

 Modern Tkinter for Busy Python Developers

 Quickly learn to create great looking user interfaces for Windows, Mac and Linux using Python’s standard GUI toolkit

 Mark Roseman

 Late Afternoon Press

 2025

 Copyright © 2012-2025 by Mark Roseman

1. Introduction

This book will help you quickly get up to speed and build mainstream desktop graphical user interfaces with Python 3 and Tkinter. As you may know, Tkinter is the Python interface to a GUI library called Tk. Tk was initially developed for the Tcl language but widely adopted by other dynamic languages, including Ruby, Perl, and (of course) Python.

Tk and Tkinter have been around forever, but visually hadn't kept pace with the look and feel of modern desktop platforms. Tkinter applications had a well-deserved reputation for… well, being extremely ugly and just not fitting in with what users expected to see. In fact, the look and feel harks from a time before many people programming today were even born.

That all changed with the release of Tk 8.5 in 2007. This was a milestone release. It made it possible to build applications in Tk that looked like they fit in. They followed platform conventions around look and feel. And as user interface standards evolved, so did newer versions of Tk. The necessary changes to support it were quickly incorporated into Tkinter starting with Python version 2.7 and 3.1.

The downside is that unless you know one or two crucial things, your Tkinter applications will still look like they were created in 1995. It will appear like nothing has changed. Forget fitting in on modern platforms.

Why? Backward compatibility. Unless existing programs make a few simple changes, they won't look any different. (Imagine if you just moved into a rustic and quirky historical home. You'd want someone to point out where they've hidden the light switches and power outlets, wouldn't you?)

As you'll see in the next chapter, Tk had its heyday in the early 90's, well before Tk 8.5. Much of the sample code and documentation you'll find online comes from that time and still uses the "old way" of doing things. If you're building Tkinter applications today following those examples, you're going to find yourself with a decidedly "retro" user interface… and not in a good way.

Tkinter is actually remarkably easy to learn and use, which is why it became popular and why it's still used today. But having so much outdated information out there makes learning Tkinter more challenging than it should be.

The general state of Tk documentation (outside of the Tcl-oriented reference documentation, which is excellent) is unfortunately not at a high point these days. This is particularly true for developers using Tk from languages other than Tcl or working on multiple platforms.

This book will show you how you should be using Tkinter.

If you're new to Tkinter or creating a new program, this book will ensure you get started the right way. If you've used Tkinter before, it will help you bring your knowledge right up to date. And if you're updating code that may have been written years ago, you'll see step-by-step how to bring it into the modern age.

It's also not a reference guide. It's not going to cover everything, just the essentials you need in 95% of applications. The rest you can find in reference documentation.

1.1. Who this book is for

This book is designed for developers building tools and applications in Tkinter. It focuses on mainstream graphical user interfaces, with buttons, lists, checkboxes, rich text editing, 2D graphics, etc. It target developers on the three main platforms (Windows, macOS, and Linux). So if you're either looking to hack on Tkinter's internal C code or build the next great 3D immersive game interface, this is probably not the material for you.

This book also doesn't teach you Python, so you should have a basic grasp of that already. This book uses the most recent versions of Python 3 (as of this writing, Python 3.14) exclusively. It does not cover using Tkinter in Python 2—unlike much of the documentation you'll find online. Similarly, it assumes a basic familiarity with desktop applications in general. While you don't have to be a user interface designer, some appreciation of GUI design is always helpful.

1.2. Why Tkinter?

If you're new to building desktop graphical user interfaces in Python, why might you use Tkinter? After all, there are many options, including PyQt, PySide, WxPython, PySimpleGUI, and Kivy. Each has various pluses and minuses.

There are several reasons people chose Tkinter. It's Python's default GUI toolkit, the only one included in its standard library. It's cross-platform, so that the same code can run across Windows, macOS, or Linux systems. Perhaps most importantly, it's easy to learn and work with. It keeps boilerplate code and overhead to a minimum. It's Pythonic; it just feels right. Unlike many desktop user interface toolkit options that are front ends to complex C++ libraries, Tkinter is built on a user interface tool designed from the start for use with dynamic programming languages like Python.

Most large commercial applications these days are web-based. In fact, web (and mobile) development sucked most of the life out of desktop user interface toolkits. That's one reason why so many "mature" desktop user interface toolkits are still widely used today. Desktop applications still makes sense in many situations, whether open source projects, personal or internal company tools, or putting together a quick front end for a specific project. These are situations where Tkinter excels. We'll talk more about this in the next chapter.

1.3. Modern best practices

This book is all about building modern user interfaces using the current tools Tkinter has to offer. It covers the best practices you need to accomplish this. And also what you should avoid.

For most tools, you wouldn't think you'd have to say something like that. But for Tkinter, that's not the case. As mentioned, Tkinter has had a very long evolution, and any evolution tends to leave behind a bit of cruft. Couple that with how much graphical user interface platforms and standards have evolved in that time. You can see where keeping something as large and complex as a GUI library up to date (and backward compatible) may be challenging.

Tkinter has, for most of its lifetime, gotten a bad rap, to put it mildly. Some of this has been well deserved, most of it not so much. Like any GUI tool, you can create absolutely terrible looking and outdated user interfaces with it. It can also be used to develop spectacularly good ones given the proper care and attention. When it comes to Tkinter, most people know about the crappy ones. Most of the good ones people don't even know are built in Tkinter. In this book, we're going to focus on what you need to build good user interfaces. Thankfully, this isn't nearly as hard as it used to be before Tk 8.5.

So, to sum up: modern desktop graphical user interfaces, using modern conventions and design sense, using the modern tools provided by Tk 8.5 and 8.6.

The downside of backward compatibility

While maintaining backward compatibility makes upgrading to new versions of libraries much easier for software developers, it comes at a cost. When it comes to libraries for rapidly evolving domains like user interfaces, it slows migrating to newer and better ways of doing things. It leaves existing applications that technically "work" but no longer behave as they should from a user perspective.

As you'll see, the changes introduced since Tk 8.5 required some new ways of doing things for developers. That came with many benefits, but also meant that certain things that developers had accomplished using existing ways of doing things could no longer be supported. Rather than force developers to migrate their code, they chose to support both the old ways and new ways. Developers wanting to use the new and improved features migrated to the new ways of doing things. Code using the old ways of doing things still worked—and continues to still work today. Even though those old ways produce user interfaces that are archaic and out of place on today's platforms.

Unlike in language communities like Python that encourage migrating to newer and better ways of doing things, and are more aggressive at deprecating and eventually removing code that implements outdated practices, Tk took a much more "if it ain't (technically) broke, don't fix it" approach.

While there are some niche exceptions, there are two big things that Tkinter developers should mostly avoid in modern applications:

	non-themed "classic" widgets for buttons, frames, labels, entries, etc.

	the "pack" geometry manager

You'll learn about these shortly. And yes, if you see either of these in the examples or documentation you find online, that should be a big red flag. What you're seeing is not following modern best practices.

Tk extensions

When it comes to modern best practices, Tk extensions deserve a special word of note. Over the years, developers have created all kinds of add-ons to Tk, for example, adding new widgets not available in the core (or at least not at the time). Some well-known and quite popular Tk extensions include BLT, Tix, iWidgets, BWidgets; there are many, many others.

Many of these extensions were created decades ago. Because core Tk has always been highly backward compatible, these extensions generally keep working with newer versions. However, they rarely reflect current platform conventions or styles. They may "work" but can make your application appear extremely dated or out of place. In many cases, the facilities they provide have been made obsolete by newer and more modern facilities built into more recent versions of Tk itself.

If you decide to use Tk extensions, it's highly recommended to investigate and review your choices carefully.

1.4. The better way forward

As you've seen, Tkinter gives you many choices… too many. There are at least six different ways to layout widgets on the screen. Multiple widgets can be used to accomplish the same thing, and that's before considering any Tk extensions. Tk emphasized backward compatibility, which is a double-edged sword. Most of these old and outdated ways of doing things still keep working, year after year. That doesn't mean you should keep using some of them.

In this book, we'll often use different ways of doing things than you'd find in other documentation or examples. Often, it's because when those were written, the better ways didn't even exist yet. Sometimes, newer documentation parrots the old because the writer didn't know any better. (Here's a litmus test for Tkinter documentation: does it use the archaic pack instead of the modern grid?)

If you want to learn and use Tkinter, all that choice gets in the way. You don't need to know ten different ways to accomplish the same thing. You shouldn't need to do all the research, explore all the options, and make a choice yourself. You need to know the right way to do things today. That's what this book will give you.

1.5. How to use this book

While this book is designed to be read linearly, feel free to jump around as you see fit. We'll often provide links to information, such as the full reference for a particular command. The appendix includes a reference listing all of Tkinter's classes, method, parameters, and options. While Tk's native reference documentation is Tcl-based, it's accurate, well written, and usually easy to "translate" into Python. Unfortunately, there's not yet Tkinter reference documentation that approaches its quality or completeness.

You can find a GitHub repository containing many of the larger examples accessible via https://tkdocs.com/code/. You'll also find direct links below the code listings in the book.

Coding conventions

Larger Python programs are almost always structured into objects, classes, modules, etc. Because the focus of this book is Tk and Tkinter, we'll keep things as simple as possible, generally using a very direct and procedural coding style, rather than wrapping up most of our code in functions or objects.

Tkinter is a "wrapper" around Tk's Tcl-based API. That means Tkinter calls are translated into Tcl commands. Tcl is a language where everything has a string representation. Python data structures like lists, tuples, and dictionaries are translated by Tkinter into strings, and results returned by Tk are translated back into Python data structures. Because of this, when using Tkinter, it's often possible to "cheat" and provide a string to Tkinter where it might normally expect another data structure. Why do this? Sometimes it may be much more concise.

For example, you'll see that grid sometimes take a parameter that is (ideally) a list of one or more compass directions, i.e., north, south, east, west. Tkinter defines a set of constants, e.g. N='n', which you might combine like (N, S, E, W). Internally, Tkinter converts this to the string 'nsew'. Sometimes, rather than bothering with the very shallow syntactic sugar of using the constants and lists, you may decide to just use this four character string. And yes, for convenience, Tkinter defines a constant NSEW='nsew' too. Or, instead of passing a two-item python List of hard-coded coordinates as (3, 10) you might pass it as Tcl's string representation '3 10'.

In this book, we generally take a pragmatic approach to this. We'll usually use the "proper" way of doing things. But once in a while, if the meaning is clear, you might see the string representation "shortcut" sneak in. Both are technically valid. In your own code, do what makes sense for you. Throughout the book, you'll see several other places where the underling Tcl-based API for Tk "bleeds" through the abstraction layer created by Tkinter.

Typographic conventions

As is typically done, code listings, interpreter or shell commands, and responses will be indicated with a fixed-width font. When showing an interactive session with the interpreter, what you type will be in bold fixed-width.

When describing function or method calls, the literal parts (e.g., the method name) will be in a plain fixed-width font. Parameters, where you should fill in the actual value, will add italics, e.g. ttk.Button(parent, text=label)

You'll see some paragraphs that are separated from the main text. There are several variations of these. Each is identified with a different icon, as follows:

[image:] This paragraph points out common mistakes that people make or suggest helpful but not necessarily obvious solutions related to the topic.

[image:] This indicates a new way of doing things in Tk 8.5 or Tk 8.6 that is very different from how things would have been done previously. People familiar with older versions of Tkinter (or working on programs developed with older versions of Tkinter) should pay close attention.

[image:] This paragraph provides additional background information. It's not strictly necessary to learn the topic at hand, but might clarify how or why things are done the way they are.

[image:] This highlights an area in Tkinter that could charitably be described as a "rough edge." It may indicate a faulty or missing API requiring you to use a workaround in your code. Because these things tend to get fixed up over time, it's worth marking them in your code with a "TODO." That way, you can remember to go back later and see if a newer API resolves the problem cleanly.

2. Tk and Tkinter: Then and Now

As you saw in the introduction, Tk and Tkinter have a lengthy history. Understanding some of it will make many things you'll see later make sense. Particularly if you're searching online for the right way to do things in Tkinter, you'll come across what was the correct answer 30 years ago but no longer is.

Since we can't wipe the Internet of outdated information, we need to put it in context. In this chapter, we're going to quickly review that history to understand where it came from, why and how it caught on, and how things have evolved. We'll also look at how and where Tkinter is used today.

Tk is a user interface toolkit that makes it easy to build desktop graphical user interfaces. Tk is cross-platform, meaning the same code run on Windows, macOS, or X11 under a huge range of Unix systems (e.g., Linux). Compared with many user interface toolkits, Tk is also quite high-level, meaning that it takes care of many details for you. That makes your code simpler. You don't have to be a professional programmer to use it. It's ideal for when you want to quickly create a user interface, perhaps for a personal project or an internal company tool.

Tk is also unique in that it was designed from the start to be paired with a high-level dynamic programming language (like Tcl, Python, Ruby, Perl) as opposed to lower-level languages like C or C++. In fact, you'll find a Tk binding for most dynamic languages available today. It's easy to embed and produces executables much smaller than many other GUI libraries. It is also BSD-licensed, making it attractive for both open source and commercial developers.

Together, these factors make Tk an attractive option for people trying to develop a desktop GUI on Windows, macOS, or Unix, especially if they want it to run on all three. And because Tk is used from dynamic programming languages, it's an accessible tool not only for hardcore developers but also for many people without a computer science or engineering background.

Tk has been around forever and changed a lot over the years, resulting in a ton of horribly outdated and incorrect information out there. This makes it pretty overwhelming if you just want to figure out if and how to use Tk today. That's what this book will help with.

2.1. The early years

Tk was created around 1988 by John Ousterhout, a computer science professor at UC Berkeley. It was developed as a way to easily build GUI's from his Tcl scripting language. Tcl was Unix-only at first, and so Tk ran under X11. The first open source release was around 1991, with rapid adoption starting about a year later. You can find John's recollections of the early years at the main Tcl/Tk developer site, www.tcl.tk.

Tk caught on because lots of people at universities were using Unix/X11 in the early 1990s. The mainstream X11 libraries like Xt, Xaw, and Motif were horribly painful to use. A "hello world" application would literally take a couple hundred lines of C or C++. Then Tk comes along, where a good-looking "hello world" is a one-liner. The toolkit took care of all the housekeeping like redrawing, clipping, hit detection, event dispatch, and more. It was a no-brainer.

For a (very brief) moment, Tcl and Tk were the cool and exciting new things. Developers and users of other languages paid attention, and many language bindings to Tk were developed. Python's Tkinter first appeared around mid-1994.

2.2. The middle years

In 1994, John moved to Sun Labs, where he assembled a team to help move Tcl/Tk forward even more. After Sun went all-in on Java, the bulk of the team soon shifted to a startup called Scriptics (later Ajuba) and continued to evolve Tcl/Tk until the company was acquired in 2000, mostly for the non-Tcl/Tk assets it had developed.

Those years produced a major advancement for Tk, the development of the Windows and macOS versions. Starting with Tcl/Tk 8.0, this meant that the same script to create a GUI would run unmodified on Unix, Windows, or macOS.

Stewardship of Tk (and Tcl) moved to a more community-centered model in mid-2000, with a Tcl/Tk core team at the center but with much broader participation.

Tk continued to evolve, but the pace slowed. Incremental enhancements and adding support for new macOS and Windows versions precluded any significant leaps forward. Almost no core work aimed to track the dueling Gnome/KDE user interface standards emerging on Linux. Though Tk has always been highly customizable, unless you knew what you were doing and put in the effort, it started looking more and more dated.

2.3. The silent revolution

Tk 8.5.0 was released on December 20, 2007, and was as crucial a step forward as the Windows and macOS versions in 8.0, over ten years earlier. The core distribution included "new" widgets for such now-common components like trees, combo-boxes, tabbed notebooks, and more. These had only been available before as add-on extensions (with far too many options to choose from).

Most importantly, Tk 8.5 added a new "themed" widget set, which complements but does not replace the "classic" widget set. The classic widgets provide full backward compatibility, retaining their almost infinite flexibility, but often dated appearance. The new themed widgets look much better on their respective platforms out of the box. It was intended that developers should use themed widgets for nearly all mainstream user interface needs. The new widgets also support changing their look and feel via themes, making "skinnable" user interfaces easy for applications and platforms where they are appropriate.

Why do I call this Tk's "silent revolution?" This all happened about ten years past its heyday. At the time, web development had relegated desktop GUI's to virtual irrelevancy, and few developers were paying attention to Tk. If you weren't paying attention, you wouldn't know that anything had changed. Thanks to backward compatibility, for most people, it really didn't. Sadly.

2.4. Tk today

This is being written in 2025. In the nearly 20 years since 8.5.0 was released, there have been approximately 30 new releases of the core Tcl/Tk package, which is currently at version 9.0.2. The first 8.6 release was in 2012 and the first 9.0 release was in 2024. In that time, even though the development of new features has slowed, it's continued to improve.

2.5. Tkinter

Python's Tkinter was one of the earlier bindings to Tk and certainly the most popular. Tkinter was originally written by Fredrik Lundh. It works like most Tk bindings by embedding a Tcl interpreter inside the Python application. Tkinter commands are translated into Tcl commands and evaluated in that interpreter.

In 2009, Guilherme Polo added support for the newer "ttk" themed widgets from Tk into Tkinter, starting with Python 2.7 (on the 2.x branch), and Python 3.1. This opened the door for building far better user interfaces with Tkinter. Documentation remained the main obstacle to Python programmers learning about the new themed widgets.

Subsequent Python versions have tracked later Tcl/Tk versions, adding new features as they became available. The current version of Python, 3.14, uses Tcl/Tk 8.6.17. Precompiled Python binaries from python.org (and readily available packages for various Linux distributions) include Tcl/Tk, ensuring Tkinter is available to developers out of the box.

As a programming language, Python has continued to grow in popularity. While there are niches where it's still used, Tcl as a general programming language has largely fallen into obscurity. Today, Python and Tkinter are the way to develop and run Tk applications.

2.6. Why Tkinter… today?

The introduction touched on why Tkinter might be used as opposed to various other desktop application toolkits. It also touched on the dominance of web-based application development today and how that has marginalized a lot of desktop application development. I'm going to revisit that here to give you a better sense of how Tkinter is often used today.

Programming books are filled with self-contained, bite-sized examples. This one is no different. Below is a screenshot of one example we'll use, a fairly typical "CRUD" (create, read, update, delete) customer database application, of the type you've seen (and probably built) many times before.

[image:]

Customer Database Application.

But this should be a web application!

When most people see something like these days, that's what they think. Which is fair enough.

There's thousands of ways you could build an application like this. It could be a desktop application using Tkinter or any of several hundred other toolkits. It could be a web app running on your own computer, an Electron app, a cloud-hosted, serverless, microservice architecture, single-page, enterprise solution, or an app that runs on your phone. It could just be a spreadsheet, or a text file with a few shell scripts thrown in. The right way to build it depends on your own unique situation.

Examples like these are deliberately contrived to help you learn Tkinter as you work through this book. If you're trying to learn Tkinter so you can build desktop applications, presumably there's a reason for that. I'm not telling you that you should build an app like this in Tkinter. But, if you do need to build an app like this and choose to use Tkinter, I want you to know how to do it well. This type of application is familiar to everyone and can illustrate a wide variety of features and situations that are common in the sorts of applications that people use Tkinter for.

But other than for learning purposes, are those the kind of applications people use Tkinter for today? No.

A brief diversion into the real world

Let me tell you about a real Tkinter application I built. It's used daily and continues to evolve. One that happens to be a great example of the type of application niche where Python and Tkinter excel. And yes, it does (partly) involve a web app. Several actually.

My partner is a psychiatrist who runs a private practice. She uses paper rather than electronic charts (she finds them far less obtrusive during sessions and efficient to work with). So she doesn't need a full electronic medical record (EMR) system like you find in most medical practices. Which is probably good, because those systems are notoriously expensive, complicated, user-hostile, and a massive drag on physician productivity. Administrators love them.

That doesn't mean there isn't a lot of software used in the practice, most of it off-the-shelf products from various vendors:

	a web-based system holds patient demographics (like what the application we're building will do), as well as billing and scheduling

	videoconferencing tools like Zoom for seeing patients remotely

	a cloud-based phone system with web and desktop user interfaces plus an API for voice and SMS (text messages)

	another web-based service (along with a REST API) for faxing documents (because many parts of healthcare are still firmly stuck in the 1970's)

	a dedicated label printer (with its own software) to create labels for charts, requisitions, forms, etc.

	a desktop document scanner to scan (and then send) handwritten prescriptions, lab requisitions, etc.

	several web applications for access to lab results and other records

	document management software holds resources that can be emailed to patients

	LibreOffice is used for patient reports

	email clients, mailing list software, ...

There's more but you get the idea. Lots of different tools from lots of different vendors. Some running locally, some cloud-based. Virtually all of it is closed source. The features we can use are the features that each vendor implemented, done the way the vendor decided to implement them.

Making disparate tools work together

Whether you've assembled a large grab bag of individual tools like this or even one large system that handles many functions, unless it was designed specifically for your situation, it's probably not providing support for your optimal workflow. So what do you do?

	Suck it up, and do a lot of manual work to tie everything together. Repeat forever.

	Ask the vendors to implement features that may be unique to your environment and/or tie into other tools. Good luck.

	Throw out everything and pay someone to write a brand-new custom application doing all of this from scratch, exactly the way you want. Lots of time and money upfront and ongoing maintenance costs.

	Throw out everything and write your own custom application to do everything. How hard can it be, especially with <INSERT FLAVOUR-OF-THE-MONTH FRAMEWORK>?

Or, you could hack together some kind of utility application that works with all the existing systems you're using. That may be via a REST API, browser automation, web scraping, file manipulation, scripting desktop applications, and whatever other unholy combination of mechanisms you need to duct tape the whole thing together. You can add the features missing in the vendor applications, tie together more elaborate workflows, and present everything in a way that streamlines your work.

Building these sorts of "glue applications" is exactly the kind of thing that Python is great for. How many 20-line Python command-line scripts do you have on your system to further automate various tools so they behave the way you want?

Tkinter lets you bring all these together, display exactly the data you need where and how you need it, and streamline your workflow and user interaction even further.

Returning to my partner's clinic, the web browser based application used for patient demographics and scheduling is nice, but takes up a lot of screen real estate and is a bit clunky to navigate. It doesn't store some data that we need. The general reports built into it don't fully suit our needs, and it's not integrated with our various communication tools. Using it means a lot of extra clicks, retyping information, copy and paste, and so on.

Below is a screenshot of the Tkinter application I built to help with this mess. It makes it fast to get the basic information for patients, appointment schedules for today and tomorrow, multiple tooltips to obtain further details on patients and appointments, and provides one- or two-click access to automatically generated pre-populated forms and documents, a range of custom reports, integration with various communication tools, and much more.

[image:]

Clinic Application.

It doesn't replace those other tools; it sits on top of them. Its internal database of patients and appointments is a cached version of what's in the "real" patient database application, synced via various Javascript/Applescript web automation and parsing tools. Major edits are done via opening a web browser to the "real" application. Other tools are integrated by whatever means necessary (command-line tools, web API's, web automation, etc.). Very judicious use is made of dozens of libraries from PyPi and elsewhere to quickly and concisely implement those integrations.

In the real world, this type of custom utility application can be invaluable. It lets you save all kinds of manual work that would be needed to tie everything together by hand. And it can be done without the massive time and expense of a full custom system, which is rarely practical. The clinic application, which has grown over time to support several dozen often wildly diverse custom operations and integrations that save untold hours of repetitive, manual work is still only around 3000 lines of code.

Being able to create such applications, using tools like Python and Tkinter, provides you with unique opportunities few can take advantage of.

However, self-contained custom systems that do everything from scratch make great examples in programming books. So without further ado, let's exit the real world and continue on.

3. Installing Tkinter

In this chapter, you'll install Tkinter on your machine, verify it works, and then see a quick example of what a Tkinter program looks like.

There's an easy way and a hard way to do this—we'll cover both. The easy way involves downloading precompiled Python binaries or using a package manager. If you can, use the easy way! The hard way involves building Tcl/Tk and Python from source code and is not always for the faint of heart. We'll outline how to build from source if that's what you require.

[image:] If you were building from source, earlier versions of this book recommended using precompiled Tcl/Tk libraries from ActiveState. As they've moved away from supporting community editions, we no longer recommend this.

3.1. Installing Tkinter on macOS

The easy way

Python's binary installers, available at python.org, include a fully-functioning Tkinter.

The hard way: building from source

If you want to build Tkinter from Python source, there are four steps: install developer tools, install Tcl/Tk, build Python, and verify Tkinter.

Install developer tools

To install Apple's developer tools (compiler, etc.), open a Terminal and at the command line, run:

% xcode-select --install

Install Tcl/Tk

Here, you have two good options: using the Homebrew package manager, or compiling Tcl/Tk from source. Do not rely on the version included in macOS (8.5.9, released in 2010) which has several serious bugs easily triggered by Tkinter.

Homebrew. If you already use Homebrew, you can install Tcl/Tk using the following command:

% brew install tcl-tk

Compiling Tcl/Tk from source. Visit www.tcl.tk and download the source code for both Tcl (e.g., tcl8.6.17-src.tar.gz) and Tk (e.g., tk8.6.17-src.tar.gz). Create a directory on your system and unpack them.

Open a terminal, change into the directory where you unpacked the Tcl and Tk source, and run the following commands. Adjust the version numbers (e.g., 8.6.17) as needed. This will build Tcl and Tk and install them in bin, lib, and include directories next to the source code; change the prefix option if you want to install them elsewhere.

% export TCLTKDIR=`pwd`
% cd tcl8.6.17/unix
% ./configure --with-system-libtommath --prefix=\$TCLTKDIR
% make && make install
% cd ../../tk8.6.17/unix
% ./configure --enable-aqua=yes --without-x --with-tcl=\$TCLTKDIR/lib
% make && make install

[image:] As of this writing, the build instructions (in macosx/README in the Tcl/Tk source) are woefully out of date and are best ignored. Of note, along with building a Unix-style command line binary and library, Tcl/Tk can also be built as a macOS framework.

Compile Python

Instructions on obtaining and compiling Python can be found at devguide.python.org. The only trick is telling it where to find the versions of Tcl/Tk you installed. Python's build system goes to great lengths to try to figure this out, and may even get it right. But it may also find a different (older) version on your system. To avoid any unexpected surprises, you can set two environment variables before building to tell it exactly which Tcl/Tk installation to use.

% export TCLTK_CFLAGS="-I\$TCLTKDIR/include"
% export TCLTK_LIBS="\$TCLTKDIR/lib/libtcl8.6.dylib \$TCLTKDIR/lib/libtk8.6.dylib"
% ./configure --with-pydebug && make -j8

Verify Tkinter

Test out what you've built. Start Python from your terminal, e.g.,

% ./python.exe

From the Python command prompt, enter these two commands:

>>> import tkinter
>>> tkinter._test()

This should open a window saying, e.g., "This is Tcl/Tk version 8.6.17."

3.2. Installing Tkinter on Windows

The easy way

Python's binary installers, available at python.org, include a fully-functioning Tkinter.

The (not so) hard way: building from source

Actually, if you're able to build Python already on Windows, you've very likely already built Tkinter. As part of the build process, the necessary Tcl/Tk source code is automatically downloaded and compiled for you. So not so hard, is it?

Once you've compiled Python, test it to ensure that Tkinter works. Start Python, and from its command prompt, enter these two commands:

>>> import tkinter
>>> tkinter._test()

This should open a window saying, e.g., "This is Tcl/Tk version 8.6.15."

3.3. Installing Tkinter on Linux

The easy way

Most Linux distributions install a recent version of Python by default, or it can be installed using their package manager. Some Linux distributions separate out Tkinter support into a separate package that isn't automatically installed. If so, they'll usually notify you how to proceed when you try to import tkinter. On many versions of Ubuntu for example, you need to install a package named python3-tk.

To verify Tkinter is installed correctly, start Python, and from its command prompt, enter these two commands:

>>> import tkinter
>>> tkinter._test()

This should open a window saying, e.g., "This is Tcl/Tk version 8.6.16."

The hard way: building from source

If you want to build Tkinter from Python source, there are four steps: install developer tools, install Tcl/Tk, build Python, and verify Tkinter.

Install developer tools and libraries

If needed, use your package manager to install standard development tools needed to build Tcl and Python: gcc, make, git, etc., including the X11 headers and libraries, which are often in a package named something like libx11-dev.

Install Tcl/Tk

Again, you may wish to install Tcl/Tk using your package manager. But if not, visit www.tcl.tk and download the source code for both Tcl (e.g., tcl8.6.17-src.tar.gz) and Tk (e.g., tk8.6.17-src.tar.gz). Create a directory on your system and unpack them.

Open a terminal, change into the directory where you unpacked the Tcl and Tk source, and run the following commands. Adjust the version numbers (e.g., 8.6.17) as needed. This will build Tcl and Tk and install them in bin, lib, and include directories next to the source code; change the prefix option if you want to install them elsewhere.

% export TCLTKDIR=`pwd`
% cd tcl8.6.17/unix
% ./configure --prefix=\$TCLTKDIR
% make && make install
% cd ../../tk8.6.17/unix
% ./configure --with-tcl=\$TCLTKDIR/lib
% make && make install

Compile Python

Instructions on obtaining and compiling Python can be found at devguide.python.org. The only trick is telling it where to find the versions of Tcl/Tk you installed. Python's build system goes to some lengths to try to figure this out. But it may also find a different (older) version on your system. To avoid any unexpected surprises, you can set two environment variables before building to tell it exactly which Tcl/Tk installation to use.

% export TCLTK_CFLAGS="-I\$TCLTKDIR/include"
% export TCLTK_LIBS="\$TCLTKDIR/lib/libtcl8.6.dylib \$TCLTKDIR/lib/libtk8.6.dylib"
% ./configure --with-pydebug && make -j8

Verify Tkinter

When everything is built, be sure to test it out. Start your newly-built Python from your terminal, and from the Python command prompt, enter these two commands:

>>> import tkinter
>>> tkinter._test()

This should open a window saying, e.g., "This is Tcl/Tk version 8.6.17."

3.4. The obligatory first program

To make sure that everything actually did work, let's try to run a "Hello World" program in Tkinter. While for something this short, you could just type it in directly to the interpreter, instead use your favorite text editor to put it in a file.

from tkinter import *
from tkinter import ttk
root = Tk()
ttk.Button(root, text="Hello World").grid()
root.mainloop()

[image:] https://tkdocs.com/code/hello.py

Save this to a file named "hello.py". From a command prompt, type:

% python hello.py

[image:] Couldn't find hello.py? You might be looking in the wrong directory. Try providing the full path to hello.py.

[image:]

Our first program. Some work left to do before the IPO.

4. A First (Real) Example

With that out of the way, let's try a slightly more substantial example, which will give you a feel for what the code behind a real Tkinter program looks like.

4.1. Design

We'll create a simple GUI tool to convert a distance in feet to the equivalent distance in meters. If we were to sketch this out, it might look something like this:

[image:]

A sketch of our feet to meters conversion program.

So it looks like we have a short text entry widget that will let us type in the number of feet. A "Calculate" button will get the value out of that entry, perform the calculation, and put the result in a label below the entry. We've also got three static labels ("feet," "is equivalent to," and "meters"), which help our user figure out how to work the application.

The next thing we need to do is look at the layout. The widgets we've included seem to be naturally divided into a grid with three columns and three rows, as illustrated below:

[image:]

The layout of our user interface, which follows a 3 x 3 grid.

4.2. Code

Now here is the Python code needed to create this entire application using Tkinter.

from tkinter import *
from tkinter import ttk

def calculate(*args):
 try:
 value = float(feet.get())
 meters.set(round(0.3048 * value, 4))
 except ValueError:
 pass

root = Tk()
root.title("Feet to Meters")

mainframe = ttk.Frame(root, padding=(3, 3, 12, 12))
mainframe.grid(column=0, row=0, sticky=(N, W, E, S))

feet = StringVar()
feet_entry = ttk.Entry(mainframe, width=7, textvariable=feet)
feet_entry.grid(column=2, row=1, sticky=(W, E))

meters = StringVar()
ttk.Label(mainframe, textvariable=meters).grid(column=2, row=2, sticky=(W, E))

ttk.Button(mainframe, text="Calculate", command=calculate).grid(column=3, row=3, sticky=W)

ttk.Label(mainframe, text="feet").grid(column=3, row=1, sticky=W)
ttk.Label(mainframe, text="is equivalent to").grid(column=1, row=2, sticky=E)
ttk.Label(mainframe, text="meters").grid(column=3, row=2, sticky=W)

root.columnconfigure(0, weight=1)
root.rowconfigure(0, weight=1)
mainframe.columnconfigure(2, weight=1)
for child in mainframe.winfo_children():
 child.grid_configure(padx=5, pady=5)

feet_entry.focus()
root.bind("<Return>", calculate)

root.mainloop()

[image:] https://tkdocs.com/code/f2m.py

And the resulting user interface:

[image:]

Screenshot of our completed feet to meters user interface.

A note on coding style

As you know, larger Python programs are almost always structured into objects, classes, modules, etc. Because the focus of this book is Tk and Tkinter, we'll keep things as simple as possible, generally using a very direct and procedural coding style, rather than wrapping up most of our code in functions or classes.

4.3. Step-by-step walkthrough

Let's take a closer look at that code, piece by piece. For now, all we're trying to do is get a basic understanding of the types of things we need to do to create a user interface in Tkinter and roughly what those things look like. We'll go into details later.

Incorporating Tkinter

Our program starts by incorporating Tkinter.

from tkinter import *
from tkinter import ttk

These two lines tell Python that our program needs two modules. The first, tkinter, is the standard binding to Tk. When imported, it loads the Tk library on your system. The second, ttk, is a submodule of tkinter. It implements Python's binding to the newer "themed widgets" that were added to Tk in 8.5.

[image:] Notice that we've imported everything (*) from the tkinter module. That way, we can call tkinter functions without prefixing them with the module name. This is common Tkinter practice.

However, because we've imported just ttk itself, we'll need to prefix anything inside that submodule. For example, calling Entry(...) would refer to the Entry class inside the tkinter module (classic widgets). We'd need ttk.Entry(...) to use the Entry class inside ttk (themed widgets).

As you'll see, several classes with the same name are defined in both modules. Sometimes you will need one or the other, depending on the context. Explicitly requiring the ttk prefix facilitates this and will be the style used in this book.

Setting up the main application window

Next, the following code sets up the main application window, giving it the title "Feet to Meters."

root = Tk()
root.title("Feet to Meters")

[image:] Yes, the calculate function appeared before this. We'll describe it below but need to include it near the start because we reference it in other parts of the program.

Creating a content frame

Next, we create a frame widget, which will hold the contents of our user interface.

When we create a widget, we need to specify its parent. That is the widget that the new widget will be placed inside. In this case, our content frame's parent is the main application window.The parent is always the first parameter passed when instantiating a widget object.

When creating widgets, we can optionally pass additional parameters to override the defaults of the widget's configuration options. Here, we're changing the padding inside the content frame widget (three pixels at the left and top, 12 pixels at the right and bottom).

mainframe = ttk.Frame(root, padding=(3, 3, 12, 12))

Inserting the frame into the user interface

After the frame is created, grid places it directly inside our main application window. We'll discuss its parameters shortly.

mainframe.grid(column=0, row=0, sticky=(N, W, E, S))

[image:] Why do we put a frame inside the main window? Strictly speaking, we could just put the other widgets in our interface directly into the main application window without the intervening content frame. That's what you'll see in older Tkinter programs.

However, the main window isn't itself part of the newer "themed" widgets. Its background color may not match the themed widgets we will put inside it. Using a "themed" frame widget to hold the content ensures that the background is correct. This is illustrated below.

[image:]

Placing a themed frame inside a window.

While the visual discrepancy is no longer as pronounced as indicated in the screenshot (taken with an older version of Tkinter on macOS), it's still good practice to use this inner frame rather than inserting widgets directly into the toplevel application window.

Creating the entry widget

The first functional widget we'll create is the entry. This is where the user can type in the number of feet to convert to meters.

feet = StringVar()
feet_entry = ttk.Entry(mainframe, width=7, textvariable=feet)
feet_entry.grid(column=2, row=1, sticky=(W, E))

We need to do two things: create the widget itself and then place it onscreen.

As before, when we create a widget, we need to specify its parent. In this case, we want our entry placed inside the content frame and not the main application window. Our entry, and other widgets we'll create shortly, are said to be children of the content frame.

When we create a widget, we may override the defaults for certain configuration options. Here, we specify how wide we want the entry to appear, i.e., 7 characters. We also assign it a mysterious textvariable; we'll see what that (and StringVar) does shortly.

When widgets are created, they don't automatically appear on the screen; Tkinter doesn't know where you want them placed relative to other widgets. That's what the grid part does. Remember the 3x3 layout grid when we sketched out our application? Widgets are placed in the appropriate column (1, 2, or 3) and row (also 1, 2, or 3).

[image:] Column numbers increase from left to right. Row numbers increase from top to bottom. You can choose arbitrary row or column numbers (0, 1, 2, ...) and they don't have to be contiguous. Here we chose to use row (and column) 1, 2, 3 but we could have equally used, e.g., 0, 10, 99.

The sticky option to grid describes how the widget should line up within the grid cell, using compass directions. So w (west) means to anchor the widget to the left side of the cell, we (west-east) means to attach it to both the left and right sides, and so on.

Python defines constants for these directional strings, i.e., N, S, W, E, as well as for common combinations: NW, SW, NE, SE, NS, EW, and NSEW, as well as center. You can also specify them as tuples, e.g., (W, E) or as lists, e.g., [W, E]. Your program can choose to use literal strings, constants, or lists and tuples of either, in any combination.

Creating the remaining widgets

We then do exactly the same thing for the remaining widgets. We have one label that will display the resulting number of meters that we calculate. We have a "Calculate" button that is pressed to perform the calculation. Finally, we have three static text labels to make it clear how to use the application. For each of these widgets, we first create it and then place it onscreen in the appropriate cell in the grid.

meters = StringVar()
ttk.Label(mainframe, textvariable=meters).grid(column=2, row=2, sticky=(W, E))

ttk.Button(mainframe, text="Calculate", command=calculate).grid(column=3, row=3, sticky=W)

ttk.Label(mainframe, text="feet").grid(column=3, row=1, sticky=W)
ttk.Label(mainframe, text="is equivalent to").grid(column=1, row=2, sticky=E)
ttk.Label(mainframe, text="meters").grid(column=3, row=2, sticky=W)

Adding some polish

We then put a few finishing touches on our user interface.

root.columnconfigure(0, weight=1)
root.rowconfigure(0, weight=1)
mainframe.columnconfigure(2, weight=1)
for child in mainframe.winfo_children():
 child.grid_configure(padx=5, pady=5)
feet_entry.focus()
root.bind("<Return>", calculate)

The columnconfigure/rowconfigure bits tell Tkinter that the content frame should expand to fill any extra space if the window is resized and that the column in the content frame containing the entry should expand horizontally to fill any extra space.

The next part walks through all of the widgets contained within our content frame and adds a little bit of padding around each so they aren't so scrunched together. (We could have added these options to each grid call when we first put the widgets onscreen, but this is a nice shortcut.)

The third part tells Tkinter to put the focus on our entry widget. That way, the cursor will start in that field, so users don't have to click on it before starting to type.

The final line tells Tkinter that if a user presses the Return key (Enter on Windows), it should call our calculate routine, the same as if they pressed the Calculate button.

Performing the calculation

Speaking of which, here we define our calculate procedure. It's called when a user presses the Calculate button or hits the Return key. It performs the feet to meters calculation.

def calculate(*args):
 try:
 value = float(feet.get())
 meters.set(round(0.3048 * value, 4))
 except ValueError:
 pass

As you can clearly see, this routine takes the number of feet from our entry widget, does the calculation, and places the result in our label widget.

Say what? It doesn't look like we're doing anything with those widgets! Here's where the magic textvariable options we specified when creating the widgets come into play. We specified the global variable feet as the textvariable for the entry. Whenever the entry changes, Tkinter will automatically update the global variable feet. Similarly, if we explicitly change the value of a textvariable associated with a widget (as we're doing for meters which is attached to our label), the widget will automatically be updated with the current contents of the variable. Slick.

The only caveat is that these variables must be an instance of the StringVar class. They can't be a regular Python variable.

Start the event loop

Finally, we need to tell Tkinter to enter its event loop, which is necessary for everything to appear onscreen and allow users to interact with it.

The event loop will run for the duration of our application. It handles making sure all our widgets appear, respond to changes, and allows the user to interact with them. No matter how many widgets you create and grid, nothing will show u on the screen until the event loop starts. When you're typing commands interactively into an interpreter, there's some trickery going on behind the scenes so that an event loop starts running immediately.

root.mainloop()

OEBPS/media/file4.png
First name:

Customer Database

Last name:

Email:

Tier:

Status:

Bronze [}
: @ Active

Clear

OEBPS/media/file11.png
eoe Without Inner Frame.

Find:

Options: (| Regular expression | Match case | Whole word

d Close

e0e With Inner Frame
Options: || Regular expression | | Match case | | Whole word

d Close

OEBPS/media/file1.png

OEBPS/media/file2.png

OEBPS/media/file7.png
‘Windows Linux

@@@heo [O X |F 5 xj
Hello World)

Hello World

Hello World

OEBPS/media/file9.png
Feet to Meters
feet

OEBPS/media/file10.png
macOs
o0 Feet to Meters
1 feet
is equivalentto 0.3048 meters

Calculate

1
is equivalent to 03048

(u] >
feet
meters
Calculate

Linux

Feet to Meters

n

D O @6

feet

is equivalent to 0.3048 meters

Calculate

OEBPS/media/file5.png
Clinic Dashboard
JOHANES, David 0 2gzLoesas] 0 2E8DE &6
DOB: 14-JUN-1993 [28Y] PHN: 9812-345-678 REMIND:text 250-123-4567 dbj15€gmail.com
TODO: LAST: Jul14(Wed)e1:30PM NEXT: Aug25(Wed)€2:00PM LATER:
Today:Jones Harper Smith Morales Price Nguyen ey Richardson Owens Husdon

Tomorrow: Oliver Parsons Forsyth Butler Turcot McNally Gabrielli Horrigan
Needs followup: Baca Santini Karsh Plumb Pane Wyatt Sheshko Maira Noble Cariani Kim Oldford Cox

OEBPS/media/file3.png

OEBPS/media/file111.jpg
Tkinter

for Busy Python Developers

Quickly learn to create great looking user interfaces for
Windows, Mac and Linux using Python's standard GUI toolkit

MARK ROSEMAN

OEBPS/media/file0.png

OEBPS/media/file8.png
Feet to Meters

I

is equivalentto SBG@A meters

OEBPS/media/file6.png

