

 Mainframe Modernization: CI/CD Mastery

 Mainframes

 Ricardo Nuqui

 Published by Isaac Nangan, 2024.

 While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 MAINFRAME MODERNIZATION: CI/CD MASTERY

 First edition. October 16, 2024.

 Copyright © 2024 Ricardo Nuqui.

 ISBN: 978-9815194814

 Written by Ricardo Nuqui.

 10 9 8 7 6 5 4 3 2 1

 	
 	
			

			
		
 To Coleen, Sky and Neo. You are my inspirations.

Mainframe Modernization

CI/CD Mastery

––––––––

[image:]

Ricardo Nuqui

	[image:]

	
	[image:]

[image:]

Preface

[image:]

Welcome to Mainframe Modernization: CI/CD Mastery, a comprehensive guide designed to accompany and enhance your learning experience from the online course. This book serves two essential purposes: to act as a hands-on guide while you move through the online lessons and to provide a reliable reference when implementing the concepts of Continuous Integration and Continuous Delivery (CI/CD) in your own mainframe environments.

Why This Book?

Mainframe systems are the backbone of many critical industries, yet they often face challenges when integrating modern software development practices like CI/CD. As more organizations adopt DevOps principles and aim to accelerate their development cycles, mainframes must evolve to meet these demands. The goal of this companion book is to bridge the gap between traditional mainframe practices and modern development methodologies, ensuring that your mainframe systems remain efficient, agile, and reliable.

While the online course offers a dynamic, interactive experience, this book adds depth and clarity to each lesson. It contains additional insights, examples, and reference materials not covered in the course, making it a valuable resource for both learners and professionals already familiar with mainframe systems.

How to Use This Book

This book is structured to follow the flow of the online course, making it easy to reference specific modules and lessons as you progress. Each chapter corresponds to a module in the course and expands on the key concepts covered in the lessons. You will find practical advice, step-by-step instructions, and real-world examples that apply directly to mainframe environments.

Use this book in two ways:

	
As a Study Guide – While you’re going through the course, refer to the companion book for deeper explanations, visual guides, and additional learning activities. The book will help reinforce the key concepts covered in each lesson.

	
As a Reference Manual – After you’ve completed the course, this book will serve as a valuable reference when implementing CI/CD pipelines in your organization. Whether you're troubleshooting a build failure or configuring an automated deployment, the chapters in this book will provide the answers you need to make informed decisions.

Who Should Read This Book?

This book is intended for a broad range of professionals:

	
Mainframe Systems Programmers and Developers who are looking to modernize their development workflows with CI/CD practices.

	
DevOps Engineers tasked with integrating legacy mainframe systems into modern, automated development environments.

	
IT Managers and Directors who oversee large-scale mainframe modernization projects and need to ensure that their teams have the tools and knowledge to implement CI/CD efficiently.

	
Students and Learners new to CI/CD in mainframe systems who want to gain a solid foundation in this crucial area of technology.

Whether you’re new to CI/CD or an experienced mainframe professional, this companion book will equip you with the skills, knowledge, and strategies necessary to transform your mainframe development lifecycle.

A Journey to Modernization

Mainframe modernization isn’t just about upgrading technology; it’s about transforming the way we think about development, deployment, and system operations. The lessons you learn from this book and the online course will enable you to not only adopt modern practices but to drive innovation within your organization.

Thank you for choosing Mainframe Modernization: CI/CD Mastery. I hope this book serves as a trusted companion on your journey toward mastering CI/CD in mainframe environments.

Let’s get started on modernizing your mainframe systems for the future!

	[image:]

	
	[image:]

[image:]

Prologue

[image:]

The world of mainframes has long been a cornerstone of critical industries such as finance, telecommunications, and government. These systems have supported the operations of some of the most vital infrastructures, processing massive amounts of data with unmatched reliability and security. For decades, mainframes were the unquestioned giants of the computing world, but as the tech landscape has evolved, the demands on software development have shifted significantly.

Today’s digital age is driven by speed, automation, and constant change. Businesses need to release features faster, adapt to new user demands swiftly, and ensure that their technology stacks are flexible and scalable. These demands have given rise to modern development methodologies like Continuous Integration (CI) and Continuous Delivery (CD), which enable organizations to streamline their development processes and deliver high-quality software faster. However, when it comes to mainframes, the journey toward adopting CI/CD practices can feel daunting.

The Mainframe Challenge

Mainframes are often perceived as rigid, slow-moving, and difficult to integrate with modern technologies. While they remain powerful workhorses, the traditional methods of mainframe development—long release cycles, manual testing, and cumbersome deployment processes—make it difficult to keep pace with the agility that CI/CD promises. This has created a crucial need for modernization in mainframe environments.

For organizations that rely on mainframes for mission-critical workloads, the challenge lies in balancing legacy practices with the need for modernization. How do you introduce automation, speed, and flexibility to a system that has been stable and secure for decades without jeopardizing its integrity? How do you bring DevOps principles to an infrastructure that was not designed for continuous development and deployment?

The CI/CD Revolution

Mainframe Modernization: CI/CD Mastery is built on the belief that mainframes are not relics of the past, but systems that can evolve and thrive in modern development environments. The rise of CI/CD methodologies has proven that development can be faster, more efficient, and less error-prone when teams adopt continuous integration and delivery as core practices. And this isn’t just for web and mobile applications—it’s for mainframes, too.

The revolution isn’t about replacing mainframes with new technologies; it’s about integrating modern practices into these powerful systems to unleash their full potential. With CI/CD, teams can:

	
Automate tedious and error-prone tasks such as testing, building, and deployment.

	
Deliver updates more frequently while maintaining the stability and security of their mainframe applications.

	
Shorten development cycles from months to days, ensuring faster time to market and quicker feedback loops.

	
Improve collaboration between development and operations teams by aligning workflows and fostering a culture of shared responsibility.

CI/CD for mainframes represents not just a technical evolution, but a shift in mindset. It’s about rethinking how we develop, test, and deploy on these systems. It’s about embracing change while safeguarding the reliability and performance that mainframes are known for.

A Vision for the Future

The future of mainframe computing lies in its ability to integrate with the modern software development world. As businesses race to stay competitive, those who can harness the power of CI/CD for their mainframe systems will lead the charge into a new era of innovation. Mainframes are not slowing down; they are gearing up for the next phase of their evolution.

This companion book, like the course it supports, is designed to guide you through this transformation. You’ll learn not only the technical steps to implement CI/CD on mainframes but also how to create a culture of agility and continuous improvement within your organization. Whether you’re a seasoned mainframe professional or someone new to these systems, the knowledge in these pages will empower you to modernize your processes and lead your organization into the future.

The journey ahead is exciting, and the opportunities are vast. Welcome to the world of CI/CD for Mainframes—where legacy systems meet modern agility, and the future of mainframe development begins.

Let’s get started.

	[image:]

	
	[image:]

[image:]

Introduction

[image:]

Welcome to Mainframe Modernization: CI/CD Mastery, a comprehensive guide designed to accompany your learning journey through the online course and beyond. This companion book has been created to enhance your understanding of Continuous Integration (CI) and Continuous Delivery (CD) in mainframe environments and provide you with practical tools to implement these practices in your organization. Whether you're a seasoned mainframe professional or someone just beginning your modernization efforts, this book will serve as a valuable resource.

Mainframes are at the heart of some of the most critical systems in the world. However, the landscape of software development is changing rapidly, with the need for speed, agility, and automation becoming more important than ever. This book will guide you step-by-step through the process of modernizing your mainframe systems with CI/CD practices, ensuring that you can meet the evolving demands of today’s digital world without compromising on the stability and performance of your legacy systems.

About This Book

This book is designed to be a two-in-one resource:

A Guide Through the Course: While you progress through the online course, this book will act as your guide, reinforcing the key concepts and lessons with expanded content, additional examples, and real-world case studies. It complements the video lessons by offering detailed explanations, deeper insights, and actionable advice that you can reference throughout the course.

A Practical Reference: Once you’ve completed the course, this book transforms into a reference manual. When you begin implementing CI/CD in your own mainframe environment, you can turn to this companion to revisit the best practices, steps, and troubleshooting tips you need to make your modernization efforts successful. Think of it as your on-the-job guide that will help you navigate the challenges of real-world CI/CD deployment on mainframes.

This book expands on the topics covered in the online course by providing more technical depth, additional case studies, and resources for further reading. It’s structured to follow the same flow as the course, making it easy to cross-reference the lessons as you move forward.

How to Use This Companion Guide

To get the most out of this book, here are some practical ways you can integrate it into your learning and daily work:

While Taking the Course: As you follow along with the video lessons in the course, use this book to dive deeper into the topics discussed. Each chapter corresponds to a module in the course, and you’ll find additional details, tools, and tips that aren’t covered in the videos. If something in the video feels too fast or too general, the book will offer clarity and allow you to study the topic in more depth.

As a Hands-On Guide: For each section, you’ll find step-by-step instructions and examples you can follow on your own systems. We’ve included real-world use cases and common pitfalls to watch out for. These are designed to give you actionable insights and to help you anticipate the challenges you might face when implementing CI/CD on mainframes.

For Continuous Reference: After completing the course, use this guide to implement what you’ve learned in your organization. Need to remember the steps for automating builds with Jenkins? Looking for best practices on integrating automated testing into your CI pipeline? This book is designed to be something you can refer back to, even months or years after you’ve finished the course.

Additionally, we’ve included a glossary of terms and an appendix of resources and templates at the end of the book. These resources are meant to simplify your workflow, providing tools you can adopt directly in your CI/CD pipeline.

Overview of CI/CD in Mainframe Environments

Continuous Integration (CI) and Continuous Delivery (CD) are now essential practices in modern software development, enabling faster and more reliable deployment of software. But integrating these practices in mainframe environments presents unique challenges. Mainframes, though incredibly powerful and stable, were traditionally developed using waterfall methodologies, which involved long development cycles, manual testing, and manual deployments. This makes the introduction of automation and speed that CI/CD offers particularly valuable—but also complex.

In the simplest terms, CI involves automating the integration of code changes from multiple developers into a shared codebase frequently (often multiple times a day). CD extends this by automating the testing and delivery of these changes to production, ensuring that software can be released to users quickly and reliably at any time.

For mainframe environments, where the stakes are high (given that these systems often power mission-critical applications), introducing CI/CD practices helps to:

Reduce the risk of errors by catching issues earlier through frequent integration and testing.

Shorten development cycles, allowing teams to release new features and bug fixes more quickly.

Improve collaboration between developers and operations teams through shared tooling and processes.

However, mainframes present certain complexities, such as legacy codebases, unique testing requirements, and specialized deployment processes, that need to be addressed for CI/CD to be successfully implemented.

Key Benefits of Implementing CI/CD for Mainframes

Implementing CI/CD on mainframes brings a multitude of benefits that can transform how your organization develops, tests, and deploys software. Here are some of the key advantages:

Faster Delivery Cycles: By automating the integration, testing, and deployment processes, CI/CD reduces the time it takes to deliver new features or updates to production. What used to take weeks or months can now be done in days or even hours, allowing businesses to respond more rapidly to market demands or customer feedback.

Improved Code Quality: Continuous testing, a fundamental part of CI/CD, ensures that code is frequently checked for errors, bugs, and security vulnerabilities. This leads to better quality software, with fewer issues making it into production. Automated testing also helps ensure that existing functionality remains stable, even as new features are added.

Increased Collaboration and Efficiency: CI/CD facilitates greater collaboration between development and operations teams (DevOps). Shared pipelines and automation reduce the friction that can occur between these teams, allowing them to work more efficiently. Teams can focus on improving software, rather than getting bogged down by manual processes or siloed responsibilities.

Reduced Risk: With CI/CD, the risk of releasing faulty code into production is significantly reduced. Automated testing, deployment pipelines, and rollback mechanisms ensure that issues are caught and resolved before they reach the end user. This is especially important in mainframe environments where downtime or errors can have critical consequences.

Scalability and Flexibility: As your systems and teams grow, CI/CD provides the scalability needed to manage more complex applications and environments. Automated pipelines can handle larger volumes of code and testing, making it easier to maintain and scale mainframe applications.

Future-Proofing Your Mainframe Systems: By adopting modern development practices like CI/CD, you ensure that your mainframe systems remain relevant and competitive in an increasingly digital world. Modernizing your development workflows prepares your organization for future growth, ensuring that your mainframes can continue to support your business's needs for years to come.

In Summary

This book is designed to be your trusted guide as you embark on your mainframe CI/CD journey. Whether you are following along with the online course or using this book as a reference for implementing these strategies in your organization, you now have the roadmap to modernize your systems.

CI/CD for mainframes isn’t just about automating processes—it’s about creating an agile, collaborative, and efficient environment where your systems can evolve as rapidly as the world around them. Through this guide, you will learn not only the technical aspects of CI/CD but also how to foster a culture of continuous improvement within your team.

Let’s begin this journey toward modernizing your mainframes, one step at a time.

	[image:]

	
	[image:]

[image:]

Module 1: Introduction to CI/CD for Mainframes

[image:]

Welcome to Module 1 of Mainframe Modernization: CI/CD Mastery! In this first module, we will explore the foundational concepts of Continuous Integration (CI) and Continuous Delivery (CD) and how they apply to mainframe environments. As organizations strive to deliver software faster and more reliably, CI/CD practices have become essential. However, for many organizations that rely on mainframe systems, adopting CI/CD can seem like a daunting task due to the traditional development processes typically associated with these systems.

Mainframes are often seen as the backbone of mission-critical operations. They're known for their stability, scalability, and processing power, and many organizations have relied on them for decades. But as agile development, DevOps, and automation have become the norm in modern software engineering, the pressure is on to bring mainframe systems up to speed with these practices.

In this module, we'll focus on the why and the how behind CI/CD for mainframes, laying the groundwork for the more detailed technical steps that follow in later modules. Whether you’re new to CI/CD or have been exploring its possibilities for some time, this module will give you a solid understanding of why these practices are important for modernizing mainframe systems and how they can transform your development processes.

Why CI/CD for Mainframes?

Mainframes have traditionally been developed using waterfall methodologies—long development cycles followed by extensive testing phases, and finally, a release. This process, while thorough, is often slow and rigid. As the world moves toward rapid, incremental releases, businesses dependent on mainframes are facing pressure to adopt these modern practices to keep pace with competitors and deliver value to customers more quickly.

CI/CD offers a solution. By adopting CI/CD, mainframe teams can integrate changes more frequently, test more thoroughly with automated tools, and deliver code faster and more efficiently. But this transition is not just about speed—it’s about maintaining or improving quality, ensuring that the software remains stable, secure, and ready for the demanding workloads that mainframes are known for.

The Power of Automation in Mainframes

A key principle of CI/CD is automation. Automation minimizes manual errors, reduces bottlenecks, and ensures that repetitive tasks—such as testing and deployment—are handled consistently. For mainframes, where deployment processes can be particularly complex and labor-intensive, automation can lead to significant gains in efficiency and reliability.

Imagine the ability to automatically test every change made to your mainframe codebase, ensuring that no integration issues slip through the cracks. Or being able to deploy updates to production without downtime, knowing that your CI/CD pipeline will ensure that everything is functioning as expected. This is the promise of CI/CD, and it's a powerful one.

Modernizing Without Compromising Stability

One of the main concerns that organizations have when considering CI/CD for mainframes is stability. After all, mainframes are trusted for their rock-solid performance and reliability. Fortunately, CI/CD doesn’t force you to choose between speed and stability—it offers the best of both worlds.

Through frequent, automated testing and incremental releases, CI/CD helps you identify and fix issues early in the development process. This reduces the risk of major disruptions when changes are finally deployed to production. Instead of waiting months to discover bugs in a large release, teams can fix problems within days or even hours, ensuring that the system remains stable while evolving at a faster pace.

Creating a Culture of Collaboration

CI/CD is more than just a set of technical practices—it’s a culture shift. In many organizations, development and operations teams work in silos, which can create bottlenecks and delays in the software delivery process. CI/CD, especially when paired with DevOps principles, encourages collaboration across teams. Development, testing, and operations all become part of the same continuous feedback loop, ensuring that everyone is aligned and focused on delivering high-quality software quickly and efficiently.

This is especially important in mainframe environments, where the complexity of the system can sometimes create friction between teams. By embracing CI/CD and fostering a collaborative culture, teams can break down these silos and work together to modernize the system, making it more agile and responsive to business needs.

What to Expect in This Module

In this module, you’ll gain a deep understanding of the core concepts behind CI/CD and how they apply to mainframes. We’ll start with a detailed explanation of what CI/CD is and how it differs from traditional software development practices. Next, we’ll explore why CI/CD is critical for mainframes, outlining the specific challenges it addresses and the opportunities it creates. From there, we’ll dive into the key concepts of DevOps and Agile and how these modern approaches can be applied to mainframe development. Finally, we’ll provide an overview of the CI/CD pipeline and how it can be customized for mainframe systems.

By the end of this module, you’ll have the knowledge and confidence to understand the full potential of CI/CD for mainframes and why it’s a game-changer for organizations that rely on these powerful systems. You’ll be ready to embark on the more technical aspects of CI/CD implementation, which we’ll cover in the following modules.

Let’s begin our journey toward modernizing mainframe systems and unleashing their full potential with CI/CD.

	[image:]

	
	[image:]

[image:]

1.1 What is CI/CD?

[image:]

In this section, we will dive into the core concepts of Continuous Integration (CI) and Continuous Delivery (CD), two fundamental practices in modern software development that can significantly enhance the way we work with mainframe environments. CI/CD enables teams to deliver software faster, with greater reliability, by automating key stages in the development pipeline. While these practices are commonly associated with cloud-native applications, they offer immense value when applied to mainframe systems as well.

Let’s break down what CI/CD really means and why it is critical for modernizing mainframe environments.

Definition of Continuous Integration and Continuous Delivery

Continuous Integration (CI) is the practice of merging all developer working copies to a shared mainline several times a day. It automates the process of integrating code changes from multiple contributors into a single repository. This helps catch bugs and integration issues early, ensuring that code is always in a working state. In mainframe environments, CI ensures that changes to COBOL or other mainframe languages are continuously integrated into the broader system without the risk of introducing errors later in the development cycle.

Continuous Delivery (CD) builds on CI by automating the testing and deployment processes, allowing software to be reliably released to production at any time. In a mainframe context, CD ensures that once code has passed all necessary tests, it can be deployed automatically to production environments with minimal manual intervention. CD reduces the risk of deployment failures, making releases faster, more predictable, and less risky.

Differences Between CI and CD

Although Continuous Integration and Continuous Delivery are often discussed together, they address different aspects of the software development lifecycle:

	
CI focuses on integration: The key goal is to ensure that code is regularly merged into the shared repository and that any conflicts or bugs are addressed immediately. The focus here is on keeping the codebase stable and avoiding "integration hell," where multiple changes lead to conflicts at the end of a development cycle.

	
CD focuses on delivery: Once the code is integrated and stable, CD ensures that it can be deployed seamlessly to production. The focus here is on automating the release process so that new features and bug fixes can be delivered to users quickly and reliably.

While CI ensures that your codebase is always in a deployable state, CD ensures that this deployable state can be released to production as quickly as possible. Both practices work hand-in-hand to streamline development workflows, especially in complex environments like mainframes.

Key Benefits of Adopting CI/CD

Adopting CI/CD practices in a mainframe environment offers several powerful benefits:

	
Increased Development Speed: By automating key aspects of the integration and delivery processes, CI/CD reduces the time it takes to bring new features and fixes to production. This is especially important for mainframes, where traditional waterfall approaches can slow development to a crawl.

	
Improved Code Quality: Continuous testing and integration mean that bugs are caught early in the process. Instead of waiting until the end of a long release cycle, developers receive immediate feedback on their changes, leading to cleaner, more reliable code.

	
Reduced Deployment Risks: With CD, deployments become a routine, low-risk activity. Automated testing ensures that all code passes rigorous quality checks before it reaches production, and automated deployments ensure that releases happen smoothly, with fewer chances for human error.

	
Enhanced Collaboration: CI/CD fosters a culture of collaboration between developers, testers, and operations teams. In a mainframe context, where traditional silos can often slow down development, this collaborative approach ensures that everyone is aligned and working toward a common goal.

	
Faster Time-to-Market: CI/CD accelerates the entire software development lifecycle. In industries that rely on mainframes—such as finance, healthcare, and government—being able to deliver features and fixes faster gives organizations a competitive edge.

What’s Next?

In the following sections, we will go deeper into each of these concepts. We will explore:

	
A detailed definition of Continuous Integration and Continuous Delivery and how they apply specifically to mainframe systems.

	
The key differences between CI and CD, understanding where one ends and the other begins.

	
The specific benefits that organizations can expect when adopting CI/CD, particularly in the context of modernizing mainframe workflows.

As you move forward, you’ll develop a clearer understanding of why CI/CD is a game-changer for mainframe environments, and you’ll be ready to implement these practices in your own organization.

Let’s start with a deep dive into the definitions and principles of CI/CD!

	[image:]

	
	[image:]

[image:]

Definition of Continuous Integration (CI) and Continuous Delivery (CD)

[image:]

Continuous Integration (CI) and Continuous Delivery (CD) are core practices in modern software development, allowing teams to deliver high-quality software rapidly and reliably. Together, they represent a significant shift from traditional, manual processes toward automation and agility. When applied to mainframe environments, these practices unlock the potential for faster development cycles and more robust, reliable releases.

What is Continuous Integration (CI)?

Continuous Integration (CI) is a software development practice where developers frequently integrate their individual code changes into a shared repository, often multiple times per day. This practice ensures that code changes are merged as soon as they are ready, rather than waiting for the end of a long development cycle. CI tools automatically build and test each integration to catch integration issues early and often.

The central idea behind CI is immediate feedback—when a developer pushes code to the shared repository, the system automatically checks for conflicts or errors, allowing the developer to fix any issues as they arise. In this way, teams can identify and resolve integration problems before they compound into larger issues later in the development cycle.

Key Components of CI:

	
Version Control: All code changes are committed to a shared repository (e.g., Git, SVN), ensuring that the entire team is always working with the latest version of the code.

	
Automated Builds: Once code is pushed to the repository, an automated build process compiles the code, ensuring it integrates correctly and is ready for further testing.

	
Automated Testing: As part of the build process, automated tests are run to catch errors or conflicts early in the cycle. This can include unit tests, integration tests, and other forms of automated checks.

	
Immediate Feedback: Developers receive instant feedback on the success or failure of their integration, allowing them to address issues before they become more complex.

CI in Mainframe Environments:

In mainframe environments, CI ensures that changes to languages like COBOL, PL/I, or other mainframe-specific code are integrated into the broader system frequently and smoothly. This practice is particularly valuable in environments where long development cycles have traditionally led to "integration hell"—the accumulation of integration conflicts that surface only at the end of a development phase.

With CI in place, mainframe developers avoid these problems by integrating their code continuously and resolving issues in real time. This ensures the codebase is always in a working state and ready for the next step in the software development process.

Benefits of CI in Mainframes:

	
Early Detection of Issues: By continuously integrating code, potential bugs or conflicts are identified earlier, reducing the cost and time associated with fixing them.

	
Stable Codebase: The codebase is always in a functional state, minimizing the risk of broken builds or unstable software releases.

	
Improved Collaboration: CI fosters collaboration among teams, as code is shared and integrated frequently, reducing isolation between developers.

	
Reduced Integration Overhead: Developers no longer need to worry about massive code integrations at the end of a project, significantly reducing the complexity of final releases.

What is Continuous Delivery (CD)?

Continuous Delivery (CD) builds on the principles of CI by automating the testing, staging, and deployment processes. The goal of CD is to ensure that software is always in a deployable state—meaning that code changes that pass all tests can be delivered to production at any time with minimal manual intervention.

CD focuses on creating an automated pipeline that not only integrates code continuously but also tests, packages, and deploys it into production environments in a consistent and reliable manner. While CI ensures that your code is always ready to be released, CD ensures that it can be released automatically and reliably whenever needed.

Key Components of CD:

	
Automated Testing: Beyond unit tests, CD pipelines include additional levels of testing (e.g., integration tests, performance tests, security tests) to ensure that every aspect of the application works as expected.

	
Automated Deployment: Once testing is complete, the code is automatically packaged and prepared for deployment. Depending on the setup, this can be deployed to staging environments or directly to production.

	
Environment Configuration: In CD, environments (development, testing, production) are configured as part of the pipeline. This ensures consistency across environments and reduces the likelihood of "it works on my machine" issues.

	
Release Management: CD allows teams to control when and how code is deployed to production, including rollback mechanisms if issues are detected.

CD in Mainframe Environments:

In mainframe environments, Continuous Delivery allows teams to automate the testing and deployment of mainframe applications. Once code is integrated and successfully tested, CD ensures that the application can be deployed to production without manual intervention, minimizing the risk of human error during the deployment process.

Mainframe systems often require complex deployment procedures that involve multiple environments, and coordinating these steps manually can be time-consuming and error-prone. With CD in place, deployment becomes part of an automated pipeline, which reduces the complexity of rolling out new features or updates.

Benefits of CD in Mainframes:

	
Faster, More Reliable Releases: With an automated pipeline in place, teams can deploy changes more frequently and with greater confidence, knowing that the code has passed all necessary tests.

	
Reduced Human Error: By automating the deployment process, CD minimizes the risk of manual errors during releases, ensuring a more consistent and stable rollout.

	
Continuous Feedback: CD provides continuous feedback on the state of the system. As code moves through the pipeline, developers and operations teams can track its progress and be alerted to any issues.

	
Minimized Downtime: By automating and optimizing the deployment process, CD can reduce or eliminate downtime during releases, which is critical for mainframe applications that support 24/7 operations.

CI vs. CD: How Do They Work Together?

While CI and CD are distinct practices, they are designed to work together as part of a comprehensive DevOps pipeline. Here’s how they differ and complement each other:

	
CI is about ensuring that the codebase is always in a working state, with changes integrated frequently and tested automatically. The focus is on integrating code quickly and catching issues early.

	
CD takes the code that has been integrated and tested and ensures that it can be deployed to production automatically and reliably. The focus is on delivering code changes quickly and safely.

Together, CI/CD enables continuous improvement of your software, allowing you to release high-quality software faster and with less risk. In mainframe environments, where stability and uptime are crucial, this combination ensures that you can modernize your development processes while maintaining the reliability that mainframes are known for.

Conclusion:

The combination of Continuous Integration (CI) and Continuous Delivery (CD) offers a powerful way to modernize mainframe development workflows. CI ensures that code is integrated and tested continuously, while CD automates the delivery of that code to production. Together, these practices enable faster, more reliable releases, allowing mainframe teams to keep up with the pace of modern software development while maintaining the stability and security of their legacy systems.

In the next section, we will explore the differences between CI and CD in more depth, helping you understand the distinct roles they play in the overall development and deployment lifecycle.

	[image:]

	
	[image:]

[image:]

Differences Between CI and CD

[image:]

Although Continuous Integration (CI) and Continuous Delivery (CD) are often mentioned together, they serve distinct roles in the software development lifecycle. Both practices are essential for creating a smooth and efficient development and deployment process, but each addresses different challenges and focuses on specific parts of the pipeline. Understanding these differences is crucial, especially when implementing CI/CD practices in complex environments like mainframes.

Let’s dive deeper into the roles that CI and CD play, how they complement each other, and why they are so important for mainframe modernization.

CI Focuses on Integration

Continuous Integration (CI) is all about the early stages of the development lifecycle—specifically the integration of code from multiple contributors into a shared codebase. CI’s main objective is to ensure that code changes made by developers are regularly and frequently integrated into the main repository. The idea is to avoid the nightmare scenario known as “integration hell,” where large code changes pile up over weeks or months and, when finally merged, lead to conflicts, bugs, or even broken software.

In practice, CI enables developers to:

	
Commit code frequently to the shared repository (such as Git, SVN, or another version control system).

	
Automatically trigger builds and run tests whenever code is committed, ensuring that changes are validated quickly and any errors or bugs are caught early.

	
Receive immediate feedback on whether their changes have caused integration problems, allowing them to fix issues immediately.

In a mainframe environment, the complexity of legacy codebases makes CI even more valuable. With many organizations still relying on languages like COBOL, PL/I, or Assembler, CI ensures that changes are merged continuously and that integration conflicts are caught early before they become larger issues that could slow down the entire system.

Key Goals of CI:

	
Maintain a stable codebase: CI ensures that the codebase is always in a working state, meaning developers can confidently integrate their code without worrying that it will break the system.

	
Catch bugs early: By integrating code frequently and testing automatically, bugs and conflicts are caught early, reducing the complexity and cost of fixing them later in the development cycle.

	
Prevent integration delays: Frequent integration prevents delays that often happen at the end of a development cycle when large code merges can lead to conflicts and require extensive testing and troubleshooting.

CI in Mainframes:

In traditional mainframe development, integrating changes into the codebase was often a manual process that happened only at the end of the development cycle, leading to long delays. CI changes this by allowing mainframe teams to integrate continuously, ensuring that code is stable and up-to-date. The result is faster development, fewer conflicts, and a smoother workflow.

CD Focuses on Delivery

While CI focuses on integrating code into a shared repository, Continuous Delivery (CD) builds on this by automating the delivery process—taking the integrated code and ensuring that it can be deployed to production quickly, reliably, and with minimal manual intervention.

The goal of CD is to ensure that every change made to the codebase is automatically tested, packaged, and ready for deployment. Once the code passes all tests and quality checks, it is effectively “production-ready” and can be released to users at any time.

In contrast to the challenges of CI, which center around merging and integrating code, CD focuses on automating the testing, packaging, and deployment stages of the development pipeline. CD makes sure that code can flow smoothly from the development stage through to production without manual errors or delays.

Key Goals of CD:

	
Automate the release process: CD automates the testing, packaging, and release process, reducing manual intervention and ensuring that releases happen seamlessly.

	
Deliver to production reliably: CD ensures that code can be delivered to production reliably, without worrying about last-minute integration or deployment issues.

	
Minimize deployment risks: By automating the release process, CD reduces the risk of human error, making deployments more predictable and less prone to failure.

CD in Mainframes:

In mainframe environments, deployment is often a manual, time-consuming process involving multiple teams and steps. CD introduces automation into these processes, ensuring that deployments happen faster and with fewer manual errors. Automated testing is critical in mainframe CD pipelines, as it ensures that any changes to legacy systems are thoroughly vetted before they reach production. With CD in place, mainframe teams can deploy updates and new features more frequently, leading to faster time-to-market and reduced downtime.

How CI and CD Work Together

While CI and CD are distinct practices, they work together to create a continuous pipeline that drives software development and deployment. CI ensures that your code is always in a deployable state by integrating and testing changes frequently. CD then takes the deployable code and ensures that it can be delivered to production smoothly and automatically.

Here’s how CI and CD complement each other:

	
CI ensures code stability: With CI, the code is tested and integrated regularly, ensuring that it is always stable and ready for the next phase.

	
CD ensures code delivery: CD picks up where CI leaves off, ensuring that once the code is integrated and stable, it can be deployed to production environments automatically.

	
CI catches bugs early: By running tests with every code commit, CI ensures that bugs are identified early in the development cycle, reducing the risk of broken code reaching production.

	
CD minimizes deployment errors: By automating the deployment process, CD minimizes the chance of manual errors during releases, making the deployment process faster, safer, and more reliable.

In mainframe environments, this synergy is crucial. Mainframes often power mission-critical applications, so the combination of CI and CD ensures that the codebase remains stable and that deployments happen smoothly without risking system failures or downtime.

Key Differences Between CI and CD

To summarize, the key differences between CI and CD can be understood through their roles in the development pipeline:

	
CI (Continuous Integration):
	Focuses on merging code into the shared repository.

	Automates the integration and testing of code changes.

	Ensures that the codebase is always in a working state.

	Addresses challenges related to integration conflicts and bugs.

	
CD (Continuous Delivery):
	Focuses on automating the testing, packaging, and delivery of code.

	Ensures that the code can be deployed to production reliably and automatically.

	Reduces manual steps in the deployment process.

	Addresses challenges related to deployment delays and manual errors.

Both CI and CD are necessary to build an efficient, automated development pipeline. While CI helps maintain a stable, deployable codebase, CD ensures that the code can be delivered to production quickly, reliably, and with minimal manual intervention.

CI and CD in Mainframe Modernization

For organizations relying on mainframes, adopting CI/CD represents a major step toward modernization. By integrating code continuously and delivering updates more frequently, mainframe teams can keep pace with the agile, fast-moving world of modern software development.

In legacy mainframe environments, where code integrations and deployments have traditionally been manual and time-consuming, the introduction of CI and CD enables teams to:

	
Release software faster, reducing the time it takes to deliver new features or fixes.

	
Improve collaboration between development and operations teams, breaking down silos and fostering a more agile work culture.

	
Reduce the risk of failures by automating testing, packaging, and deployment, ensuring that releases are consistent, reliable, and thoroughly tested.

With CI and CD working together, mainframes can be modernized to fit seamlessly into a modern DevOps culture, enabling teams to deliver better software more efficiently.

What’s Next?

Now that we’ve explored the differences between CI and CD, we’ll dive deeper into the key benefits of adopting CI/CD practices in mainframe environments. You’ll learn why these practices are crucial for the future of mainframe systems and how they can transform your organization’s development workflow for the better. Stay tuned for more!

	[image:]

	
	[image:]

[image:]

Key Benefits of Adopting CI/CD in Mainframe Environments

[image:]

Adopting Continuous Integration (CI) and Continuous Delivery (CD) in mainframe environments can transform how organizations develop, test, and deploy software. While CI/CD is often associated with cloud-native applications, its benefits are just as powerful when applied to mainframes, where traditional development approaches can be slow and cumbersome. By automating critical processes, CI/CD modernizes the software development lifecycle, enabling mainframe teams to deliver features and fixes faster, with greater reliability.

Let’s explore the key benefits of adopting CI/CD practices in mainframe environments.

1. Increased Development Speed

One of the most significant benefits of CI/CD is the ability to accelerate the development process. In traditional mainframe environments, development cycles are often long and driven by waterfall methodologies, where code integration and testing happen at the end of the cycle. This leads to extended timelines and slow delivery of new features.

CI/CD changes this dynamic by automating key stages of the development lifecycle:

	
Continuous Integration (CI) ensures that developers integrate their code into a shared repository frequently, allowing changes to be validated and tested immediately. Instead of waiting weeks or months to merge code, CI allows developers to integrate daily or even multiple times per day.

	
Continuous Delivery (CD) automates the testing and deployment processes, allowing code that passes tests to be released quickly and reliably. CD eliminates the need for manual deployments, reducing bottlenecks and speeding up the release process.

For mainframe environments, where stability is paramount, CI/CD introduces automation and agility without compromising reliability. By speeding up the development process, CI/CD enables mainframe teams to keep pace with the demands of modern software development.

Increased Development Speed in Mainframes:

	
Automation of manual processes (e.g., testing, integration, deployment) significantly reduces development time.

	
Shorter release cycles allow organizations to respond to business needs and customer feedback more quickly.

	
Frequent releases ensure that features and fixes are delivered incrementally, reducing the risk of large, delayed releases.

2. Improved Code Quality

Code quality is a critical concern in mainframe environments, where bugs or failures can have significant impacts on business operations. Traditional development approaches often involve long periods of coding followed by integration and testing at the end of the cycle, which can result in large, difficult-to-diagnose bugs that slow down development.

With CI/CD, continuous testing is built into the development process, ensuring that code is validated early and often:

	
Automated unit tests run with every code integration, catching bugs immediately after the code is committed.

	
Integration tests ensure that new changes don’t break existing functionality or cause conflicts with other parts of the codebase.

	
End-to-end tests validate that the entire system works as expected, even as new features are added.

By catching bugs early in the process, CI/CD reduces the complexity of fixing issues later. Developers receive immediate feedback on their changes, allowing them to address problems before they affect the stability of the mainframe system.

Improved Code Quality in Mainframes:

	
Frequent testing helps catch bugs early, reducing the likelihood of major issues later in the development cycle.

	
Automated testing pipelines ensure that all code changes are rigorously tested, leading to more reliable software.

	
Cleaner, more maintainable code results from the continuous feedback loop, where developers receive real-time information on their code's impact.

3. Reduced Deployment Risks

Deployments in mainframe environments have traditionally been high-risk activities, often involving manual steps that can lead to errors or downtime. Manual deployments can be time-consuming, prone to mistakes, and difficult to troubleshoot when things go wrong. Additionally, large, infrequent deployments increase the chances that bugs or conflicts will cause system failures, which can have significant consequences for mission-critical systems.

With Continuous Delivery (CD), deployment risks are minimized:

	
Automated deployments ensure that releases follow the same consistent process every time, reducing the risk of human error.

	
Automated testing guarantees that only code that has passed rigorous tests is deployed to production, significantly lowering the chances of bugs reaching end users.

	
Rollback mechanisms are built into CI/CD pipelines, allowing teams to quickly revert to a previous stable version if an issue is detected during or after deployment.

In a mainframe context, where uptime and reliability are crucial, CI/CD makes deployments low-risk and routine. By automating the deployment process and ensuring that all code changes are thoroughly tested, CI/CD reduces the fear of system failures or extended downtime.

Reduced Deployment Risks in Mainframes:

	
Consistency in the deployment process through automation reduces the risk of human error.

	
Fewer failures in production due to automated testing that catches issues before they are deployed.

	
Faster recovery from deployment failures, as rollback mechanisms are automated and easy to execute.

4. Enhanced Collaboration

Traditional development models often create silos between teams, with developers, testers, and operations working separately and communicating infrequently. This can lead to miscommunication, delays, and a lack of shared responsibility for the final product. In mainframe environments, where multiple teams may be working on different parts of a complex system, these silos can slow down development and increase the risk of integration problems.

CI/CD promotes a collaborative culture by bringing developers, testers, and operations teams together into a single, integrated workflow:

	
Shared pipelines mean that everyone is working with the same tools and processes, fostering greater communication and alignment.

	
Automation reduces the handoffs between teams, allowing development, testing, and operations to work together more seamlessly.

	
DevOps principles encourage shared ownership of the entire software delivery process, from development to deployment.

In a mainframe context, CI/CD helps break down the barriers between teams, ensuring that all stakeholders are aligned and working toward a common goal. This collaborative approach leads to faster development, better communication, and more efficient problem-solving.

Enhanced Collaboration in Mainframes:

	
Cross-functional teams work together more effectively, as automation reduces the need for handoffs and manual intervention.

	
DevOps practices encourage a culture of shared responsibility, where all team members are focused on delivering high-quality software.

	
Increased transparency in the development process fosters better communication and collaboration between teams.

5. Faster Time-to-Market

In industries that rely heavily on mainframes—such as finance, healthcare, government, and telecommunications—being able to deliver features and fixes quickly is a critical competitive advantage. However, traditional development models, with their long release cycles and manual processes, can delay the delivery of new functionality, reducing an organization’s ability to respond to market changes or customer needs.

CI/CD significantly reduces time-to-market by enabling faster, more frequent releases:

	
Continuous Integration ensures that code is always in a working state, allowing features and fixes to be delivered incrementally rather than waiting for a long release cycle.

	
Continuous Delivery automates the testing and deployment process, enabling new features to be pushed to production more frequently and with less risk.

	
Shorter feedback loops allow organizations to respond to customer demands or market changes more rapidly, as fixes and improvements can be deployed in smaller, more manageable increments.

For organizations relying on mainframes, where the ability to quickly deliver updates and improvements is becoming more important than ever, CI/CD offers a solution that enables faster, more reliable software delivery.

Faster Time-to-Market in Mainframes:

	
Frequent releases allow organizations to respond to business needs more quickly.

	
Incremental delivery means that new features and fixes are delivered in smaller, faster updates rather than waiting for large, infrequent releases.

	
Reduced downtime and deployment risks enable organizations to deploy updates with minimal disruption to operations.

Conclusion

Adopting CI/CD practices in mainframe environments brings numerous benefits that can transform an organization’s ability to develop and deliver software. By increasing development speed, improving code quality, reducing deployment risks, enhancing collaboration, and enabling faster time-to-market, CI/CD modernizes the entire software development lifecycle. For organizations that rely on mainframes for mission-critical applications, these benefits are particularly powerful, allowing them to stay competitive in an increasingly digital world.

	[image:]

	
	[image:]

[image:]

1.2 Why CI/CD for Mainframes?

[image:]

Mainframes have been the backbone of critical industries for decades, providing unparalleled stability, scalability, and processing power. However, traditional mainframe development practices often follow long, sequential cycles that can hinder agility and slow down the delivery of new features and updates. In today's fast-paced digital world, organizations that rely on mainframes are facing increasing pressure to modernize their development workflows. This is where Continuous Integration (CI) and Continuous Delivery (CD) come into play.

In this section, we’ll explore why CI/CD is crucial for modernizing mainframe environments, how it addresses the challenges of traditional development cycles, and debunk some common misconceptions about its implementation on mainframes. Let's dive into each of these topics.

Challenges of Traditional Mainframe Development Cycles

Traditional mainframe development often follows a waterfall model, where changes are made in large, infrequent batches. These development cycles can take months or even years to complete, and any issues that arise are often only discovered late in the process, leading to costly delays and complications.

In this subtopic, we will cover:

	
Long Development Cycles: Mainframe systems often experience slow development cycles due to the complexity of the codebase, the involvement of multiple teams, and the reliance on manual testing and deployments.

	
Manual Testing and Deployment: Traditional mainframe workflows rely heavily on manual testing and deployment processes, which increase the risk of human error and slow down the overall process.

	
Risk of Integration Conflicts: Integrating large code changes at the end of the cycle can lead to conflicts, bugs, and system instability, making it harder to deliver reliable software quickly.

Understanding these challenges is key to appreciating why CI/CD is such a game-changer for mainframe development.

How CI/CD Accelerates Mainframe Development and Deployment

CI/CD addresses the pain points of traditional mainframe development by introducing automation, streamlining integration, and enabling faster, more reliable deployments. Instead of waiting for long development cycles to complete, CI/CD enables teams to integrate and test changes continuously, allowing for quicker feedback and faster delivery of updates.

In this subtopic, we’ll explore how CI/CD transforms mainframe development:

	
Continuous Integration (CI): Automating the process of integrating code changes ensures that bugs and conflicts are caught early, leading to more stable codebases and shorter development cycles.

	
Continuous Delivery (CD): Automating testing and deployment processes allows teams to release code updates faster, more frequently, and with less risk of deployment failures.

	
Accelerated Time-to-Market: With CI/CD, mainframe teams can respond to business demands more quickly by delivering new features and bug fixes in smaller, incremental releases, significantly improving time-to-market.

By embracing CI/CD, mainframe teams can enjoy the same speed and efficiency that modern software development teams have experienced for years.

Misconceptions About CI/CD on Mainframes

Despite its proven benefits, there are still several misconceptions about implementing CI/CD in mainframe environments. Many organizations believe that their mainframes are too complex, too legacy-based, or too stable to benefit from CI/CD. However, these misconceptions often prevent organizations from fully realizing the potential of modern development practices.

In this subtopic, we’ll debunk some of the most common misconceptions about CI/CD on mainframes:

	
"Mainframes don’t need CI/CD": Some believe that mainframes are so stable that frequent updates are unnecessary. In reality, CI/CD can help reduce the risk of outages and bugs while enabling faster updates.

	
"CI/CD won’t work with legacy systems": Many organizations think that CI/CD is only for cloud-native applications. However, mainframes can fully adopt CI/CD practices with the right tools and strategy.

	
"CI/CD introduces too much risk": Some fear that the automation of testing and deployment will introduce more risks, but CI/CD actually reduces risks by ensuring that each change is thoroughly tested and integrated before being deployed.

By clearing up these misconceptions, we can better understand why CI/CD is a viable and necessary solution for modernizing mainframe environments.

What’s Next?

In the following sections, we’ll dive deeper into each of these topics, exploring the specific challenges of traditional mainframe development, how CI/CD accelerates development and deployment, and the misconceptions that often prevent organizations from adopting these practices. By the end of this section, you’ll have a clear understanding of why CI/CD is the future of mainframe development and how it can help your organization stay competitive and agile.

Let’s begin by exploring the challenges of traditional mainframe development cycles.

	[image:]

	
	[image:]

[image:]

Challenges of Traditional Mainframe Development Cycles

[image:]

Mainframe systems are known for their reliability and ability to process large volumes of data for critical industries like finance, healthcare, and government. However, traditional development practices on mainframes are often outdated and hinder the ability to deliver new features and updates efficiently. These systems frequently follow a waterfall development model, which is characterized by long, sequential phases and large, infrequent code releases. This approach, while thorough, is not suited for the fast-paced, iterative demands of modern software development.

Let’s break down the key challenges of traditional mainframe development cycles and explore how these factors contribute to slow delivery, increased risks, and inefficiencies.

1. Long Development Cycles

One of the most significant challenges in traditional mainframe development is the length of the development cycle. Due to the inherent complexity of mainframe environments and the size of their codebases, development projects can take months or even years to complete. This lengthy process is often the result of several factors:

	
Complex Legacy Codebases: Mainframe applications are often built on decades-old code written in languages like COBOL, PL/I, or Assembler. These legacy codebases are intricate and require specialized knowledge, making it time-consuming for developers to implement changes or add new features.

	
Sequential Development Phases: In a traditional waterfall model, development happens in sequential stages—requirements gathering, design, coding, testing, and deployment. Each phase must be completed before the next can begin, leading to long periods of inactivity while teams wait for previous stages to finish.

	
Siloed Teams: Mainframe teams are often structured in silos, with developers, testers, and operations working separately. This lack of collaboration leads to bottlenecks, as each team waits for the other to complete their part of the process.

The result of these factors is that new features and updates are often delayed, causing organizations to miss opportunities to innovate or respond quickly to market changes. These long development cycles are not compatible with today’s business environments, where agility and speed are essential for competitiveness.

Impact of Long Development Cycles:

	
Delayed Time-to-Market: Slow development cycles delay the delivery of new features and updates, which can negatively impact customer satisfaction and business agility.

	
Increased Costs: Longer development times mean higher operational costs, as teams spend more time working on the same project.

	
Inflexibility: The rigid nature of waterfall development makes it difficult to adapt to changing requirements or feedback during the development process.

2. Manual Testing and Deployment

Traditional mainframe workflows often rely heavily on manual testing and manual deployment processes. While mainframe systems are renowned for their reliability, the manual nature of these processes introduces significant challenges, particularly in terms of speed, accuracy, and scalability.

	
Manual Testing: Testing in traditional mainframe environments is often performed manually, which is both time-consuming and prone to human error. Testing teams must execute tests manually to validate code changes, which slows down the entire development process. Additionally, because manual testing is labor-intensive, testing coverage may be limited, increasing the risk that bugs or issues will be missed.

OEBPS/d2d_images/chapter_title_above.png

OEBPS/d2d_images/chapter_title_corner_decoration_left.png

OEBPS/d2d_images/cover.jpg
Integrating modern practices into
powerful systems

RICARDO NUQUI

OEBPS/d2d_images/chapter_title_corner_decoration_right.png

OEBPS/d2d_images/chapter_title_below.png

OEBPS/d2d_images/scene_break.png

