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Preface


This book was conceived to address the growing demand for a practical, problem-oriented resource that guides learners through advanced topics in modern computer vision. It was written to build upon foundational knowledge and to offer readers a hands-on journey through a diverse set of techniques—from classical image processing to cutting-edge deep learning and generative AI models.


A deliberate choice was made to follow a problem-first approach, where real-world challenges are introduced and then explored through a variety of methods. In computer vision, there is rarely a single correct way to solve a problem. Instead, solutions are often shaped by factors such as application context, data constraints, and performance needs. Thus, this book aims not to prescribe the most optimal or efficient method in every case, but rather to expose readers to a broad spectrum of techniques. The goal is to help them develop the insight and flexibility to choose—or even design—the best solution for their own unique scenario.


Each chapter is structured to include the necessary background theory, followed by well-explained Python code demonstrations using widely adopted libraries such as OpenCV, scikit-image, SimpleITK, PyTorch, TensorFlow, Keras, and more. Readers are encouraged to treat the hands-on examples not as fixed templates, but as launchpads for experimentation, adaptation, and deeper learning.


Given Python’s dynamic and ever-evolving ecosystem, it is acknowledged that some functions or APIs used in this book may be deprecated or modified in the future. However, readers should not be discouraged by such changes. Once the core concepts are understood, tweaking, debugging, and adapting code to evolving libraries becomes not only manageable but also an excellent learning opportunity. It is in this iterative process of troubleshooting and discovery that one’s true expertise begins to flourish.


This book assumes that readers are already comfortable with Python programming and possess foundational knowledge in image processing, machine learning, deep learning, and mathematical disciplines such as linear algebra, calculus, and probability. For readers who wish to build or reinforce this foundation, it is strongly recommended to explore the companion book Image Processing Masterclass with Python, authored by the same writer.


Ultimately, the aim of this book is to guide, inspire, and empower. The solutions presented are stepping stones, not finish lines. It is hoped that readers will not only gain practical skills but also develop a sense of joy and fascination in solving visual problems. The journey through image processing and computer vision is rich, challenging, and immensely rewarding—may you enjoy every step of it.


Welcome to the masterclass. Let the journey begin.


Chapter 1: Image Restoration and Inverse Problems in Image Processing - This chapter introduces fundamental concepts in image restoration and inverse problems. It begins with the mathematical formulation of degradation models and explores various denoising and deblurring techniques, both classical and modern. Key techniques include weighted median filtering, non-blind and blind deconvolution (for example, Richardson-Lucy), total variation minimization, wavelet-based denoising, non-local means, bilateral filtering, MAP Bayesian estimation with MRF priors, and kernel PCA-based denoising—all demonstrated in Python.


Chapter 2: More Image Restoration and Image Inpainting - Building on the previous chapter, this section dives deeper into image restoration using neural techniques. It covers autoencoder-based denoising, GAN-based blind deblurring (DeblurGAN), and multiple approaches to image inpainting. Topics include anisotropic diffusion filtering, simple deep image painting using Keras, and semantic inpainting using DCGANs, with rich code examples to reinforce learning.


Chapter 3: Image Segmentation - Segmentation is a core problem in vision. This chapter introduces foundational segmentation techniques, including gray-level and bitplane slicing, thresholding methods, and clustering-based segmentation. It also covers advanced algorithms like MeanShift, watershed, GrabCut, RandomWalk, and SLIC/NCut segmentation using Python libraries like OpenCV, scikit-learn, and scikit-image.


Chapter 4: More Image Segmentation - This chapter extends segmentation to more advanced and applied topics. It covers human skin detection using classical binary classifiers, labeling connected components, and video background separation using Gaussian Mixture Models. Deep learning-based segmentation techniques such as DeepLabV3+, ENet, and Detectron2 are explored, along with practical tasks like background replacement in images/videos and outlier detection with autoencoders.


Chapter 5: Image Feature Extraction and Its Applications: Image Registration - Feature detection is a critical building block for many applications. This chapter reviews keypoint detection and description methods, and focuses on feature-based image alignment and registration. Topics include rigid and deformable registration with tools like pystackreg, pyelastix, SimpleITK, and the deep learning-based VoxelMorph model using TensorFlow/Keras.


Chapter 6: Applications of Image Feature Extraction - This chapter showcases how feature extraction powers real-world applications. Examples include image panorama stitching with OpenCV, facial feature analysis using NMF, LBPH, and Gabor filters, and pedestrian detection using HOG and HAAR-Cascade features. Each use case is backed by end-to-end Python code.


Chapter 7: Image Classification - Image classification forms the foundation of many AI systems. This chapter walks through the entire pipeline—from classical machine learning approaches for classifying Fashion-MNIST to deep learning models using TensorFlow/Keras. It also demonstrates transfer learning with PyTorch and training classifiers on custom datasets using pre-trained models.


Chapter 8: Object Detection and Recognition - Delve into object localization with deep learning. Topics include using pre-trained models, YOLOv4 with transfer learning, instance-level tasks like selective coloring using Mask R-CNN, face verification with DeepFace, and barcode/QR detection. Hands-on examples provide a strong basis for object detection projects.


Chapter 9: Application of Image Processing and Computer Vision in Medical Imaging - Explore the rich world of medical image analysis. This chapter covers handling and visualizing DICOM and NIfTI formats using libraries like pydicom, nibabel, and ITK. It includes segmentation of brain MRIs, 3D rendering, CT reconstruction, and pneumonia classification using deep CNNs—highlighting the real impact of vision in healthcare.


Chapter 10: Application of Image Processing and Computer Vision in Medical Imaging and Remote Sensing - This dual-topic chapter covers both medical and remote sensing applications. Medical topics include COVID-19 detection, prostate segmentation, and brain tumor segmentation using nnUNet and U-Net. Remote sensing topics include segmentation of satellite images (for example, FloodNet, SN7), and landcover classification using ResNet101 with Fastai. It illustrates how vision systems solve problems beyond consumer devices.


Chapter 11: Miscellaneous Problems in Image Processing and Computer Vision - This final chapter brings together innovative and creative applications of vision. Topics include deep dreaming, neural style transfer, image colorization, visualizing CNN features with t-SNE, generating 3D point clouds, AR with OpenCV, video editing with MoviePy, image generation from text with GAN-CLS, seamless cloning, and DALL-E-based generation—pushing the boundaries of what is possible in computer vision. 
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CHAPTER 1Image Restoration and Inverse Problems in Image Processing




Introduction

			Image restoration is the process of recovering a degraded image to enhance its quality by reducing noise, blur, or other distortions. The goal of image restoration is to undo or compensate for the elements that corrupt or degrade an image. Degradation can be caused because of sensor noise, motion blur, defocus blur (camera misfocus), optical aberrations, and environmental distortions. When an image is corrupted with some kind of blur, the actual blurring function — typically modeled as a Point Spread Function (PSF) — can be estimated, and the blur can be undone to restore the original image through deconvolution techniques. Similarly, noise degradation—whether caused by electronic interference, low-light conditions, or compression artifacts—requires denoising methods such as total variation regularization, wavelet-based filtering, or deep-learning-based restoration to recover image details. 

			Recent advancements in AI-driven image restoration leverage transformer-based models, generative adversarial networks (GAN), and self-supervised learning to enhance image quality beyond traditional techniques. These methods have demonstrated superior performance in handling complex degradations, blind restoration scenarios, and real-world applications.

			In this chapter, we shall explore and implement fundamental and modern image restoration techniques, analyzing their effectiveness for different types of degradation while considering the latest developments in image processing and computational imaging.


Structure


			In this chapter we shall explore the following topics:

			•	Mathematical model for image restoration

			•	Inverse problems in image processing

			•	Denoising with weighted median filtering

			•	Non-blind deconvolution for image restoration

			•	Blind deconvolution with Richardson-Lucy algorithm

			•	Total variation denoising

			•	Image denoising with wavelets

			•	Denoising using non-local means with opencv-python

			•	Denoising with bilateral filter

			•	Denoising with MAP Bayesian with an MRF prior

			•	Denoising images with kernel PCA

Objectives

			By the end of this chapter, we will be able to understand the fundamental concepts of image restoration, including the types of degradation (for example, noise, blur) that affect images and how restoration techniques aim to reverse these effects. We will also identify the difference between denoising and deblurring problems in image restoration and how these are handled by various algorithms, implement non-linear spatial filtering techniques such as the weighted median filter to effectively reduce noise in an image, apply non-blind deconvolution techniques using Python libraries (for example, opencv-python, SimpleITK) to restore images affected by motion blur or defocus blur, leveraging methods like the Wiener filter and inverse filter, explore blind deconvolution methods, including the Richardson-Lucy algorithm, to restore images when the blur kernel is unknown, use total variation (TV) denoising to preserve important features like edges while removing noise, using Python libraries such as scikit-image or SimpleITK, and implement wavelet denoising to remove noise at multiple frequency levels using the pywt library. Understand and implement non-local means (NLM) filtering and bilateral filtering, which consider spatial and intensity differences for efficient denoising while preserving edges. Additionally, we will explore Bayesian denoising techniques with Markov Random Field (MRF) priors for probabilistic image restoration, utilizing kernel Principal Component Analysis (PCA) for denoising, which applies dimensionality reduction techniques to image restoration problems, and use popular Python libraries like scikit-image, opencv-python, SimpleITK, scipy.ndimage, and matplotlib to implement these techniques and visualize the results.

			By mastering these topics, you will have a strong grasp of how to restore corrupted images using various modern techniques and how to implement them effectively in Python for practical applications. 

Mathematical model for image restoration

			To formalize the image restoration process, let us begin by examining its underlying mathematical model, which describes how an observed image is formed through degradation mechanisms. The general form of the image degradation model is shown in the following figure:

[image: A diagram showing image restoration: input image x goes through a lowpass filter, noise Î· is added, resulting in output y. Caption reads Image Restoration: Given y find x.

]

Figure 1.1: Schematic diagram for image restoration problem





			Figure 1.1 represents the generative model g(x,y) = f(x,y) ⊛ h(x,y) + n(x,y), where:

			•	f(x,y) is the original image (represented by x in the aforementioned figure)

			•	h(x,y) is the PSF, a convolution kernel

			•	⊛ is the convolution operation

			•	n(x,y) is the noise signal

			•	g(x,y) is the convolved output image (represented by y in the figure)

			When the noise is not present in the preceding model, the problem reduces to deblurring; there are several techniques for non-blind and blind deblurring (a few of them we shall implement).

			When the blur kernel is absent, the problem reduces to denoising, typically done by spatial / frequency domain filters, let us start with a generalized form of one such non-linear spatial filter.

Inverse problems in image processing

			Inverse problems in image processing refer to the task of estimating the original image from its degraded observation by mathematically reversing the effects of distortions such as blur, noise, and occlusions. It is called an inverse problem because instead of directly observing the cause (for example, motion blur), we infer unknown parameters from the degraded image, essentially inverting the degradation process. While image restoration is a subset of inverse problems, inverse problems in imaging also encompass tasks like super-resolution, image inpainting, and tomography, making it a broader concept beyond just restoring images. In this section, we shall focus on restoration of a degraded image.

			As discussed in the introduction section, image degradation can be represented by a convolution of an image with a PSF, combined with the addition of noise [4], so that it can be mathematically modeled as [image: ] where A is matrix that represents a two-dimensional convolution with a Gaussian blur (with standard deviation σ), and η represents the additive noise (of standard deviation θ).

			Here [image: ] is the original image (not available to us), all we have is the degraded image g and the convolution matrix A (for non-blind convolution). We want to obtain an estimate [image: ]

			The class of problems is often known as an inverse problem in image processing, where we aim at the data estimation from inadequate or noisy observations, and it is often encountered in practice. It is an ill-posed problem, and the solution is non-unique due to noise and lack of information. Hence, we aim to obtain an approximate solution.

			In this section we shall use normal equations (with regularization) to obtain an estimate for the original image.

			Let us start by importing all the required libraries using the following code snippet:

			
				
					
				
				
					
							
							%matplotlib inline

							import numpy as np

							import matplotlib.pyplot as plt

							from scipy.ndimage.filters import gaussian_filter

							from skimage.metrics import peak_signal_noise_ratio as psnr

							from scipy.sparse.linalg import LinearOperator, gmres

							import warnings

							warnings.filterwarnings('ignore') # ignore warnings

						
					

				
			


			Let us define the convolution process with Gaussian blur kernel with variance [image: ] using the gaussian_filter() function from scipy.ndimage.filters module.

			Implement the degradation process with the function degrade(), which first applies the convolution, followed by addition of a standard normal noise of variance [image: ] as shown in the following code block.

			Initialize [image: ] and [image: ] variables.

			
				
					
				
				
					
							
							def A(f, sigma):

							    return gaussian_filter(f, sigma)

							def degrade(f, sigma, theta):

							    g = A(f, sigma) 

							    g += theta*np.random.randn(g.shape[0], g.shape[1])

							    return g

							sigma, theta = 0.15, 0.075

							f_true = rgb2gray(imread('images/beans.jpg'))

							g = degrade(f_true, sigma, theta)

						
					

				
			
			


			From the degradation equation, we can see that it can be represented as an optimization (minimization) problem with the classic OLS loss function along with a Ridge [image: ] penalization term as:

			[image: ]

			The true image is restored by solving the preceding normal equation (prove it):

			[image: ]

			The process of reversing the degradation effects to restore the true image [image: ] from the observed degraded image [image: ], as a solution to [image: ], is generally known as deconvolution.

			We can solve the preceding problem using a Krylov solver such as the Generalized Minimal Residual Method (GMRES).

			Since the explicit matrix representation of [image: ] is infeasibly large, pass the solver instead of a function that computes [image: ]

			[image: ]

			It performs the following two-step process:

			[image: ]

			The following code snippet solves the preceding equation with the function gmres() from scipy.sparse.linalg module and obtains an estimate for [image: ] for the original image. Invoke gmres([image: ]), to use GMRES iteration for solving the linear system of equations given by [image: ], to find [image: ]

			
				
					
				
				
					
							
							def ATA(f, alpha=1e-2):

							    y = A(f, sigma)

							    z = A(y, sigma) + alpha*f

							    return z

							h, w = g.shape

							AL = LinearOperator((w*h,w*h), ATA)

							ATg = np.ravel(A(g, sigma))

							f_hat = np.reshape(gmres(AL, ATg)[0], (h,w))

						
					

				
			
			

			Plot the degraded image and the restored one with the following code block:

			
				
					
				
				
					
							
							plt.figure(figsize=(20,10))

							plt.subplot(121), plt.imshow(g), plt.title('degraded, PSNR: {:.02f}' \

							                   .format(psnr(f_true, g)), size=20), plt.axis('off')

							plt.subplot(122), plt.imshow(f_hat), plt.title('restored, PSNR: {:.02f}' \

							                    .format(psnr(f_true, f_hat)), size=20), plt.axis('off')

							plt.tight_layout()

							plt.show()

						
					

				
			
			

			Once you run the aforementioned code snippet, you should obtain the following figure:

[image: Side-by-side grayscale images of textured objects. Left image is labeled degraded, PSNR: 22.50 and right is labeled restored, PSNR: 22.57. The right image appears slightly clearer with less noise.

]

Figure 1.2: Image restoration with the GMRES method





Denoising with weighted median filtering

			When an image (a 2D or 3D signal) is transmitted over some distance over a communication channel, it frequently gets contaminated by noise. The simplest model for the acquisition of noise by a signal is additive noise, with the form:

			[image: ]

			The basic assumptions for noise signal [image: ] are the following:

			•	Noise is additive.

			•	Noise is a random signal (with white Gaussian noise having [image: ] mean).

			•	Noise is a high-frequency signal.

			Again, our objective of denoising is to remove noise [image: ] from the noisy image [image: ], while retaining most of the important signal features. Here, we shall use a weighted median filter to achieve the same.

			A simple median filter is a nonlinear spatial filter that replaces each pixel with the median from a set in a window (patch) surrounding the pixel. This has the effect of minimizing the absolute prediction error. The output of the filter can be written as follows:

			[image: ]

			Where [image: ] is a window surrounding pixel s. It can be shown that [image: ] is minimum when [image: ]  [image: ](see question 1 in the exercise and reference [1]).

			The median filter is particularly very useful for removing the salt and pepper (s&p) noise (a type of image noise, where random pixels are replaced with black or white values, resembling scattered salt and pepper grains) from an image. The weighted median filter generalizes the median filter by allowing some pixels in the window to have more influence on the output than others. Here, the output is written as follows:

			[image: ]

			Where [image: ] are weighting factors which determine the relative influence pixels in [image: ] have on the output. A typical set of weights is shown as follows:

[image: A 5x5 grid where the border cells contain the number 1 and the inner 3x3 cells contain the number 2.

]

Figure 1.3: Sample weights for a weighted median filter





			This weight mask allows the pixels closer to the current pixel to have a stronger influence on the output.

			In this section, we shall implement the weighted median filter function and apply it to denoise an Integrated Circuit (IC) grayscale image, degraded with s&p noise.

			Let us start by importing the required libraries by using the following lines of code:

			
				
					
				
				
					
							
							import cv2

							from skimage.util import random_noise

						
					

				
			
			

			Now, let us implement the function weighted_median() that applies the Weighted Median Filter (WMF) on an image. The function accepts a (noisy) input image and a weight mask for the WMF. The following is a step-by-step breakdown of how the algorithm works:

			1.	It slides a kernel window across the image (a standard way to implement a spatial filter).

			2.	Next, for each position of the window, it sorts the pixels in the window in descending order. Then it places the corresponding pixel weights in the same order as the sorted pixels.

			[image: ]

			3.	Finally, it determines the weighted median [image: ] by incrementing the index [image: ] until the following holds true.

			[image: ]

			Let us implement the aforementioned algorithm using the python function weighted_median(), as shown in the next code snippet. The function np.argsort() is used to obtain the sorted indices of the pixels in a window. The function np.cumsum() is used to compute the cumulative sum of the weight mask values in the following implementation.

			
				
					
				
				
					
							
							def weighted_median(im, mask):

							    h, w = im.shape

							    sz = mask.shape[0]

							    im1 = im.copy()

							    mask1 = mask.ravel()

							    for i in range(h-sz+1):

							        for j in range(w-sz+1):

							            win = im[i:i+sz, j:j+sz].ravel()

							            indices = np.argsort(win)[::-1]

							            win, mask1 = win[indices], mask1[indices]

							            csum1, csum2 = np.cumsum(mask1), np.cumsum(mask1[::-1])[::-1]

							            k = 0

							            while csum1[:k].sum() < csum2[k:].sum():

							                k += 1

							            im1[i+sz//2, j+sz//2] = win[k]

							    return im1

						
					

				
			
			

			Now, read the input gray-scale image. Add impulse (s&p) noise to the input image using the function random_noise() from skimage.util module to obtain the noisy image.

			Construct the weight mask aforementioned, using numpy slicing, as done in the next code snippet. Subsequently, apply the weighted median filter function to denoise (smooth) the degraded image, by invoking the weighted_median() function on the corrupted image:

			
				
					
				
				
					
							
							im = cv2.imread('images/ic.jpg', 0)

							im = im / im.max()

							noisy_im = random_noise(im, mode='s&p')

							weight_mask = np.ones((5,5))

							weight_mask[1:-1,1:-1] = 2

							denoised_im = weighted_median(noisy_im, weight_mask)

						
					

				
			
			

			Plot the original input image, the noisy (degraded) image, and the denoised (restored) output image side-by-side. Use skimage.util module’s peak_signal_noise_ratio() function to compute the Peak Signal-to-Noise Ratio (PSNR, which measures the quality of a reconstructed image by comparing it to the original and computed using the formula PSNR [image: ], where MAX is the maximum pixel value and MSE is the Mean Squared Error) of the noisy and denoised images and observe that PSNR improved a lot after restoration. You should obtain a figure as follows:

[image: Three grayscale images of an electronic circuit board: the original (left), a noisy version with visual static and lower PSNR (middle), and a restored version with reduced noise and higher PSNR (right).

]

Figure 1.4: Image restoration with weighted median filter





Non-blind deconvolution for image restoration

			Deconvolution is an operation inverse to convolution, it is a computationally intensive image processing technique for image restoration. In general, the objective of deconvolution is to find an (approximate) solution for [image: ] from a convolution equation of the form: [image: ] given [image: ] and the convolution kernel [image: ]. In this section, we shall discuss a few deconvolution algorithms with the assumption that the deconvolution is non-blind, i.e., the PSF, which describes how a single point source of light is blurred by an imaging system, modeling the system’s response to an ideal point input, and the convolution kernel [image: ] is known.

Image deconvolution with inverse filter

			The inverse filter is the most straightforward deconvolution method. Considering that the convolution of two images in the spatial domain is equivalent to multiplication of the Fourier transforms of the two images in the frequency domain (by the convolution theorem), the inverse filter attempts to invert the multiplication.

			If in the spatial domain, the convolution operation is represented as [image: ][image: ], in the frequency domain it can be represented by a simple multiplication [image: ][image: ], where [image: ] and [image: ] represent the 2D Discrete Fourier Transform (DFT, which converts a spatial-domain image into its frequency components, computed in 2D as [image: ] [image: ] ) of [image: ] (the original [image: ] image), [image: ] (the convolution kernel) and [image: ] (the convolved image), respectively (note that we are ignoring the noise here, the impact of noise on inverse filter is left as an exercise). A naive approach for image restoration is to multiply the DFT of the blurred image by inverse of [image: ]

			[image: ]

			The next step is to apply the 2D IDFT (Inverse Discrete Fourier Transform, converts an image back to spatial domain from its frequency domain representation, and it is computed in 2D as: [image: ]) to obtain the restored image [image: ] from its frequency domain representation.

			The aforementioned method is called inverse filtering, where [image: ] is the inverse filter.

			However, the problem in this formulation is that [image: ] may not exist / it may be computationally impossible to compute [image: ] (for example, when [image: ]). The ideal (more stable) inverse filter (also known as pseudo-inverse filter) can be approximated as follows:

[image: Mathematical equation for FÌ‚(u, v): if |H(u, v)| is greater than or equal to Îµ, FÌ‚(u, v) equals G(u, v) divided by H(u, v); otherwise, FÌ‚(u, v) equals zero.

]

Figure 1.5: Pseudo-inverse filter





			Where [image: ] is a small threshold.

			Another way to compensate for the values close to zero in [image: ] is just to get rid of high-frequency components beyond a cutoff threshold (for example, [image: ]) with naive inverse filtering with the deconvolution operator [image: ] as follows:

[image: Mathematical equations showing: 1/H(u,v), HÌ‚(u,v) = 0 if uÂ² + vÂ² > Î·, and FÌ‚(u,v) = G(u,v) HÌ‚(u,v), related to frequency domain image processing.

]

Figure 1.6: Another implementation of the inverse filter





			Where [image: ] is a high frequency threshold.

			In this section, we shall implement the pseudo-inverse filter using the aforementioned two approaches and restore a degraded image. Let us start by importing the required libraries using the following lines of code:

			
				
					
				
				
					
							
							from scipy import signal

							import scipy.fftpack as fp

							from skimage.io import imread

							from skimage.color import rgb2gray

							from mpl_toolkits.mplot3d import Axes3D

							from matplotlib.ticker import LinearLocator, FormatStrFormatter

						
					

				
			
			

			Let us implement the frequency domain convolution using the function convolve2d(), notice that before performing the convolution as multiplication in the frequency domain, we must ensure that the PSF (convolution kernel) is padded properly to have shape exactly equal to the image shape. Let us also implement the pseudo-inverse filter and use the post-processing cutoff, as shown in the next code snippet:

			
				
					
				
				
					
							
							def convolve2d(im, psf, k):

							    M, N = im.shape

							    freq = fp.fft2(im)

							    assert(k % 2 == 1 and k > 0 and k <= min(M,N)) 

							    # assumption: min(M,N) >= k > 0, k odd, kxk kernel

							    psf = np.pad(psf, (((M-k)//2,(M-k)//2+(1-M%2)), ((N-k)//2,(N-k)//2+(1-N%2))),\

							                                                          mode='constant') 

							    freq_kernel = fp.fft2(fp.ifftshift(psf))

							    return np.abs(fp.ifft2(freq*freq_kernel))



							def inverse_filter_cutoff(y, h, eta):

							    Hf = fp.fft2(fp.ifftshift(h))

							    M, N = Hf.shape

							    u, v = np.meshgrid(range(N), range(M))

							    indices = np.sqrt(u**2 + v**2) <= eta

							    Hf[indices] = np.ones((M,N))[indices] / Hf[indices]

							    Hf[np.sqrt(u**2 + v**2) > eta] = 0

							    Yf = fp.fft2(y)

							    I = Yf*Hf 

							    im = np.abs(fp.ifft2(I))

							    return im, Hf



							def pseudo_inverse_filter(y, h, epsilon):

							    Hf = fp.fft2(fp.ifftshift(h))

							    M, N = Hf.shape

							    Hf[(np.abs(Hf)<epsilon)] = 0

							    indices = np.where((np.abs(Hf)>=epsilon))

							    Hf[indices] = np.ones((M,N))[indices] / Hf[indices]

							    Yf = fp.fft2(y)

							    I = Yf*Hf 

							    im = np.abs(fp.ifft2(I))

							    return im, Hf

						
					

				
			
			

			Let us define the following functions to plot the frequency spectrums, both in 2D (as heatmap) and 3D (as surface plot):

			
				
					
				
				
					
							
							def plot_freq_filter(F, title, size=20):

							    plt.imshow(20*np.log10( 0.01 + np.abs(fp.fftshift(F))), cmap='inferno')

							    plt.title(title, size=size), plt.colorbar(orientation='horizontal')



							def plot_freq_spec_3d(freq):

							    fig = plt.figure(figsize=(10,10))

							    ax = fig.gca(projection='3d')

							    Y = np.arange(-freq.shape[0]//2,freq.shape[0]-freq.shape[0]//2)

							    X = np.arange(-freq.shape[1]//2,freq.shape[1]-freq.shape[1]//2)

							    X, Y = np.meshgrid(X, Y)

							    Z = (20*np.log10(0.01 + fp.fftshift(freq))).real

							    surf = ax.plot_surface(X, Y, Z, cmap=plt.cm.inferno, linewidth=0, \

							                           antialiased=True)

							    ax.zaxis.set_major_locator(LinearLocator(10))

							    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

							    plt.show()

						
					

				
			
			

			Now, let us create a couple of degraded (grayscale) images with two different types of blur kernels, first with a Gaussian blur and then using a motion blur kernel, and restore the degraded versions in each case using the pseudo-inverse filters (using the functions inverse_filter_cutoff() and pseudo_inverse_filter()), compare the quality of the denoised images with PSNR metric and plot the frequency spectrums, using the following code snippets.

Gaussian blur kernel

			Gaussian blur kernel (in image processing) is a kernel (a matrix or a 2D array) used to smooth (or blur) an image by averaging pixel values with a Gaussian distribution, reducing noise and detail. It applies a weighted average to the surrounding pixels, with the center pixel having the highest weight and decreasing weights for pixels farther from the center, following the shape of a Gaussian (bell curve).

			Mathematically, a 2D Gaussian function is defined as:

			[image: ]

			Where:

			•	[image: ] are the pixel coordinates relative to the center of the kernel

			•	[image: ] is the standard deviation (controls the extent of blurring)

			•	[image: ] gives the weight for each pixel based on its distance from the center

			The kernel values are derived from this Gaussian function and normalized so that they sum to 1, ensuring no change in image brightness. The image is convolved with this kernel to produce the blurred effect. The following Python code snippet shows how a degraded image (blurred with Gaussian kernel is restored using an inverse filter):

			
				
					
				
				
					
							
							(M, N), k, sigma2, nsigma2 = im.shape, 15, 0.125, 0.0025



							im = rgb2gray(imread('images/house.jpg')) 

							kernel = np.outer(signal. windows.gaussian(k, sigma2), \

							                  signal. windows.gaussian(k, sigma2))

							im_blur = convolve2d(im, kernel, k) #, mode='same')

							im_cor = random_noise(im_blur, var=nsigma2)

							freq = fp.fft2(im_cor)

							epsilon = 1e-3

							eta = 1 / epsilon

							kernel = np.pad(kernel, (((M-k)//2,(M-k)//2+1), ((N-k)//2,(N-k)//2+1)), \

							                mode='constant')

							im_res_cutoff, F_cutoff = inverse_filter_cutoff(im_cor, kernel, eta)

							im_res_pseudo, F_pseudo = pseudo_inverse_filter(im_cor, kernel, epsilon)

						
					

				
			
			

			The preceding Python code demonstrates image restoration by applying an inverse filter to a degraded image. The following is a breakdown of how it works:

			•	Defining image parameters:

				o	M, N: Dimensions of the image.

			o	k: Size of the blur kernel.

			o	sigma2: Standard deviation for generating the Gaussian kernel (controls blur intensity).

			o	nsigma2: Variance of the noise added to the blurred image.

			•	Image loading and conversion: The image is loaded and converted to grayscale using rgb2gray(imread(.)).

			•	Generating the blur kernel: A Gaussian blur kernel is created using signal.windows.gaussian(), which generates a 1D Gaussian, and np.outer() forms a 2D kernel, by exploiting the separability of the Gaussian function in 2D.

			•	Blurring the image: The image is blurred by convolving it with the Gaussian kernel using convolve2d(), where convolution (in 2D) is mathematically defined as: [image: ] [image: ], with [image: ] and [image: ] representing the image and the kernel, respectively.

			•	Adding noise: Random noise with variance nsigma2 is added to the blurred image using random_noise(), to simulate a noisy, degraded image.

			•	FFT of the corrupted image: The corrupted (blurred and noisy) image is transformed into the frequency domain using the Fast Fourier Transform (FFT) with fp.fft2().

			•	Inverse filter application:

			o	Kernel padding: The kernel is padded to match the image size using np.pad().

			o	Inverse filter: The following two variations of the inverse filter are applied:

				Cutoff inverse filter (inverse_filter_cutoff()): This applies a frequency domain cutoff to limit high-frequency noise using the inverse of the kernel (with a threshold eta).

				Pseudo-inverse filter (pseudo_inverse_filter()): This uses a regularized pseudo-inverse approach to stabilize the inversion, avoiding divisions by small values using epsilon.

			Both filters attempt to undo the blur and noise degradation, thereby restoring the image. If you run the preceding code snippet and plot the degraded and restored images (along with the magnitude of the frequency spectrums) using the aforementioned two implementations, you should obtain a figure as follows:

[image: Top row: Three grayscale images of a building (noisy blurred, restored, and restored with higher PSNR). Bottom row: Three colored FFT visualizations corresponding to the images above, showing frequency analysis and kernels.

]

Figure 1.7: Image restoration with (pseudo) inverse filter





			If you plot the magnitude of frequency spectrums in 3D, you will obtain a figure like the next one:

[image: Two 3D surface plots display frequency spectra of images. The left plot is labeled fft2(im_cor) and the right one fft2(im_res_cutoff). Both show a central peak with surrounding noise on a grid.

]

Figure 1.8: Frequency spectrum of the degraded vs. restored image





			As we have seen in the last section, Gaussian blur kernel applies a symmetric, isotropic smoothing effect to an image by convolving it with a 2D Gaussian function, which assigns higher weights to pixels closer to the center. It is commonly used to reduce noise or create a soft-focus effect. In contrast, a motion blur kernel simulates the effect of object motion or camera shake by averaging pixel intensities along a specific direction and distance. Unlike Gaussian blur, motion blur is directional and anisotropic, resulting in elongated streaks that mimic the perceived motion. They serve distinct purposes: Gaussian blur focuses on uniform smoothing, while motion blur captures the directional nature of movement.

			Motion blur kernel

			A motion blur kernel in image processing is used to simulate the effect of camera or object movement during exposure, causing the image to appear smeared along the direction of motion. It is a linear filter that averages pixel values along a straight line in the direction of the blur, giving the appearance of motion.

			Mathematically, a motion blur kernel is often represented as a 2D matrix where non-zero values form a line with equal weights in the direction of the blur. For example, a simple horizontal motion blur kernel of size N×N can be written as the following matrix (with the first row as all ones and all the elements of the rest of the matrix as zeros):

			[image: ]

			In the preceding example, the kernel has N non-zero elements (all equal to 1/N) in the first row, simulating uniform averaging along a horizontal path of length N. The image is convolved with this kernel, which results in a blurring effect along the specified motion direction.

			For vertical or diagonal motion blur, the non-zero values in the kernel would be arranged along a vertical or diagonal line, respectively. The general motion blur can be extended to other directions by adjusting the orientation of the kernel.

			Let us now degrade an image using motion blur and restore (deblur) using the inverse filter, using the following code snippet:

			
				
					
				
				
					
							
							im = rgb2gray(imread('images/car.jpg')) 

							(M, N), k = im.shape, 21  # k x k kernel

							kernel = np.zeros((k, k)) # construct a 21 x 21 motion-blur kernel

							kernel[int((k-1)/2), :] = np.ones(k) # fill middle row of kernel matrix with 1s

							kernel = kernel / k

							im_blur = convolve2d(im, kernel, k)

							im_cor = im_blur

							freq = fp.fft2(im_cor)

							kernel = np.pad(kernel, (((M-k)//2,(M-k)//2+1), ((N-k)//2,(N-k)//2+1)), \

							                                                       mode='constant')

							epsilon = 10e-3

							im_res_pseudo, F_pseudo = pseudo_inverse_filter(im_cor, kernel, epsilon)

						
					

				
			
			

			A couple of steps from the preceding code snippet demand more explanation: 

			1.	Creating the motion blur kernel:

			a.	A k x k matrix of zeros (kernel = np.zeros((k, k))) is created.

			b.	The middle row of this matrix is filled with ones (kernel[int((k-1)/2), :] = np.ones(k)) to simulate horizontal motion blur.

			c.	The kernel is normalized by dividing by k to ensure that the sum of all elements is 1, ensuring proper blurring.

			2.	Blurring the image:

			a.	The image is blurred by convolving it with the motion blur kernel using convolve2d(). This simulates the motion blur effect on the image.

			b.	In this case, no additional noise is added; the corrupted image im_cor is simply the blurred image.

			If you run the preceding code snippet and plot the motion-blurred and the deblurred (restored) images in both the spatial and frequency domains, you should obtain a figure as follows:

[image: A comparison of a motion-blurred car image and its restored version. FFT spectrums for the blurred image and pseudo-inverse kernel are shown, with color bars indicating intensity; PSNR for restoration is 35.269.

]

Figure 1.9: Restoration of a motion-blurred image with pseudo-inverse filter





			If you plot the magnitude of frequency spectrums in 3D, you will obtain a figure as follows:

[image: Five 3D surface plots showing frequency spectra of various image transformations, labeled as im_cor, im_res_cutoff, im_blur, im_res_pseudo, and F_pseudo, with varying color intensities and structures.

]

Figure 1.10: Frequency spectrum of the image, blur kernel, blurred and restored image






Simulating the bokeh blur


			The bokeh effect is a pleasing visual artifact, and it often enhances the aesthetics of a photograph. Let us understand how the effect can be created. Light rays (from light sources) get reflected by the objects in the scene, and the camera lens focuses them onto the image plane. The points that appear in focus are the ones that fall inside a certain distance range, and the remaining ones appear out of focus (being too far / too close). Among these points, the bright spots (for example, light sources) create circles of confusion that are more visible than the ones created by darker points (by the contrast effect). This phenomenon is known as the bokeh effect. In this section, you will learn how to simulate this effect using Python code with 2D convolution.

			Let us start by importing the required libraries using the next line of code:

			
				
					
				
				
					
							
							from skimage.color import rgb2gray, rgba2rgb

						
					

				
			
			

			Consider a white pixel at the center of a black image. Let us shift this image in all directions by a single pixel and accumulate the results. It will smear the white pixel over its neighbors.

			Let us implement the function apply_bokeh_blur() to simulate this effect. The function takes two arguments: an input image and a binary mask image (a small white star/hexagon/circle at the bottom left corner in a black background) of the same shape. Start with a blank output image where the smearing effects will get accumulated.

			For each white pixel [image: ] from the mask image, shift the input color image by [image: ], using the function np.roll(), strengthen the effect by using func() (for example, a cubic function), and multiply it by the mask pixel value, and add the result to the output image.

			Finally, normalize the pixel values, as shown in the following code snippet:

			
				
					
				
				
					
							
							def func(x):

							    return x**3

							def apply_bokeh_blur(img, mask):

							    h, w = mask.shape

							    out = np.zeros(img.shape)

							    total = 0

							    for i in range(h): 

							        for j in range(w): 

							            if mask[i, j] != 0: 

							                out += mask[i, j] * func(np.roll(img, (i,j), (0,1)))

							                total += mask[i, j]

							    out /= total

							    out /= out.max()

							    return out

						
					

				
			
			

			Read the input RGB color image of an X-mas tree. Let us use a black image with a small white star (mask) at the bottom left corner as the mask image. Invoke the function apply_bokeh_blur() with the input and the mask image to obtain the output image with the desired effect.

			
				
					
				
				
					
							
							mask = rgb2gray(rgba2rgb(imread('images/xmask.png')))

							img = cv2.resize(imread('images/xtree.png') / 255, mask.shape[::-1])

							out = apply_bokeh_blur(img, mask)

						
					

				
			
			

			Plot the input image and the output image using bokeh blur. Create visually interesting results by varying the shape of the mask (for example, use a hexagonal mask instead); you should get a figure as follows:

[image: Side-by-side images of a small Christmas tree with yellow lights on snow; the left image is clear, while the right image is blurred, with lights appearing as glowing star shapes.

]

Figure 1.11: Applying the bokeh blur to an image





Wiener deconvolution with opencv-python

			The inverse filter performs poorly when the noise level is high. Wiener filter is an improved version of the inverse filter, it works in the frequency domain and uses prior regularization (penalization of high-frequency terms which have a poor Signal-to-Noise Ratio). The regularization parameter generally needs to be hand-tuned. Refer to the following figure for an example of Wiener deconvolution:

[image: A mathematical slide showing equations for image restoration, including convolution in the frequency domain, minimization objectives, solution forms, and inverse filter formulas, with highlighted sections and annotated notes.

]

Figure 1.12: Wiener deconvolution





			The frequency response of the Wiener filter can be expressed as:

			[image: ]

			Where SNR, or the Signal-to-Noise Ratio, is the ratio of the frequency responses of the original image (signal) to noise. Here is a brief explanation:

			•	First note that [image: ] and [image: ], for some frequency [image: ]

			•	When the noise is [image: ] (i.e. [image: ] is [image: ]), the Wiener filter simply reduces to an inverse filter, i.e., [image: ]

			•	With the increase of noise at certain frequencies, which results in a drop in the SNR ratio, the Wiener filter attenuates frequencies according to their filtered SNR ratio, since [image: ]

			•	The [image: ] parameter balances between the data and the regularization term.

			In this section, we shall implement the Wiener filter to deblur a degraded image again, but this time using opencv-python (cv2) library functions. It shows how DFT can be used apply Wiener deconvolution to an image with a user-defined PSF.

			Let us first implement the function blur_edge() to apply Gaussian blur on an image. Also, implement the functions motion_kernel() and defocus_kernel() to create the motion blur and defocus blur kernels, respectively. The function deconvolve() implements the Wiener deconvolution as follows:

			
				
					
				
				
					
							
							def blur_edge(img, d=31):

							    h, w  = img.shape[:2]

							    img_pad = cv2.copyMakeBorder(img, d, d, d, d, cv2.BORDER_WRAP)

							    img_blur = cv2.GaussianBlur(img_pad, (2*d+1, 2*d+1), -1)[d:-d,d:-d]

							    y, x = np.indices((h, w))

							    dist = np.dstack([x, w-x-1, y, h-y-1]).min(-1)

							    w = np.minimum(np.float32(dist)/d, 1.0)

							    return img*w + img_blur*(1-w)

							def motion_kernel(angle, d, sz=63):

							    kern = np.ones((1, d), np.float32)

							    c, s = np.cos(angle), np.sin(angle)

							    A = np.float32([[c, -s, 0], [s, c, 0]])

							    sz2 = sz // 2

							    A[:,2] = (sz2, sz2) - np.dot(A[:,:2], ((d-1)*0.5, 0))

							    kern = cv2.warpAffine(kern, A, (sz, sz), flags=cv2.INTER_CUBIC)

							    return kern

							def defocus_kernel(d, sz=63):

							    kern = np.zeros((sz, sz), np.uint8)

							    cv2.circle(kern, (sz, sz), d, 255, -1, cv2.LINE_AA, shift=1)

							    kern = np.float32(kern) / 255

							    return kern

							def deconvolve(img, kern):

							    kern /= kern.sum()

							    kern_pad = np.zeros_like(img)

							    kh, kw = kern.shape

							    kern_pad[:kh, :kw] = kern

							    freq = cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT)

							    kern_freq = cv2.dft(kern_pad, flags=cv2.DFT_COMPLEX_OUTPUT, nonzeroRows = kh)

							    kern_freq2 = (kern_freq**2).sum(-1)

							    kern_wiener = kern_freq / (kern_freq2 + noise)[...,np.newaxis]

							    res = cv2.mulSpectrums(freq, kern_wiener, 0)

							    res = cv2.idft(res, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT)

							    res = np.roll(res, -kh//2, 0)

							    res = np.roll(res, -kw//2, 1)

							    return res

						
					

				
			
			

			Read the input image as a gray-scale image and apply the Gaussian blur to the image as follows:

			
				
					
				
				
					
							
							img = cv2.imread('images/barbara.jpg', cv2.IMREAD_GRAYSCALE)

							img = np.float32(img) / 255

							img = blur_edge(img)

							angle, d, snr = np.deg2rad(135), 22, 25

							noise = 10**(-0.1*snr)

						
					

				
			
			

			Defocus the image by applying the defocus blur kernel and then restore the defocused image using the deconvolve() function defined as follows:

			
				
					
				
				
					
							
							kern_defocus = defocus_kernel(d)

							img_defocussed = cv2.filter2D(img,-1, kern_defocus) # apply defocus blur

							res_defocussed = deconvolve(img_defocussed, kern_defocus)

						
					

				
			
			

			Next, apply motion blur to the original image and then restore the defocused image using the deconvolve() function defined as follows:

			
				
					
				
				
					
							
							kern_blur = motion_kernel(angle, d)

							img_blur = cv2.filter2D(img,-1, kern_blur)  # apply motion blur

							res_blur = deconvolve(img_blur, kern_blur)

						
					

				
			
			

			Plot the original image, and the defocus and the motion blur kernels. You should obtain a figure as follows:

[image: Three panels: left shows a grayscale photo of a seated person with a scarf; middle shows a circular defocus kernel in red on blue; right shows a diagonal motion-blur kernel in red and white on blue.

]

Figure 1.13: Input (Barbara) image with the defocus and motion blur kernel





			Now, if you plot the defocused, blurred and restored images, you should obtain a figure as follows:

[image: A four-panel image compares defocused and blurred photos of a seated woman with their deconvolved, sharpened versions. The deconvolved images are clearer, revealing more details of the woman and the surrounding room.

]

Figure 1.14: Restoring defocused/motion/blurred images using deconvolution with the Wiener filter






Deconvolution with unsupervised Weiner filter with scikit-image


			The unsupervised Wiener algorithm uses a data learning algorithm (based on an iterative stochastic Gibbs sampler) to obtain self-tuned regularization parameters . The algorithm is fast since it is based on linear models but may not restore sharp edges like the non-linear methods (for example, TV restoration, we shall explore later in this chapter).

			From the Bayesian perspective, the deconvolved (estimated) image can be defined as the posterior mean (defined by the sum of all possible images weighted by their probability). But the exact sum being intractable, the algorithm uses Markov Chain Monte Carlo (MCMC) simulation to draw images under posterior law (drawing highly probable images more often than the less probable images) and then computes the empirical mean of the samples.

			In this section, we shall use skimage.resoration module’s implementation of unsupervised Wiener filter to deconvolve and restore an image degraded with noise (we shall also scipy.signal’s implementation of the Wiener filter, we shall leave the comparison of the restored image qualities and parameter tuning for the Gibbs sampler for unsupervised Wiener as an exercise for the interested reader).

			Let us start by importing all the required libraries as follows:

			
				
					
				
				
					
							
							from skimage import color, restoration

							from scipy.signal import convolve2d

						
					

				
			
			

			Read the cameraman grayscale image and degrade with box-blur (for example, a 5×5 kernel of ones normalized by 25, to average each pixel with its 5×5 neighborhood), and Gaussian noise, using the next code snippet:

			
				
					
				
				
					
							
							im = rgb2gray(imread('images/cameraman.jpg'))

							noisy = im.copy()

							psf = np.ones((5, 5)) / 25

							noisy = convolve2d(noisy, psf, 'same')

							noisy += 0.1 * im.std() * np.random.standard_normal(im.shape)

						
					

				
			
			

			Use the unsupervised_wiener() function from skimage.restoration to apply the unsupervised Wiener deconvolution on the degraded image. The function accepts the following arguments:

			•	image: The degraded input image.

			•	psf: The impulse function, 5×5 average kernel is used here.

			•	reg: The regularization operator, the default of which is Laplacian.

			The function returns the deconvolved image (posterior mean), and a dictionary with the keys noise and prior (we are not using them here).

			Use scipy.signal module’s wiener() function to apply the classic Wiener deconvolution to the degraded image, and compare the following output image with the previous one:

			
				
					
				
				
					
							
							deconvolved_unsup, _ = restoration.unsupervised_wiener(noisy, psf)

							deconvolved = scipy.signal.wiener(noisy, (5,5))

						
					

				
			
			

[image: Four black-and-white images show a man using a camera on a tripod: original (top left), noisy (top right), scikit-image Weiner restoration (bottom left), and scipy Weiner restoration (bottom right).

]

Figure 1.15: Image restoration with scipy.signal implementation of Wiener filter and its unsupervised version





Non-blind deconvolution with Richardson-Lucy algorithm

			The Richardson–Lucy algorithm, also known as Lucy–Richardson deconvolution [9], is an iterative procedure for recovering an underlying image that has been blurred by a known point spread function. It is an iterative Bayesian algorithm for image restoration. The iterative updation step of the algorithm is shown in the following figure:

[image: Equation for iterative image restoration: the restored image at iteration i+1 is given by the restored image at iteration i times the convolution of the ratio of degraded image to the convolution of restored image and PSF.

]

Figure 1.16: Iterative updation step of the Richardson-Lucy algorithm





			Since the PSF [image: ] is known, we can just focus on just finding the restored [image: ] by iterating over the preceding equation until convergence. An initial guess is required for the restored [image: ] to start the algorithm. In subsequent iterations, large deviations of the estimate from the true object are reduced rapidly during the early stages, while finer details are recovered more gradually in later iterations. Advantages of this algorithm include a nonnegativity constraint if the initial guess [image: ], and the conservation of total energy as the iteration proceeds.

			Now, let us deconvolve a degraded image using Richardson-Lucy deconvolution algorithm, using skimage.restoration module’s implementation. The algorithm is based on a PSF, which is described as the impulse response of the optical system. The blurred image is progressively sharpened through a number of iterations, the number of which (num_iter) needs to be hand-tuned.

			First, read the input cameraman image, convert it to grayscale. Then, convolve the image with a 5×5 box kernel to blur it and add random Poisson noise with a rate parameter [image: ], using the function np.random.poisson(), and obtain the degraded image, as shown in the following code snippet:

			
				
					
				
				
					
							
							im = color.rgb2gray(imread('images/cameraman.jpg'))

							im_noisy = im.copy()

							psf = np.ones((5, 5)) / 25

							im_noisy = convolve2d(im_noisy, psf, 'same')

							im_noisy += (np.random.poisson(lam=25, size=im.shape) - 10) / 255.

						
					

				
			
			

			Next, restore the image with the Richardson-Lucy algorithm (with the non-blind version and a known PSF), using the function richardson_lucy() from scikit-image’s restoration module, as shown in the next code snippet, try different number of iterations (for example, 20, 50 etc.).

			The function accepts the following arguments, and the relevant ones are described as follows:

			•	image: The degraded input image.

			•	psf: The point spread function (blur kernel).

			•	num_iter: Specifies the number of iterations for the update process, acting as a regularization hyperparameter. 

			The function returns the deconvolved (restored) image as:

			
				
					
				
				
					
							
							deconvolved_RL = restoration.richardson_lucy(im_noisy, psf, num_iter=20)

						
					

				
			
			

			Plot the restored images at different iterations, along with the input and noisy image. You should get a figure as follows:

[image: Four black-and-white images show a man using a camera on a tripod: original, noisy (blurred), and two restored versions using Richardson-Lucy with 20 and 50 iterations. Noise increases with more iterations.

]

Figure 1.17: Restoring degraded cameraman image with (non-blind) Richardson-Lucy algorithm





Blind deconvolution with Richardson-Lucy algorithm

			So far, we have discussed image restoration using non-blind deconvolution techniques, where the PSF is known. In such cases, image restoration reduces to an inverse filtering problem. However, in blind deconvolution, where the PSF is unknown, we need an iterative algorithm that simultaneously estimates the PSF and the latent (true) image. The Richardson–Lucy (RL) algorithm, initially developed for Maximum Likelihood (ML) deconvolution under a Poisson noise model, has been extended to handle the blind case through an iterative PSF estimation framework [10].

Mathematical foundation

			In standard non-blind Richardson–Lucy deconvolution, the image is estimated iteratively by fixing the known PSF. For an observed degraded image c(x), the image update is performed as:

			[image: ]

			Where we have:

			•	[image: ]: estimate of the true image at iteration,

			•	[image: ]: PSF,

			•	∗: convolution operator,

			•	[image: ]: flipped PSF.

			In blind Richardson–Lucy, both the true image [image: ] and PSF [image: ] are unknown and estimated by alternating steps:

			•	Image Update: Fix the PSF g, and update f using Equation (1).

			•	PSF Update: Fix the image f, and compute g using a similar update step:

			[image: ]

			This alternation continues for a number of outer iterations. The iteration indices:

			•	[image: ]: image update iteration

			•	[image: ]: PSF update iteration

Algorithm overview

			At the [image: ]-th outer iteration, assuming the current estimate of the image is [image: ], the algorithm:

			1.	Uses the current PSF estimate [image: ] to update [image: ] using the RL formula.

			2.	Then, using the updated image [image: ], updates the PSF [image: ]

			3.	This alternation is repeated for a fixed number of iterations or until convergence.

			Initial guesses are provided for both the image [image: ] and the PSF [image: ], and the aforementioned steps are repeated iteratively.

Code implementation

			Let us now implement the blind Richardson–Lucy deconvolution using Python. Start by importing the required libraries, as always:

			
				
					
				
				
					
							
							from skimage import color, io

							from scipy.signal import gaussian, convolve2d

							from skimage.metrics import peak_signal_noise_ratio as psnr

							import numpy as np 

							import matplotlib.pyplot as plt

						
					

				
			
			

			Define the function richardson_lucy_blind(), it performs blind image deconvolution using the Richardson–Lucy (RL) algorithm. In blind deconvolution, both the latent (true) image [image: ], and the point spread function (PSF) [image: ] are unknown and must be estimated simultaneously from a blurred and noisy observation [image: ]

			The function alternates between:

			•	Image update (fix PSF [image: ], update [image: ]).

			•	PSF update (fix image [image: ], update [image: ]).

			This is done over n_psf_updates outer iterations (i.e., blind updates), and within each outer iteration, the image is updated for n_image_updates inner iterations (assuming the current PSF is correct), as shown in the next code snippet. The next table summarizes the algorithm steps executed inside the function:

			
				
					
					
					
				
				
					
							
							Step

						
							
							Purpose

						
							
							Equation

						
					

					
							
							Image update

						
							
							Refine latent image [image: ] using current PSF [image: ]

						
							
							[image: ]

						
					

					
							
							PSF update

						
							
							Refine blur kernel [image: ] using current image [image: ]

						
							
							[image: ]

						
					

					
							
							Normalization

						
							
							Ensure PSF validity

						
							
							[image: ]

						
					

				
			
			

Table 1.1: Algorithm steps executed inside the function 

			The function returns the restored image and estimated PSF, as shown in the following code snippet:

			
				
					
				
				
					
							
							def richardson_lucy_blind(b, f_init, g_init, \

							                             n_psf_updates=10, n_image_updates=10):

							    """

							    Blind Richardson-Lucy deconvolution (corrected version).

							    Parameters:

							        b : 2D np.ndarray

							            Blurred and noisy input image.

							        f_init : 2D np.ndarray

							            Initial guess for the true image.

							        g_init : 2D np.ndarray

							            Initial guess for the PSF (must be normalized).

							        n_psf_updates : int

							            Number of outer iterations (PSF updates).

							        n_image_updates : int

							            Number of inner iterations (image updates).

							    

							    Returns:

							        f : 2D np.ndarray

							            Restored image.

							        g : 2D np.ndarray

							            Estimated PSF.

							    """

							    eps = 1e-7  # Small constant to prevent division by zero

							    f = f_init.copy()

							    g = g_init.copy()

							   

							    for i in range(n_psf_updates):

						
					

					
							
							        # --- Fix PSF and update image ---

							        for k in range(n_image_updates):

							            conv_fg = convolve2d(f, g, mode='same', boundary='wrap')

							            relative_blur = b / (conv_fg + eps)

							            correction = convolve2d(relative_blur, \

							                                    np.flip(np.flip(g, axis=0), axis=1), \

							                                    mode='same', boundary='wrap')

							            f *= correction

							        # --- Fix image and update PSF ---

							        conv_fg = convolve2d(f, g, mode='same', boundary='wrap')

							        relative_blur = b / (conv_fg + eps)

							        g *= convolve2d(f, relative_blur, mode='valid', boundary='wrap')

							        

							        # Normalize PSF to maintain energy

							        g = np.clip(g, 0, None)  # Ensure non-negative

							        g /= np.sum(g)

							    return f, g

						
					

				
			
			

			Read the Lena grayscale image as input. Apply [image: ] Gaussian kernel (using the function gaussian_kernel()) to blur the image and add Gaussian noise (using the function np.random.randn()) to degrade the image, as shown in the following code snippet:

			
				
					
				
				
					
							
							def gaussian_kernel(size=5, sigma=1):

							    """Generates a 2D Gaussian kernel."""

							    g1d = gaussian(size, std=sigma)

							    kernel = np.outer(g1d, g1d)

							    kernel /= np.sum(kernel)  # Normalize

							    return kernel

							    

							im = io.imread('images/lena.jpg', True)

							psf_true = gaussian_kernel(5, 5) #np.ones((5,5)) / 25

							blurred = convolve2d(im, psf_true, 'same', boundary='wrap')

							noisy = blurred + 0.25 * np.random.randn(*blurred.shape)

						
					

				
			
			

			Initialize the image estimate (f_init) with the degraded image itself, and the PSF estimate (g_init) with a flat box kernel to start with. Invoke the function richardson_lucy_blind() to apply the blind deconvolution to the degraded image for simultaneous estimation of the blur kernel (g_estimated) and restoration of the image (f_restored), as shown in the following code snippet:

			
				
					
				
				
					
							
							# Initial guesses

							f_init = noisy.copy()

							g_init = np.ones((5,5)) / 25  # flat guess

							g_init = np.random.random((5, 5))

							g_init /= np.sum(g_init) 

							# Perform blind deconvolution

							f_restored, g_estimated = richardson_lucy_blind(noisy, f_init, g_init)

						
					

				
			
			

			Plot the restored image along with the original and the degraded images (compute the PSNR values), and you should obtain a figure like the one shown as follows (note the increase in PSNR in the restored image):

[image: Three grayscale images of a woman in a hat: original, blurred and noisy (PSNR: 24.549), and restored using the Richardson-Lucy algorithm (PSNR: 26.311). Title: image restoration using blind deconvolution.

]

Figure 1.18: Restoring degraded Lena image with (blind) Richardson-Lucy algorithm





Total variation denoising

			TV denoising is a classical image processing technique that aims to restore images while preserving important features like edges. It is based on the idea that natural images typically have sparse gradients — meaning, they are mostly piecewise smooth with sharp transitions at edges. TV methods seek to exploit this property by minimizing the total variation norm, promoting solutions that are smooth in homogeneous regions while maintaining sharp discontinuities.

			TV denoising methods assume that the high total variation in signals is caused by excessive/spurious detail. The goal is to remove unwanted but preserve important details (for example, edges) in the image by reducing the total variation of the (degraded) image so that it remains a close match to the original image. This is known as the Rudin-Osher-Fatemi (ROF) model [5]. The original TV regularization method targeted image denoising under Gaussian noise, nevertheless it has evolved into a more general technique for inverse problems.

			In this section we shall use functions from skimage.restoration to implement TV denoising.


TV denoising with Rudin-Osher-Fatemi algorithm


			TV regularization is a technique that was originally developed for Additive White Gaussian Noise (AWGN) image denoising by Rudin, Osher, and Fatemi. They proposed to estimate the denoised image u as the solution of the following minimization problem:

			[image: ]

			where [image: ] is a positive parameter, here the first term is for regularization and the second term represents the data fidelity term, which depends on the noise model. This [image: ] the problem is referred to as the ROF problem.

			Denoising is performed as an infinite-dimensional minimization problem, where the search space is all Bounded Variation (BV) images. [image: ] refers the family of functions (with bounded variation) over the domain [image: ], [image: ] is the total variation over the domain, and [image: ] is a penalty term. When [image: ] is smooth, the total variation is equivalent to the integral of the gradient magnitude:

			[image: ]

			Where [image: ] is the Euclidean norm. Then, the objective function of the minimization problem becomes:

			[image: ]

			Using the Euler-Lagrange equation for minimization of the preceding functional [6] results in the following Partial Differential Equation (PDE):

			[image: ]

			Here is the time-dependent version of the ROF equation:

			[image: ]

			In this section, you will learn how to denoise an image with scikit-image implementation of TV denoising, using the algorithm proposed by Chambolle, as shown in the following figure:

[image: Mathematical equations showing total variation TV regularization, an optimization problem involving TV and a Legendre-Fenchel transform, and definitions for variables and functions used in the process.

]

Figure 1.19: TV denoising algorithm by Chambolle





			TV denoising tries to minimize the total variation of an image (which is roughly equivalent to the integral of the norm of image gradient) and often produces cartoon-like (piecewise-constant) images.

			Let us start by importing the required libraries, using the following code snippet. Notice that the version of the scikit-image library must be [image: ]

			
				
					
				
				
					
							
							import skimage

							print(skimage.__version__) # should be >= 0.14

							from skimage.restoration import denoise_tv_chambolle

							# 0.17.2

						
					

				
			
			

			Read the image, convert it to a grayscale, and add Gaussian noise to the image using the function np.random.normal()as follows:

			
				
					
				
				
					
							
							im = 255*rgb2gray(imread('images/cameraman.jpg'))

							noisy = im + np.random.normal(loc=0, scale=im.std() / 4, size=im.shape)

						
					

				
			
			

			Use the function denoise_tv_chambolle() from scikit-image restoration module to implement TV denoising. The function accepts the following arguments:

			•	image: Input image to be denoised.

			•	weight: Denoising weight. Larger weight results in more denoising (at the cost of fidelity to the input image).

			•	n_iter_max: Maximum number of iteration steps to be run to optimize.

			It returns the denoised image. The following code snippet shows how the function can be used to denoise the noisy cameraman grayscale image. The denoising strength is controlled by the weight parameter; higher values result in stronger smoothing. Different values of weight (10, 25, 50, and 100) are tested to observe the effect on image quality:

			
				
					
				
				
					
							
							for weight in [10, 25, 50, 100]:

							    tv_denoised = denoise_tv_chambolle(noisy, weight=weight)

						
					

				
			
			

			The following figure shows the original, noisy, and TV-denoised images with a couple of different weights:

[image: A grayscale image grid shows a man using a camera on a tripod. Top-left: clear original. Top-right: same image with heavy noise. Bottom: denoised versions, getting progressively blurrier from left (w=10) to right (w=25).

]

Figure 1.20: TV denoising of the noisy cameraman image (with scikit-image’s Chambolle implementation)





			As shown in Figure 1.20, as we go on increasing the weights, we get more denoising effect, at the cost of fidelity to the input image (for example, texture flattening).

TV denoising with Chambolle vs. Bregman

			In this section, we shall implement total-variation denoising with split Bregman optimization [5], using skimage.restore module functions. As discussed, TV denoising, also called TV regularization, seeks to recover a denoised image (u) from a noisy image (f) by minimizing the total variation energy (formulated by the ROF model) [image: ] [image: ]

			•	The first term [image: ] encourages similarity to the observed image.

			•	The second term [image: ] penalizes large gradients, preserving edges while smoothing out noise.

			•	λ is a regularization parameter that controls the trade-off between the two.

Difficulty

			The mix of the ℓ2 term (smooth, differentiable) and the ℓ1 term (non-smooth) makes direct optimization difficult.


How the Split Bregman method helps


			The Split Bregman method reformulates the problem by introducing an auxiliary variable [image: ], which splits the problem into more manageable subproblems:

			[image: ]

			This constraint is incorporated using Bregman iteration, leading to the following iterative scheme and the optimization problem is solved in an iterative fashion. The Split Bregman method breaks the problem into easier parts:

			1.	It introduces a new variable d to split the gradient from the image.

			2.	Then it solves the problem step by step, alternating between:

			a.	Updating the image u (solving a smooth least-squares problem).

			b.	Updating the gradient d (using a soft thresholding / shrinkage rule).

			c.	Adjusting a helper variable b (Bregman variable) that guides convergence.

			This results in fast, stable optimization—ideal for problems involving total variation and sparsity.

			As described in the last section, Chambolle’s algorithm solves the ROF TV denoising model. But instead of introducing an auxiliary variable like Bregman, it directly solves the dual problem. The method uses dual variable projection to enforce the constraint, thereby avoiding the ℓ1-non-differentiability directly. It works well and is simple to implement for denoising tasks. The following table compares these two methods:

			
				
					
					
					
				
				
					
							
							Feature

						
							
							Chambolle’s method

						
							
							Split Bregman

						
					

					
							
							Formulation

						
							
							Dual (solves dual ROF problem)

						
							
							Primal with variable splitting

						
					

					
							
							Handles constraints?

						
							
							Yes, via projection (dual norm ≤ 1)

						
							
							Yes, via soft-thresholding + penalty

						
					

					
							
							Auxiliary variables?

						
							
							No

						
							
							Yes (d, b variables)

						
					

					
							
							Flexibility

						
							
							Mostly for TV denoising

						
							
							More general (inpainting, CS, etc.)

						
					

					
							
							Update types

						
							
							Gradient descent + projection

						
							
							Alternating minimization (shrinkage + least squares)

						
					

					
							
							Convergence

						
							
							Fast and stable for basic TV

						
							
							Fast, scalable to more complex problems

						
					

				
			
			

Table 1.2: Comparison of Chambolle’s method and split Bregman

			Now, let us use skimage.restoration module’s implementation of the preceding algorithms to recover a degraded image. Let us start by importing the required libraries using the following line of code:

			
				
					
				
				
					
							
							from skimage.restoration import denoise_tv_chambolle, denoise_tv_bregman

						
					

				
			
			

			Read the image, convert it to grayscale, and add Gaussian noise to the image to create the degraded version, this time using the random_noise() function from skimage.util as follows:

			
				
					
				
				
					
							
							img = img_as_float(imread('images/zelda.png'))

							noisy = random_noise(img, var=0.02)

							noisy = np.clip(noisy, 0, 1)

						
					

				
			
			

			We shall use the function denoise_tv_bregman() from scikit-image restore module for split-Bregman method. This function accepts the following arguments:

			•	image: Degraded input image (converted to float with pixel values in [0,1] using img_as_float).

			•	weight: Denoising weight, the regularization parameter lambda is chosen as 2 * weight.

			•	isotropic: False if anisotropic TV denoising.

			•	channel_axis: For color images, specify the color channel (for example, the last channel, i.e., -1), TV denoising is applied separately for each channel.

			The function returns a denoised image.

			The following code snippet shows how the function can be used to denoise the RGB color image of Zelda, for different weights and modes (isotropic vs. anisotropic), then compares it with the one obtained by denoising with TV Chambolle, and evaluates the quality of the restored images using PSNR values (with the function peak_signal_noise_ratio() from skimage.metrics module):

			
				
					
				
				
					
							
							def plot_image(img, title):

							    plt.imshow(img), plt.axis('off'), plt.title(title, size=20)

							    

							plt.figure(figsize=(20,22))

							plt.subplot(331), plot_image(img, 'Original')

							plt.subplot(332), plot_image(noisy, 'Noisy, PSNR: {}' \

							                                    .format(np.round(psnr(img, noisy),3)))

							i = 3

							for weight in [0.1, 0.25]:

							    tvd_out = denoise_tv_chambolle(noisy, weight=weight, channel_axis=-1)

							    plt.subplot(3,3,i)

							    plot_image(tvd_out, 'TVD Chambolle (w={}), PSNR: {}' \

							                                  .format(weight, np.round(psnr(img, tvd_out),3)))

							    i += 1

							for weight in [10, 7]:

							    for isotropic in [False, True]:

							        tvd_out = denoise_tv_bregman(noisy, weight=weight, isotropic=isotropic, \

						
					

					
							
							                                                          channel_axis=-1)

							plt.subplot(3,3,i)

							plot_image(tvd_out, 'TVD Bregman (w={}), PSNR: {}, iso: {}'.format(weight,\

							                        np.round(psnr(img, tvd_out),3), str(isotropic)[0]))

							        i += 1

							plt.subplots_adjust(wspace=0.05, hspace=0.05, top=0.95, bottom=0, left=0, right=1) plt.show()

						
					

				
			
			

			If you run the preceding code snippet, you should obtain a figure as follows:

[image: A grid of eight images showing the same woman with various noise reduction techniques applied. The top row has the original, noisy, and two Chambolle-filtered versions. The bottom row has four Bregman-filtered versions.

]

Figure 1.21: TV denoising of the noisy Zelda image (with scikit-image’s Chambolle vs. Bregman method)





Image denoising with wavelets

			Wavelets provide a powerful and general framework for representing and analyzing multiresolution images. An image can be reconstructed by summing over its Laplacian pyramid levels. Wavelets extend this idea by offering a mathematically grounded basis for such decomposition.

			A wavelet is a localized wave-like oscillation with zero mean and finite energy, defined over a finite duration. Wavelets [17] represent the scale of features in an image, as well as their position. Unlike sinusoids in the Fourier basis, wavelets decay rapidly and are capable of capturing both spatial (or temporal) and frequency information. This makes them especially effective in representing abrupt transitions and localized features in signals and images.

			Formally, wavelets form an orthonormal basis for [image: ], the space of square-integrable functions, allowing a function [image: ] to be expressed as: [image: ], where [image: ] [image: ] is the scaled and shifted version of the mother wavelet , with scale  and translation [image: ].

			The key concepts in wavelets are:

			•	Scaling (dilation): Controls the resolution. A wavelet scaled by a factor [image: ] is [image: ] Larger [image: ] captures coarse features (low frequency); smaller  captures fine features (high frequency).

			•	Shifting (translation): Moves the wavelet along the signal: [image: ], enabling localization in space or time. 

			•	Dyadic scales and shifts (powers of 2): We do not need continuous scale shifts—dyadic decomposition suffices: [image: ]

			We do not need to calculate wavelet coefficients at every possible scale. We can choose scales based on powers of 2, i.e., [image: ] and translation as [image: ], with [image: ] and get equivalent accuracy. 

			In multiresolution analysis (MRA), which underpins the wavelet transform:

			•	The signal space is decomposed into nested subspaces Vj, each representing the signal at a particular resolution or scale.

			•	The scaling function ϕ(t) spans the approximation space Vj. It captures the coarse (low-frequency) components of the signal.

			•	The wavelet function ψ(t), on the other hand, spans the detail space Wj, capturing the high-frequency or detail components.

			A discrete function [image: ] thus be approximated as a sum of scaled and translated wavelets [image: ], plus a coarse approximation [image: ], as shown in the following figure [8]:

[image: Mathematical formulas for wavelet decomposition, showing the sum of approximation and detail coefficients, with boxed sections highlighting formulas for Approximation and Detail coefficients.

]

Figure 1.22: Approximation of a function by wavelets





			Here [image: ] is an arbitrary starting scale, and [image: ]. The preceding represents x the DWT for a 1-D signal x, an image being a 2D signal, we need a 2D DWT instead. The concept extends naturally to 2D signals such as images using tensor products of 1D wavelets.

			The 2D DWT decomposes an image into four components at each scale:

			•	LL: Approximation (ϕ ⊗ ϕ)

			•	LH: Horizontal detail (ϕ ⊗ ψ)

			•	HL: Vertical detail (ψ ⊗ ϕ)

			•	HH: Diagonal detail (ψ ⊗ ψ)

			This is done by applying the 1D DWT along rows and then columns of the image.

			Mathematically, a 2D function f(x, y) can be expressed as:

			[image: ]

			Where we have,

			•	[image: ]: Approximation coefficients (LL)

			•	[image: ]: Horizontal, vertical, diagonal detail coefficients

Discrete wavelet transform

			The basic ingredient in discrete wavelet transform (DWT) is the MRA. The main point is that the wavelet coefficients encode local information about the image in a way that makes it possible to discard all coefficients with absolute values below a given threshold and still be able to reconstruct the signal (image) with acceptable accuracy (allowing a sparse representation).

			Again, an image, being a 2D function, can be represented by a sum of approximation plus details. The 2D DWT decomposes an image into approximation and details (for example, horizontal, vertical, and diagonal details) at different scales/levels (using downsampling at Nyquist rate) recursively.

			Similarly, IDWT reconstructs the images from the approximate and detailed coefficients at different scales (using upsampling), as shown in the following figure:

[image: A flowchart showing two-dimensional discrete wavelet transform (DWT): Decomposition step (top) with LoD/HiD filters and downsampling, and Reconstruction step (bottom) with upsampling and LoR/HiR filters; a legend explains all symbols.

]

Figure 1.23: Image reconstruction with 2D discrete wavelet transform and its inverse





			Thus, wavelet transforms enable sparse representation and are widely used in denoising, compression, image fusion, and feature extraction.

			Summarizing, the general steps in wavelet-based image processing include:

			•	Compute the 2D discrete wavelet transform (DWT).

			•	Modify the transform coefficients (for example, for denoising or compression). 

			•	Compute the inverse discrete wavelet transform (IDWT) for reconstruction.

			Wavelets come in different sizes and shapes; the following figure shows a few well-known families of wavelet basis functions (there are many others), they need to be chosen carefully based on the application:

[image: A comparison table of wavelet families showing their short names, mother wavelet and scaling function definitions, key properties, and typical applications such as image processing and denoising.

]

Figure 1.24: Wavelet families





			The following figure shows how the function wavedec2() (which implements 2D DWT) from the Python package pywt works (at level = n):

[image: Diagram showing wavelet decomposition, with input image X processed to produce output arrays C and S. C contains wavelet coefficients, grouped by detail and approximation, as shown by labeled arrows. S lists corresponding sizes.

]

Figure 1.25: The function wavedec2() from the python package pywt





			In this section, we will see how an image can be denoised and restored using wavelets (DWT), first using the DWT implementation from the library pywt and then using the corresponding implementation from skimage.restoration.

Wavelet-denoising with pywt

			Thresholding is a nonlinear technique, yet it is very simple because it operates on one wavelet coefficient at a time. The key idea is to choose a threshold value (for example, Donoho-Johnstone universal threshold) and zero out the wavelet coefficients obtained from multilevel DWT below the threshold, in order to remove noise from the degraded input image.

			In this section, you will learn how to use the functions from the library pywt to denoise an image using thresholding the wavelet coefficients of a degraded image. Wavelet denoising has the following steps:

			1.	Perform a multilevel wavelet decomposition (use wavedecn() from pywt).

			2.	Identify a thresholding technique (soft or hard thresholding mode).

			3.	Threshold (using the threshold() function from pywt) and reconstruct (use waverecn() from pywt).

			Let us start by importing the pywt library:

			
				
					
				
				
					
							
							import pywt

						
					

				
			
			

			Read the grayscale input image of beans and degrade it by adding Gaussian noise with:

			
				
					
				
				
					
							
							noise_sigma = 0.1

							im = rgb2gray(imread('images/a.jpg'))

							noisy = im + np.random.normal(0, noise_sigma, size=im.shape)

						
					

				
			
			

			Let us perform multilevel wavelet decomposition using the function wavedecn(), which accepts the input image, the name of the wavelet family (db1) and number of levels (=2 here) of decomposition. This function provides a generalized implementation of DWT for n-dimensional data (including 2D, 3D, etc.), whereas wavedec2() performs 2D DWT on 2D data (for example, grayscale images), also wavedecn() returns more structured coefficient access. 

			Let us plot the approximate and detailed coefficients at different scales by using the function coeffs_to_array(), by arranging the wavelet coefficients list obtained from wavedecn() in a single array, using the next code snippet:

			
				
					
				
				
					
							
							levels = 2

							wavelet = 'db1'

							coeffs = pywt.wavedecn(im, wavelet=wavelet, level=levels) 

							arr, _ = pywt.coeffs_to_array(coeffs)

							plt.figure(figsize=(20,20))

							plt.imshow(arr, cmap='gray')

							plt.title('Discrete Wavelet Transform Coefficient for db1 Wavelet for level 3', \

							           size=20)

							plt.show()

						
					

				
			
			

			If you run the preceding code snippet, you should obtain a figure like the following one:

[image: A grayscale image with a white square in the top left showing various letter â€œaâ€�s, dots, lines, and patterns in different sizes and arrangements; the rest of the image appears faded or barely visible.

]

Figure 1.26: Multilevel wavelet decomposition with db1 wavelet family





			Implement wavelet denoising with thresholding: define the denoise() function that accepts the degraded image, the name of the wavelet basis to be used, the noise standard deviation [image: ], and the mode of thresholding (hard or soft).

			Threshold the detail (i.e., high frequency) coefficients using a Donoho-Johnstone universal threshold [image: ], here [image: ] refers to the number of elements in the detail coefficients.

			Hard thresholding sets coefficients below the threshold to zero, while soft thresholding shrinks all coefficients toward zero by the threshold value. The following figure demonstrates the difference between soft and hard thresholding:

[image: A chart comparing soft and hard thresholding shows three line graphs: Original Signal, Hard Threshold, and Soft Threshold. A legend above explains how each method modifies data values based on a threshold.

]

Figure 1.27: Soft vs. hard thresholding for a signal





			In soft thresholding with threshold value (t), the data (x) is replaced by [image: ], i.e., with python expression data/np.abs(data) * np.maximum(np.abs(data) - value, 0) [18].

			Invoke the function denoise() with appropriate arguments to obtain a smoothed image with different types of wavelets, starting from the degraded beans image, using the following code snippet:

			
				
					
				
				
					
							
							def denoise(img, wavelet, noise_sigma, mode='soft'):

							    levels = int(np.floor(np.log2(img.shape[0])))

							    coeffs = pywt.wavedecn(img, wavelet, level=3) #levels) 

							    threshold = noise_sigma*np.sqrt(2*np.log2(img.size))

							    denoised_detail = [{key: pywt.threshold(level[key], value=threshold, \

							               mode=mode) for key in level} for level in coeffs[1:]]

							    denoised_root = pywt.threshold(coeffs[0], value=threshold, mode=mode)

							    denoised_coeffs = [denoised_root] + [d for d in denoised_detail]

							    out = pywt.waverecn(denoised_coeffs, wavelet)

							    return out

							im = rgb2gray(imread('images/beans.jpg'))

							noisy = im + np.random.normal(0, noise_sigma, size=im.shape)

							im_denoised_haar = denoise(noisy, wavelet='haar', noise_sigma=noise_sigma)

							im_denoised_haar_hard = denoise(noisy, wavelet='haar', noise_sigma=noise_sigma, \

							                                                                    mode='hard')

							im_denoised_db6 = denoise(noisy, wavelet='db6', noise_sigma=noise_sigma)

						
					

				
			
			

			Plot the restored image using different wavelet families of basis functions (for example, haar, db6, bior2.8, coif2) and different modes of thresholding (hard vs. soft), along with the original and the degraded images. You should obtain a figure like the following one:

[image: A grid of eight grayscale images shows a comparison of an original, noisy, and various denoised versions of a microscopic sample using different wavelet methods and thresholding types (haar, db6, bior2.8, coif2; soft, hard).

]

Figure 1.28: Image denoising using different wavelet families with hard vs. soft thresholding





Wavelet-denoising with scikit-image

			In this section, you will learn how to use wavelet-based denoising functions from skimage.restoration module. Similar to the frequency domain in DFT, the wavelet domain is yet another domain corresponding to a sparse representation of the image (with the majority of values zero and true random noise represented using many small values). For denoising, the usual approach is to set all values below a threshold (t) to 0. If the threshold used is large, it can additionally remove the finer details in the image. In a multichannel (3D) input image, wavelet denoising is performed on each color plane separately.

			Let us start by importing the required functions from scikit-image library’s restoration module:

			
				
					
				
				
					
							
							from skimage.restoration import (denoise_wavelet, estimate_sigma)

						
					

				
			
			

			Read the (RGB) color input image and degrade it with Gaussian noise, using the random_noise() function, as shown in the next code snippet.

			Use the function estimate_sigma() from skimage.restoration module to estimate noise standard deviation (it estimates by analyzing high-frequency components in the degraded image using a wavelet-based approach) for different color channels.

			The estimated standard deviation is expected to a bit smaller than the specified , due to clipping in random_noise().

			Use the function denoise_wavelet() to apply the wavelet denoising on the degraded image. The following are few of the arguments it accepts:

			•	image: Input image to be denoised.

			•	sigma: The noise standard deviation. It is used to compute detail coefficient thresholds.

			•	wavelet: The algorithm (type of wavelet) to be used, db1 being the default one.

			•	mode: Type of denoising, can be soft or hard. Soft thresholding finds the best approximation of the original image from the input noisy image, given the noise is additive.

			•	convert2ycbcr: Set to True, to perform wavelet denoising in YCbCr colorspace given multichannel (RGB color) input image, yielding better results often.

			•	method: Refers to the thresholding method to be used, which can be either of BayesShrink or VisuShrink.

			The function denoise_wavelet() applies BayesShrink thresholding by default. Separate thresholds for each of wavelet sub-bands are computed in this adaptive thresholding method.

			The VisuShrink thresholding, on the other hand, applies a single universal threshold to all of the wavelet detail coefficients. It removes all Gaussian noise with a given s.d. ([image: ]) with high probability, but it is also prone to produce overly-smooth images.

			Use different scale factors (for example, 2, 3, 4) with estimated [image: ] (sigma_est) to decrease the threshold by these factors and observe the impact on the denoised image.

			Compute PSNR as an indication of the denoised output image quality, given the input noisy image.

			Plot the denoised images using different methods and thresholding modes, along with their psnr values as follows:

			
				
					
				
				
					
							
							original = img_as_float(imread('images/cat.jpg'))

							sigma = 0.12

							noisy = random_noise(original, var=sigma**2)

							sigma_est = estimate_sigma(noisy, average_sigmas=True, channel_axis=-1)

							print(f'Estimated Gaussian noise standard deviation = {sigma_est}')

							# Estimated Gaussian noise standard deviation = 0.1208983266753569

							im_bayes = denoise_wavelet(noisy, convert2ycbcr=True, method='BayesShrink', \

							                                  mode='soft', rescale_sigma=True, channel_axis=-1)

							psnr_noisy, psnr_bayes = psnr(original, noisy), psnr(original, im_bayes)

							for sigma in [sigma_est/2, sigma_est/3, sigma_est/4]:

							   im_visushrink = denoise_wavelet(noisy,convert2ycbcr=True,method='VisuShrink', \

							                    mode='soft', sigma=sigma, rescale_sigma=True, channel_axis=-1)

							   psnr_visushrink = psnr(original, im_visushrink)

							   # plot the denoised output images im_visushrink and psnr_visushrink here

							   # TODO: your code here, by now you can write code to plot images.

						
					

				
			
			

			If you plot the denoised output images, you should obtain a figure as follows:

[image: A comparison of five cat images: top left is the original, bottom left is noisy, and the other three show different wavelet denoising methods with varying PSNR values.

]

Figure 1.29: Wavelet denoising with BayesShrink vs. ViruShrink thresholding





			scikit-image internally uses pywavelets for the implementation. The thresholding methods assume an orthogonal wavelet transform (for example, Daubechies - db2, symmlet - sym2 families); they are desirable for the following reasons:

			•	They ensure the white noise in the input remains white noise in the subbands (as opposed to the biorthogonal wavelets that produce colored noise in the subbands).

			•	In pywavelets, the orthogonal wavelets are also orthonormal, and hence, the noise variance in the subbands remains the same as that of input.

Denoising using non-local means with opencv-python

			The principle of the first denoising method suggests replacing the color of a pixel with an average of the colors of nearby (local) pixels. While simple local averaging reduces noise, it also tends to blur important image details. According to the law of variance of the mean in probability theory, averaging [image: ] independent and identically distributed (i.i.d.) random variables each with variance [image: ] results in a mean with variance [image: ], and thus a standard deviation of [image: ]. That is, averaging multiple independent noisy observations reduces the variance—for example, averaging nine independent pixels reduces the standard deviation of the noise by a factor of three. 

			However, in real images, the most similar pixels to a given pixel may not be spatially close to it. This insight is the foundation of the non-local means (NLM) denoising algorithm, which improves upon local methods by scanning a larger region of the image to find all patches that closely resemble the one centered around the target pixel. Denoising is then done by computing the average color of these most resembling pixels, weighted the similarity of these pixels to the target pixel. It reduces the loss of detail (blurring) in the denoised image (when compared to its local counterpart), at the cost of more computation time.

			Formally, a denoising method [image: ] applied to a noisy image [image: ] can be defined as a decomposition [image: ], where  is a filtering parameter which usually depends on the the noise variance [image: ]. Ideally, [image: ] is smoother than [image: ] and [image: ] (i.e., the noise guessed by the method, defined as the method noise) should look like the realization of a white noise [20].

			Given a noisy image [image: ], the estimated value [image: ], for a pixel [image: ], is computed as a weighted average: [image: ], where the family of weights [image: ] depend on the similarity between the neighborhoods (patches) [image: ] and [image: ], centered at pixels [image: ] and [image: ]. These weights satisfy the usual conditions: [image: ] and [image: ]. The similarity between two pixels [image: ] and [image: ] depends on the similarity of the intensity gray level vectors [image: ] and [image: ], where [image: ] denotes a square neighborhood (patch) of fixed size and centered at a pixel [image: ].

			The similarity is usually measured as the Gaussian-weighted Euclidean distance between the patches [image: ] and [image: ], and the weights are computed as:

			[image: ]

			Where [image: ] is a normalizing constant to ensure that weights sum to 1.

			In summary, the NLM algorithm considers a patch around each pixel, searches for similar patches throughout a larger region, averages them using similarity-based weights, and replaces the central pixel accordingly. Unlike local methods, the residual noise in NLM tends to resemble white noise—making it less visually distracting. 

			In this section, we explore how to apply OpenCV’s cv2.fastNlMeansDenoisingColored() function to perform such denoising in practice. The function first converts the image from RGB colorspace to CIELAB (Commission Internationale de l’Éclairage Lab*, where L* represents lightness, and a* and b* represent color-opponent dimensions). It then denoises L and AB channels separately using the function cv2.fastNlMeansDenoising(). The function accepts the following arguments:

			•	src: The input image, here the Zelda RGB color image is used.

			•	templateWindowSize: The template patch size (in pixels) to be used to compute weights.

			•	searchWindowSize: Size of the window to be used to compute the weighted average for a given pixel (the larger the window, the slower the filter).

			•	h: Controls filter strength for L (luminance) channel. Larger h removes noise along with image details.

			•	hColor: Same as h for color components. For most images having [image: ] is enough to remove colored noise without color distortion.

			The function returns the denoised image.

			Let us now proceed to use the aforementioned function to denoise a noisy color input image. First load the RGB color image of Zelda and degrade it with Gaussian noise, using cv2.randn()as follows:

			
				
					
				
				
					
							
							import cv2

							img = cv2.imread('images/zelda.jpg')

							noisy = img + cv2.randn(np.copy(img), (0,0,0),(10,10,10))

						
					

				
			
			

			The following code snippet demonstrates the use of the function on the noisy color input image for different values of parameters searchWindow (for example, 15, 21) and h (for example, 7, 10, 15). Plot and compare the denoised output image’s quality with PSNR and also compare the time taken to denoise, you should obtain a figure like Figure 1.30:

			
				
					
				
				
					
							
							for sz in [15, 21]:

							    for h in [7, 10, 15]:

							        start = time()

							        dst = cv2.fastNlMeansDenoisingColored(noisy, None, \

							                  templateWindowSize=12, searchWindowSize=sz, h=h, hColor=10)

							        end = time()

							        # plot the denoised output image dst

							        # TODO: your code here

						
					

				
			
			

			If you run the preceding code snippet, and plot the original, noisy input and denoised output images, you should obtain a figure as follows:

[image: A grid of five images shows a womans portrait: the original, a noisy version, and three denoised versions with varying parameters, each labeled with PSNR, filter size, and processing time.

]

Figure 1.30: Denoising the Zelda color image with non-local means algorithm (opencv-python’s implementation)





Denoising with bilateral filter

			A bilateral filter is a non-linear edge-preserving and noise-reducing smoothing, commonly used in image denoising. Like traditional spatial filters (for example, the average or Gaussian filter), each pixel is replaced by a (weighted) average of its neighbors (where weights can come from a Gaussian distribution). However, unlike those filters, the bilateral filter assigns weights based not only on the spatial proximity of pixels but also on their radiometric similarity (for example, intensity or color difference), enabling it to preserve the sharp edges [19]. The filter relies on two key parameters:

			•	σₛ (spatial parameter): controls the influence of neighboring pixels based on their Euclidean distance.

			•	σᵣ (range parameter): controls the influence of neighboring pixels based on their intensity difference

			Formally, for a pixel located at (i, j), and one of its neighbors at (k, l), the weight assigned is:

			[image: ]

			Where we have:

			•	[image: ] and [image: ] are the intensity values at pixels [image: ] and [image: ]

			•	[image: ] is the spatial standard deviation,

			•	[image: ] is the range standard deviation.

			After computing all weights, the denoised pixel intensity at [image: ] is computed as [image: ] [image: ] where [image: ] is the denoised intensity of pixel [image: ]

			The filter behavior depends on the values of [image: ] and [image: ]

			•	As [image: ] increases, at [image: ], the filter approaches a standard Gaussian blur, losing edge-preservation.

			•	As [image: ] increases, the spatial neighborhood grows, leading to smoother large-scale structures.

			In this section, you will explore how to apply bilateral filtering from the libraries SimpleITK and opencv-python to denoise a corrupted image, while maintaining edge sharpness.

Using SimpleITK

			SimpleITK library’s BilateralImageFilter() uses bilateral filtering to blur an image using both spatial (also called domain) and range neighborhoods. As described, the pixels that are close to a pixel in the image domain and similar to a pixel in the image range are used to calculate the filtered value. Two Gaussian kernels (one in the image domain and one in the image range) are used to smooth the image.

			The result is an image that is smoothed in homogeneous regions yet has edges preserved. The result is similar to anisotropic diffusion (refer to the one discussed in the book Image Processing masterclass with python), but the implementation is non-iterative. Another benefit to bilateral filtering is that any distance metric can be used for kernel smoothing the image range. Hence, color images can be smoothed as vector images, using the CIE distances between intensity values as the similarity metric (the Gaussian kernel for the image domain is evaluated using CIE distances).

			Let us start by importing the required libraries, as usual:

			
				
					
				
				
					
							
							import SimpleITK as sitk

						
					

				
			
			

			Read the input Zelda image as a grayscale image, instantiate the ShotNoiseFilter object to degrade the image with shot noise. The shot noise follows a Poisson distribution, using the following code snippet:

			
				
					
				
				
					
							
							img = sitk.ReadImage('images/zelda.jpg', sitk.sitkUInt8)

							sf = sitk.ShotNoiseImageFilter()

							noisy = sf.Execute(img)

						
					

				
			
			

			Instantiate an object of the BilaterImageFilter class:

			
				
					
				
				
					
							
							f = sitk.BilateralImageFilter()

						
					

				
			
			

			Use the methods SetDomainSigma() and SetRangeSigma(), to set [image: ] and [image: ] parameters, respectively. DomainSigma is specified in the same units as the Image spacing. RangeSigma is specified in the units of intensity.

			Use the member function Execute() to apply the filter on the noisy input image, to have the denoised output returned.

			Use a few different values of [image: ] (same as [image: ] defined above) and [image: ], to observe the impact of these parameters on the denoised output.

			Plot the images using the function show_image() the code snippet shown as follows:

			
				
					
				
				
					
							
							def show_image(img, title=None):

							    nda = sitk.GetArrayViewFromImage(img)

							    plt.imshow(nda, cmap='gray'), plt.axis('off')

							    if(title): plt.title(title, size=20)

							plt.figure(figsize=(20,17))

							plt.subplot(331), show_image(img, 'original')

							plt.subplot(332), show_image(noisy, 'noisy')

							i = 3

							for σ_d in [5, 10]:

							    for σ_r in [25, 50, 75]:

							        f.SetDomainSigma(σ_d)

							        f.SetRangeSigma(σ_r)

						
					

					
							
							denoised = f.Execute(noisy)

							plt.subplot(3,3,i), show_image(denoised, 'denoised (σ_d={}, σ_r={})' \

							                                                            .format(σ_d, σ_r))

							        i += 1

							plt.tight_layout()

							plt.show()

						
					

				
			
			

			If you run the given code snippet, you should obtain a figure as follows:

[image: A grid of black-and-white images shows a woman with different denoising effects. The top row has the original, noisy, and denoised (various d and r values). The second row shows further denoised variations with blur increasing left to right.

]

Figure 1.31: Denoising the grayscale Zelda image with bilateral filter (SimpleITK’s implementation)





Using opencv-python

			As explained, bilateral filtering operates both in the range and the domain of an image, unlike a traditional filter that operates only on the domain. Two pixels in an image can be close because of their spatial proximity or similarity in pixel values (i.e., in some perceptually meaningful manner), which is why bilateral filtering combines filtering in both the domain and range space.

			In this section, you will explore how to use opencv-python implementation of a bilateral filter to clean a degraded image and preserve the edges simultaneously. However, bilateral filters are computationally expensive and can be slow.

			Let us start by reading the RGB color image of Zelda and degrading the image by adding random Gaussian noise to the image using the cv2.randn() function, with standard deviation for each color channel, using the next couple of lines of code:

			
				
					
				
				
					
							
							img = cv2.imread('images/zelda.jpg')

							noisy = img + cv2.randn(np.copy(img), (0,0,0), (10,10,10))

						
					

				
			
			

			Apply the bilateral filter using the function cv2.bilateralFilter() that accepts the following parameters:

			•	src: The (noisy) input image (can be grayscale or color).

			•	d: Diameter of pixel nbd (or the filter size). Large filters ([image: ]) are very slow, let us use [image: ] for real-time applications.

			•	sigmaColor: [image: ] (same as [image: ] defined earlier), s.d. of the Gaussian in color space (larger value implies mixing of farther colors in the nbd, resulting in larger areas of semi-equal color).

			•	sigmaSpace: [image: ] s.d. of the Gaussian in coordinate space (larger value indicates farther pixels influencing each other, provided their colors are close).

			For simplicity, both the sigma parameters can be set to the same value. Small (for example, < 10) values will not have much effect, whereas large (for example, < 150) will have a strong effect (the output image will be cartoonish).

			Use a few different values for the parameters d (for example, 9,15), sigmaColor, and sigmaSpace (for example, both in ) to observe the impact on these parameters on bilateral denoising and plot the denoised output images:

			
				
					
				
				
					
							
							for d in [9, 15]:

							    for σ_c in [75, 180]:

							        for σ_s in [75, 180]:

							            dst = cv2.bilateralFilter(noisy,d=d,sigmaColor=σ_c,sigmaSpace=σ_s)

							            # plot the denoised output image dst here

							            # TODO: your code…

						
					

				
			
			

			If you plot the denoised output images obtained using bilateral filtering with different combination of parameter values, by running the preceding code snippet, you should obtain a figure as follows:

[image: A 2x3 grid showing a womanâ€™s portrait. Top row: original, noisy, and denoised images. Bottom row: four denoised images, each with different denoising parameters labeled above. Image quality varies across panels.

]

Figure 1.32: Denoising the Zelda color image with bilateral filter (opencv-python’s implementation)






Denoising with MAP Bayesian with an MRF prior


			In Bayesian image denoising, the goal is to estimate the optimal noiseless image [image: ] given an observed noisy image [image: ]. The optimal noiseless image is defined as the one that maximizes the posterior probability given the observed noisy image, using Bayes’ theorem:

			[image: ]

			The Maximum A Posteriori (MAP) estimate of the clean image [image: ] is given by:

			[image: ]

			Since P(Y) is constant with respect to X, this is equivalent to minimizing the negative log-posterior:

			[image: ]

			To compute the posterior probability and compute MAP estimation, we need to first define the following two key probabilistic terms:

			•	Likelihood term [image: ]: Represents the noise model; describes how the noisy how the noisy observation [image: ] is generated from the underlying clean image [image: ], typically modeled using a Gaussian distribution in the case of additive white noise.

			•	Prior term [image: ]: Captures assumptions about the smoothness or structure of the clean image using a Markov Random Field (MRF). A 4-neighborhood MRF prior is commonly used, which satisfies the Markov property—meaning each pixel’s value depends only on its four immediate neighbors (up, down, left, right).

			Assumptions and noise model

			Let us first define the following variable to formally define the model:

			•	[image: ] be the observed noisy image,

			•	[image: ] be the unknown true image,

			•	[image: ] is modelled as an MRF, with 4-neighborhood dependency,

			•	The noise is assumed to be i.i.d. Gaussian with variance [image: ]

			Then the likelihood model becomes:

			[image: ]

			MRF prior: Image regularization

			The MRF prior is defined using pairwise potential functions over neighboring pixels:

			[image: ]

			Different choices of the function [image: ] lead to different smoothing characteristics:

			•	Quadratic prior (used here): [image: ]

			•	Huber prior: Handles small variations quadratically and large differences linearly (edge-preserving), here [image: ]

			•	Discontinuity-adaptive log prior: [image: ], good for sharp edges.

			Combined MAP estimation objective

			The MAP estimate is obtained by minimizing the negative log-posterior (obtained by combining the likelihood and the prior), which leads to minimization of the following energy (or cost) function:

			[image: ]

			Where [image: ] is a parameter balancing fidelity (data) and regularity (smoothness).

			Now, let us implement a MAP Bayesian denoising algorithm [22], that uses the aforementioned noise model coupled with the MRF prior.

Optimizing with gradient-based solver

			Let us start by importing the required libraries as follows:

			
				
					
				
				
					
							
							from scipy.optimize import minimize

						
					

				
			
			

			Implement the gradient function grad_g() for the prior chosen and use the L-BFGS-B optimization method from scipy.

Define prior and gradient functions

			The following code snippet defines the quadratic MRF prior function [image: ] and the corresponding gradient [image: ]:

			
				
					
				
				
					
							
							def g(u):

							    return np.sum(u**2)

							def grad_g(u):

							    return 2*u

						
					

				
			
			

Define objective and gradient for optimization

			For the chosen [image: ] function, minimize the following objective function (using the minimize() function from the scipy.optimize module) to get the denoised image:

			[image: ]

			Where [image: ] are the 4 neighboring pixels at position [image: ], and [image: ] denote the noisy and clean pixel intensities at position [image: ], respectively. 

			Define the optimization objective (cost) function in comp_obj_fun(), which accepts the input noisy image Y and the output image [image: ], along with a weight [image: ].

			The function [image: ] is a regularizer; for example, [image: ] (quadratic prior) enforces smoothness. This decomposition reflects the Bayesian framework where the data fidelity term [image: ] arises from the likelihood, and the neighborhood smoothness terms [image: ] arise from the prior.

			The role of [image: ] is to promote edge preservation by encouraging neighboring pixel values to be similar—except at edges where large differences are permitted, while the term [image: ] enforces fidelity to the observed noisy image and contributes to noise removal.

			The constant [image: ] is to give weights to noise removal and edge preservation (controls the weighting between the prior and the likelihood).

			Define the function compute_grad() to compute the gradient of cost, it uses the function grad_g() to compute [image: ], using the next code snippet:

			
				
					
				
				
					
							
							def compute_grad(X,Y,alpha):

							    X, Y = X.reshape(im_size), Y.reshape(im_size)

							    X1, X2, X3, X4 = np.roll(X, -1, 0), np.roll(X, 1, 0), np.roll(X, -1, 1), \

							                                                          np.roll(X, 1, 1)

							    grad = alpha*grad_g(X-Y) + grad_g((X-X1) + (X-X2) + (X-X3) + (X-X4))

							    return grad.ravel()

							def compute_obj_fun(X,Y,alpha):

							    X, Y = X.reshape(im_size), Y.reshape(im_size)

							    X1, X2, X3, X4 = np.roll(X, -1, 0), np.roll(X, 1, 0), np.roll(X, -1, 1), \

							                                                          np.roll(X, 1, 1)

							    cost =  alpha*g(X-Y) + g(X-X1) + g(X-X2) + g(X-X3) + g(X-X4)

							    return cost

						
					

				
			
			

Apply optimization to restore the noisy image

			Read the input grayscale image of a ship and add salt and pepper noise to the image. Initialize the output image with zeros before starting the iterative optimization, using the following code snippet:

			
				
					
				
				
					
							
							original = cv2.imread('images/ship.png', 0)

							original = original / original.max()

							noisy = random_noise(original, mode='s&p')

							denoised = np.zeros_like(noisy)

							im_size, alpha = original.shape, 1.5

						
					

				
			
			

			If you plot the original and the noisy input images, along with the initialization for the denoised (black) zero output image and the difference image (computed as noisy - denoised) at the very outset, you will get a figure as follows:

[image: A comparison of four grayscale images of a boat: noisy, completely black (denoised), difference image (appears identical to noisy), and original. Each image is labeled with its PSNR value.

]

Figure 1.33: Denoising image with iterative LFBGS-B optimization algorithm (starting with zero image)





Minimize using L-BFGS-B

			The minimize() function from scipy.optimize module is an iterative solver that finds the minimum of a scalar function using optimization algorithms like BFGS, CG or L-BFGS-B, given an initial guess and optional gradient (jacobian). Here we shall use the minimize() function to minimize the objective function compute_obj_fun defined, and we shall pass the gradient function compute_grad as the Jacobian argument to the minimize() function). The minimize() function takes the following arguments, a few of the relevant ones are listed as follows:

			•	func: Objective function we want to minimize.

			•	x_0: The initial guess (of the clean image) to start with (we initialized with zeros).

			•	jac: Function to compute gradient.

			•	args: Extra arguments to be passed to objective function and its derivative.

			•	method: Solver to be used (for example, L-BFGS-B).

			•	maxiter: Sets the maximum number of iterations

			•	gtol: Specifies the gradient norm tolerance for convergence.

			Let us use the maximum iteration (maxiter) as  for the iterative solver and tolerance (gtol) as 0.1, as shown in the following code snippet:

			
				
					
				
				
					
							
							res = minimize(func=compute_obj_fun, x0=denoised.ravel(), \

							               jac=compute_grad, method='L-BFGS-B', args=(noisy.ravel(), alpha), \

							               options={'maxiter':4, 'gtol':0.1, 'disp': True})

						
					

				
			
			

Retrieve final output

			Retrieve the solution (res) obtained and reshape it back into the size of the original image, to obtain the denoised output image:

			
				
					
				
				
					
							
							denoised = res.x.reshape(im_size)

						
					

				
			
			

Visual and quantitative evaluation

			Plot the denoised output image along with the difference image and compute the PSNR to measure the quality of image. The final output should be the one, as shown in the next figure, note the increase in PSNR in the denoised image:

[image: A comparison of grayscale ship images: noisy (PSNR=18.5), denoised (PSNR=25.6), difference image (noise), and the original. Title: Denoising with L-BFGS-B (iteration=4).

]

Figure 1.34: Denoising image with iterative LFBGS-B optimization algorithm (denoised image after 4 iterations)





			To summarize, the aforementioned method uses a principled Bayesian approach with an MRF prior to denoise images:

			•	Likelihood: Captures how likely the observed image is given a denoised candidate.

			•	MRF prior: Encourages piecewise smoothness while allowing discontinuities (edges).

			•	Optimization: Uses gradient-based techniques to minimize the energy.

Denoising images with Kernel PCA

			Kernel PCA (kPCA) is an extension of Principal Component Analysis (PCA), a widely used linear dimension reduction technique. Unlike standard PCA, which is limited to linear mappings, kPCA introduces non-linearity through the use of kernel functions.

			In kPCA we select a mapping function [image: ] that conceptually transforms the input data into a high-dimensional feature space. However, instead of explicitly computing this transformation, kPCA uses a kernel function [image: ], which calculates the inner product in the feature space indirectly. This approach, known as the kernel trick, avoids the computational cost of operating in the high-dimensional (intractable) feature-space. [21]. 

			Using the dual form, the kPCA never actually computes the eigenvectors (the principal components) and eigenvalues of the covariance matrix in the [image: ]-space. Instead, it uses the kernel trick to compute the projections of the data onto the principal components, as shown in the following figure:

[image: A summary of kernel PCA with handwritten graphs showing linear PCA and kernel PCA, key equations, definitions, and an RBF kernel example; includes a test point projection formula at the bottom.

]

Figure 1.35: Image denoising with kPCA





			While in standard PCA the number of Principal Components (PC) is bounded by the number of input features, in kPCA the number of components is bounded by the number of samples (since it works in the dual space). Many real-world datasets have large numbers of samples, and hence, often, finding all the components with a full kPCA is a waste of computation time, as data is mostly described by the first few components (for example, n_components [image: ]).

			In this section, you will explore how to use sci-kit-learn's decomposition module’s KernelPCA implementation to denoise corrupted MNIST images (of handwritten digits). The idea will be to learn a PCA basis (with and without a kernel) on noisy images and then use these models to reconstruct clean images using these learned representations.

			Let us start by importing the required libraries, modules and functions, using the following code snippet:

			
				
					
				
				
					
							
							import numpy as np

							import pandas as pd

							from sklearn.preprocessing import MinMaxScaler

							from sklearn.model_selection import train_test_split

							from sklearn.decomposition import PCA, KernelPCA

						
					

				
			
			

			Download the mnist train data from Kaggle: https://www.kaggle.com/oddrationale/mnist-in-csv as a .csv file, where there are 60k rows, with each row having 785 columns: the last  columns correspond to the pixel values of a 28×28 handwritten digit image and the first column represents the label (class) of the digit (0-9).

			Read the .csv file using the function read_csv() from pandas and display the first few rows as follows:

			
				
					
				
				
					
							
							df = pd.read_csv('images/mnist_train.csv')

							df.head()

						
					

				
			
			

[image: A table displaying five rows of digit labels and 785 pixel values, mostly zeros, representing 28x28 image data; row four is highlighted in blue. Column headers show pixel positions from 1x1 to 28x28.

]

Figure 1.36: MNIST digits – Pandas DataFrame with 784 columns (each row represents a 28 x 28 digit)





			Convert the images data to a numpy array and scale the pixel values in between - using the MinMaxScaler() from the module sklearn.preprocessing, using the next code snippet:

			
				
					
				
				
					
							
							y = np.array(df.label.tolist())

							X = df.drop(columns=['label']).values

							X = MinMaxScaler().fit_transform(X)

							X.shape, y.shape

							# ((60000, 784), (60000,))

						
					

				
			
			

			Use the function train_test_split() from sklearn.model_selection to split the dataset into a training and a test dataset, with 1000 and 100 randomly selected images, respectively. These images are noise-free, and we will use them to evaluate the accuracy of the denoising approaches.

			In addition, let us create a copy of the original dataset and add Gaussian noise to create noisy version of the training, and test images separately, using the following code snippet:

			
				
					
				
				
					
							
							X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, \

							                                     random_state=0, train_size=1_000, test_size=100)

							rng = np.random.RandomState(0)

							noise = rng.normal(scale=0.25, size=X_test.shape)

							X_test_noisy = X_test + noise

							noise = rng.normal(scale=0.25, size=X_train.shape)

							X_train_noisy = X_train + noise

						
					

				
			
			

			The goal here is to demonstrate that corrupted images can be denoised by learning a PCA basis from clean (uncorrupted) images. We will compare the denoising performances of PCA and kernel PCA  (kPCA).

			Instantiate objects of PCA and KernelPCA classes from sklearn.decomposition module to fit PCA and kPCA models on the training images, respectively.

			The KernelPCA constructor accepts the following arguments, a few relevant ones are listed as follows:

			•	n_components: Number of components (we have chosen first 30 PCs for PCA and first 400 PCs for kPCA, out of 784 possible components).

			•	kernel: Kernel used for kPCA (here the Radial Basis Function (rbf) kernel is used, it is defined as [image: ]).

			•	gamma: Kernel coefficient [image: ] for the rbf kernel.

			•	alpha: Hyperparameter of the ridge-regression that learns the inverse-transform (when fit_inverse_transform=True).

			•	fit_inverse_transform: Learn the inverse transform (used for reconstruction).

			Use the fit() methods to fit the models on training images for both models as follows:

			
				
					
				
				
					
							
							pca = PCA(n_components=30)

							kernel_pca = KernelPCA(n_components=400, kernel="rbf", gamma=1e-3, \

							                       fit_inverse_transform=True, alpha=5e-3)

							pca.fit(X_train_noisy)

							_ = kernel_pca.fit(X_train_noisy)

							pca.n_features_in_, kernel_pca.n_features_in_

							# (784, 784)

						
					

				
			
			

			Now, let us project the noisy test images on the kernel space (with the function transform()) and then reconstruct (with inverse_transform()) the images (note that KernelPCA supports both transform() and inverse_transform()). Since the number of components used is less than the number of original features, it is not an exact but an approximate reconstruction, i.e., an approximation of the original test images will be obtained. By discarding the components that contribute the least to the overall variance in PCA (and similarly in kPCA), the aim is to suppress noise and retain the most significant structural information in the data.

			For kPCA, a better reconstruction should happen since a non-linear kernel is used to learn the basis, and a kernel ridge is used to learn the mapping function as follows:

			
				
					
				
				
					
							
							X_reconstructed_kernel_pca = kernel_pca.inverse_transform(kernel_pca.transform(\

							                                                          X_test_noisy))

							X_reconstructed_pca = pca.inverse_transform(pca.transform(X_test_noisy))

						
					

				
			
			

			Let us use the mean squared error (MSE) to quantitatively assess the image reconstruction (for example, compute MSE for PCA with np.mean((X_test - X_reconstructed_pca) ** 2)), and similarly compute for compute MSE for kPCA.

			Plot the original (uncorrupted) and the reconstructed test digit images (obtained with PCA and kPCA) along with the MSE values, using the plot_digits() function. You should get a figure like the following one:

[image: A comparison of handwritten digit images: original test images on the left, PCA reconstruction in the center (MSE: 0.02), and kernel PCA reconstruction on the right (MSE: 0.03). Each grid shows 100 digits.

]

Figure 1.37: PCA vs. kPCA reconstructions of noisy MNIST digits





			From the preceding output, although it can be seen that PCA has lower MSE than kPCA, observe that kPCA is able to remove background noise better and provide a smoother image.

			Moreover, the results of the denoising with kPCA will depend on the hyperparameters n_components, gamma, and alpha (tune them and note the change in MSE).

Conclusion

			In this chapter, we focused on solving quite a few problems in image restoration and inverse problems in image processing. By now, you should be able to apply non-linear filters such as median and weighted median filters to denoise an image, apply non-blind deconvolutions to restore degraded images using Inverse, Wiener filters, blind and non-blind deconvolution with RL algorithm, TV denoising with Chambolle and Bregman algorithms, Wavelet denoising, nonlocal and bilateral filters for image restoration, Bayesian MAP estimation and Kernel PCA for image denoising, using different Python libraries such as scikit-image, scipy.ndimage, SimpleITK, opencv-python, pywt, and matplotlib.

			In the next chapter, we shall continue our discussion on solving more image restoration and image inpainting problems; we shall see how a few deep neural nets (such as AutoEncoders and GANs) can be applied to solve problems such as image deblurring and deraining.

Key terms

			TV denoising, Richardson-Lucy, kernel PCA, Wiener, MAP Bayesian, Wavelet, Deconvolution, ROF, Chambolle, Bregman.

Questions

			1.	Prove that the solution to the optimization (minimization) problem with the loss function

			[image: ]

				is given by the following normal equation:

			[image: ]

			2.	Rather than using the normal equations to solve inverse problems, numerical analysis suggests that it is preferable to solve the augmented equations, as shown in the following equation, which can be done by a least squares solver (lsqr). 

			[image: ]

			Compare the performance with the one you used in this chapter to solve normal equations, in terms of the number of iterations required to achieve convergence.

			3.	The sum of absolute deviations is minimum when it is taken from the median: Let us [image: ] [image: ] be a set of numbers s.t., [image: ]. Prove that [image: ] is minimum when [image: ]

			4.	Start with the noisy beans image; visualize how the DWT coefficients change when thresholded with different threshold values, along with plotting the change in PSNR of the denoised image, with hard vs. soft thresholding, and find the thresholds corresponding to the peak PSNR values; you should get a figure that looks like the one shown:

[image: Side-by-side images show a noisy and a denoised photo of objects resembling seeds, plus a graph comparing soft and hard thresholding DWT coefficient responses on the right.

]

Figure 1.38: Denoising the beans grayscale image with DWT (hard vs. soft thresholding)





			5.	Use Savitzky–Golay filter (scipy.signal.savgol_filter) to denoise an image. Tune the window-length and polynomial-degree parameters to understand the impact on smoothing.

			6.	Impact of noise on Inverse Filter: Start with [image: ], where [image: ] is the frequency spectrum of the additive noise. Show that restoration with an inverse filter gets impacted badly as the additive noise gets stronger (demonstrate with an example). Can the Wiener filter resolve the problem?

			7.	Compare the restored image quality (for example, with PSNR) obtained with the Wiener deconvolution implementations from scipy.signal and those obtained using the Wiener-Hunt deconvolution and its unsupervised version’s implementations from skimage.restoration.

			8.	Use denoise_nl_means() and denoise_bilateral() functions from skimage.restoration to apply non-local mean and bilateral denoising on a noisy image. Compare the results with those obtained using opencv-python.

			9.	Use the code for non-local means denoising implementation with opencv-python to visualize (in 3D) how the PSNR and the time taken to denoise varies with input parameters h and searchWindowSize, you should obtain a figure as follows:

[image: Two 3D surface plots with color gradients. The left plot shows PSNR values, and the right plot shows SSIM values, both varying with h and search.window.size parameters. Color bars indicate value scales.

]

Figure 1.39: 3D plot of PSNR w.r.t. parameters h and searchWindowSize





			Try changing the value of the other parameters too, in roddr to observe the impact on the denoised image quality and the computational efficiency.

			10.	Anisotropic diffusion: Refer to the book Image Processing Masterclass with Python (Chapter 5) to implement the classic Perona–Malik algorithm to restore a degraded image and compare the output obtained with the other restoration methods.

			11.	Deep Inverse problems in Python: Implement deep image reconstruction with the Python package deepinpy, as explained in the following research paper https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2020deepInPyISMRM.pdf.
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