose what happens next is called control flow. In Python, it is built on three core ideas:

	
Sequence: run statements in order

	
Selection: choose between alternatives (e.g., if statement)

	
Iteration: repeat steps (e.g., while and for loops)

To make decisions, Python evaluates Boolean expressions – expressions that are either True or False.

Relational and logical operators

A relational operator compares two values:

	<, >, <=, >=

	
== (equal to)

	
!= (not equal to)

A logical operator combines or modifies Boolean expressions:

	
and (both must be true)

	
or (at least one must be true)

	
not (negates a condition)

>>> 1!=2 and 2<3

True

>>> not(1<2)

False

These operators are the building blocks for conditions such as “only run this code when the input is positive” or “keep looping until the answer is correct”.

Conditional statements (if, elif, else)

A conditional statement allows Python to decide which block of code to execute. Python evaluates the condition after if:

	If it is True, that block runs

	If it is False, Python skips to the next alternative (elif or else).

1. a = int(input('Enter a number: '))

2. if a > 0:

3. print('A positive number')

4. elif a < 0:

5. print('A negative number')

6. else:

7. print('Zero')

Note that

	
elif means “else if” and allows multiple cases.

	
else catches everything not handled above.

	Indentation matters: it defines the block of code controlled by the condition.

While loops (repeat until a condition changes)

A while loop repeats a block of code as long as its condition remains True. It is especially useful when you do not know in advance how many repetitions are needed. Let’s print squares of numbers from 1 to 4:

1. x = 1

2. while x < 5:

3. print(x ** 2)

4. x += 1

A more interesting use of while is repeating until a term becomes “small enough”. The Maclaurin series for [image: {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><msup><mi>e</mi><mi>x</mi></msup></mstyle></math>","origin":"MathType for Microsoft Add-in"}] is:

[image: {"mathml":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\" style=\"font-family:stix;font-size:16px;\"><msup><mi>e</mi><mi>x</mi></msup><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mo>∞</mo></munderover><mfrac><msup><mi>x</mi><mi>n</mi></msup><mrow><mi>n</mi><mo>!</mo></mrow></mfrac></math>","origin":"MathType for Microsoft Add-in"}]

We can approximate it by adding terms until the most recent term is tiny:

1. import math

2.

3. x = float(input('Enter x: '))

4. n = 1

5. last = 1

6. S = last

7.

8. while abs(last) >= 10**(-5):

9. last = x**n / math.factorial(n)

10. S += last

11. n += 1

12.

13. print('An approximate value of exp({}) by {} terms Maclaurin series is {}'.format(x, n, S))

>>>

Enter x: 1

An approximate value of exp(1.0) by 10 terms Maclaurin series is 2.7182815255731922

>>> import math

>>> math.e

2.718281828459045

––––––––

[image:]

Break and continue

Sometimes you want more control inside a loop:

	
break exits the loop immediately

	
continue skips the rest of the current iteration and goes to the next one

Consider a simple example which keeps asking until the correct answer is given:

1. while True:

2. print('Solve this equation: 3x+4=10')

OEBPS/d2d_images/chapter_title_above.png

OEBPS/d2d_images/chapter_title_corner_decoration_left.png

OEBPS/d2d_images/cover.jpg
Dr Robin’s Python Lab
A Not Too Short Introduction to
Python

Robin Wang

OEBPS/d2d_images/chapter_title_corner_decoration_right.png

OEBPS/d2d_images/image021.png
e

OEBPS/d2d_images/image011.png

OEBPS/d2d_images/chapter_title_below.png

OEBPS/d2d_images/scene_break.png

