

 Nuvoton Microcontroller Programming Handbook

 Microcontroller Programming Series

 Sarful Hassan

 Published by Sarful Hassan, 2026.

 While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 NUVOTON MICROCONTROLLER PROGRAMMING HANDBOOK

 First edition. January 17, 2026.

 Copyright © 2026 Sarful Hassan.

 Written by Sarful Hassan.

 10 9 8 7 6 5 4 3 2 1

 	
	
	 Also by Sarful Hassan

	

	

	 Master of Programming

	 Python Programming Masterclass

	 JavaScript programming for Beginners

	 Java Programming for Beginners

	 C Programming for Beginners

	 C# Programming Masterclass

	

	 Microcontroller Programming Series

	 MicroPython with Raspberry Pi Pico A Complete Beginner’s Guide to Programming

	 Raspberry Pi Pico C Programming C Programming, Hardware Interfaces, RP2040

	 C Programming for Embedded Systems

	 MSP430 Microcontroller Programming Handbook A Complete Beginner’s Guide to Embedded C, Peripherals, and Hardware Control for MSP430 Systems

	 RISC-V Microcontroller Programming Handbook A Practical Guide to Embedded C, Peripherals, Timers, PWM, and Real-World Projects

	 Arduino Programming Handbook

	 ESP32 Arduino Programming Handbook

	 Mastering ESP32 Wi-Fi features

	 Nuvoton Microcontroller Programming Handbook

	
	
	 Watch for more at Sarful Hassan’s site.

	
	

	

 	
 	
			

			
		
 This book is dedicated to my teachers, whose guidance, patience, and knowledge shaped the foundation of my learning, and to my students, whose curiosity, questions, and determination continue to inspire me every day. Your passion for learning and teaching is the true motivation behind this work.

 	

 "True learning begins not when answers are given, but when curiosity is awakened and guided with patience."

Nuvoton Microcontroller Programming Handbook

By

Sarful Hassan

Preface

Microcontrollers sit quietly inside countless devices around us, yet they control some of the most important functions in modern technology. This book was written to make Nuvoton microcontrollers understandable, practical, and approachable—especially for learners who want to move beyond theory and confidently work with real hardware. Every topic is explained with clarity and care, focusing on why things work, not just how to make them work.

Who This Book Is For

This book is for students, hobbyists, and aspiring embedded engineers who want a clear and structured path into Nuvoton microcontroller programming. If you have basic knowledge of C programming or are learning it alongside embedded systems, this book will guide you step by step. It is also suitable for professionals who want a reliable reference when working with Nuvoton-based projects.

How This Book Is Organized

The book is organized to build your confidence gradually. It starts with fundamental concepts and tools, then moves into Embedded C programming, core peripherals, communication interfaces, and finally storage and deployment. Each part builds on the previous one, so you can follow the chapters in order or jump to a specific topic when needed.

What Was Left Out

To keep the learning experience focused and beginner-friendly, some advanced topics such as real-time operating systems (RTOS), complex middleware stacks, and highly device-specific edge cases were intentionally left out. These can be explored later once you have a strong foundation in core concepts.

Release Notes

This edition reflects current best practices in Nuvoton microcontroller programming and toolchain usage. Updates and corrections will be made in future editions as tools, libraries, and devices continue to evolve.

Notes on the First Edition

As the first edition, this book focuses on clarity, structure, and real-world usability. Feedback from readers is highly valued and will help improve future editions.

How to Contact Us

For questions, feedback, or learning support, you can contact us at

mechatronicslab.net@gmail.com

Free Learning Website

Additional tutorials, examples, and free learning resources are available at

mechatronicslab.net

Acknowledgments for the First Edition

This book would not be possible without the global embedded systems community—educators, engineers, and open-source contributors—who continuously share knowledge and inspire learning.

Copyright (mechatronicslab.net)

All rights reserved.

© MechatronicsLab

Disclaimer

The information in this book is provided for educational purposes only. While every effort has been made to ensure accuracy, the author and publisher are not responsible for any damage or loss resulting from the use of the information contained herein.

Important Notice

Do not copy, distribute, publish, or use any part of this book or its content on other platforms or websites without prior written permission from mechatronicslab.net. You can access free learning resources exclusively at mechatronicslab.net.

	[image:]

	
	[image:]

[image:]

​

[image:]

Part I: Getting Started

What is Nuvoton? The Open ISA and MCU Ecosystem

Nuvoton is a semiconductor company that designs and manufactures microcontrollers used in real, everyday products. You’ll find Nuvoton MCUs in home appliances, industrial controllers, power management systems, and many embedded devices. They focus on stability, practical features, and clear documentation, which makes their chips comfortable to learn with—especially for beginners.

When we talk about the Open ISA, we are talking about the idea of openness at the processor level. An ISA (Instruction Set Architecture) is the basic language a CPU understands. In the past, most ISAs were closed and controlled by one company. Today, open ISAs like RISC-V allow anyone to study, use, and build processors without license restrictions. This is a big shift in how microcontrollers are designed and learned.

The MCU ecosystem grows naturally around this openness. It includes not just chips, but everything that supports them.

	MCU manufacturers like Nuvoton

	Open and free toolchains (compilers, debuggers)

	Development boards and reference designs

	Community examples, tutorials, and forums

Because the ecosystem is open, learning becomes easier and more transparent. You can understand how things work internally instead of just copying code without knowing why it works.

As a beginner, you don’t need to choose sides or worry about every architecture. Just remember this: Nuvoton is part of a modern MCU world that values openness, learning, and real-world usability. By understanding this foundation early, you’re already building the mindset of a confident embedded systems engineer.

Popular MCU Families You’ll Encounter

As you begin working with microcontrollers, you’ll quickly notice that different MCU families are designed for different goals. Some focus on learning and simplicity, while others aim for higher performance or specialized tasks. Understanding these families helps you make sense of the MCU landscape without feeling lost.

	
SiFive–based MCUs
SiFive played a key role in popularizing RISC-V. MCUs built on SiFive cores are often used as reference designs and learning platforms. They are especially useful if you want to understand how an open instruction set works from the ground up.

	
GD32V series by GigaDevice
GD32V MCUs are affordable and beginner-friendly. If you have seen ARM Cortex-M style development before, these will feel familiar. They are commonly used for general-purpose embedded projects and learning RISC-V programming.

	
Kendryte K210 by Canaan
The K210 is a more advanced dual-core RISC-V MCU designed for tasks like image processing and AI workloads. It shows how microcontrollers can go beyond basic control and enter high-performance applications.

	
NuMicro series from Nuvoton
Nuvoton’s NuMicro family focuses on reliability, strong peripheral support, and real-world usability. These MCUs are widely used in commercial products and are excellent for learning practical embedded system design.

You don’t need to work with all of these right away. Just get comfortable recognizing their names and purposes. With practice, you’ll naturally learn which MCU family fits which kind of project—and that confidence grows faster than you might expect.

Setting Up the Development Environment

Before your microcontroller can do anything useful, you need a development environment. This is simply the set of tools that helps you write code, turn it into firmware, upload it to the board, and fix problems when something doesn’t work. Don’t worry—once it’s set up, you’ll use the same flow again and again.

At the heart of the environment is the toolchain. This includes the compiler, assembler, and linker. Together, they convert your human-readable C or C++ code into machine code that the MCU understands. You usually install a toolchain that matches your MCU architecture, such as ARM or RISC-V.

Next comes the IDE (Integrated Development Environment). An IDE gives you a comfortable place to write code, manage files, and build your project. Many beginners use lightweight editors with extensions because they are fast and flexible. The IDE doesn’t run your code by itself—it simply helps you work more efficiently.

To communicate with the hardware, you need debug and flash tools:

	
OpenOCD acts as a bridge between your computer and the MCU

	
GDB lets you pause the program, step through code, and inspect values

	
A debug probe (often built into the board) connects USB to JTAG or SWD

Once everything is connected, the basic workflow becomes very simple:

	Write your code

	Build the project using the toolchain

	Flash the firmware to the board

	Run and debug when needed

It’s completely normal if setup feels slow the first time. Every embedded developer goes through this stage. Take it step by step, and once your environment works, you’ll have a powerful foundation that supports everything you build next.

Programming Interfaces

Programming interfaces are how your computer talks to the microcontroller. They allow you to upload code, control execution, and look inside the MCU while it is running. At first, they may sound technical, but the idea is actually very simple: they are just communication pathways between your PC and the chip.

The most common programming and debugging interfaces you’ll encounter are:

	
JTAG (Joint Test Action Group)
JTAG is a full-featured interface used for programming and debugging. It gives deep access to the MCU, allowing you to set breakpoints, step through code, and inspect registers and memory. It’s powerful and widely supported.

	
SWD (Serial Wire Debug)
SWD is a simpler, two-wire alternative to JTAG. It provides the same essential debugging features while using fewer pins, which is why many modern boards prefer it.

	
Vendor debug probes
These are USB-based tools provided by chip manufacturers. They act as a bridge between your computer and the MCU’s debug pins. In many development boards, this probe is already built in, so you just connect a USB cable and start programming.

From a beginner’s point of view, you don’t need to worry about signal timing or wiring details right now. Just remember:

	
The interface is used to flash firmware

	
The same interface is used to debug code

	Your tools (like OpenOCD and GDB) use this interface behind the scenes

As you gain experience, these interfaces will feel less like mysterious hardware and more like helpful windows into how your program really runs.

	[image:]

	
	[image:]

[image:]

Part II: Embedded C Foundations for Nuvoton

[image:]

Understanding Integer Data Types in Nuvoton Microcontroller Programming

Let’s Begin

Welcome! In this chapter, you’ll learn about integer data types in your Nuvoton Microcontroller programming journey using the Nuvoton NuMicro M031SD2AE board. Think of this as learning how to choose the right size of storage box for your data. Once you understand this, you’ll write faster, more efficient programs that make the most of your microcontroller’s memory.

What Are Integer Data Types and Why Use Them?

An integer is a whole number — no fractions, no decimals. In programming, we use integer data types to store such numbers in memory. You can imagine memory as a row of boxes; some boxes are small, others are large. Integer data types tell the Nuvoton Microcontroller how big a box to use for your number. Choosing the right type saves memory and keeps your program running smoothly.

Use Cases in Real Projects

You’ll use integers in almost every Nuvoton Microcontroller project — counting sensor pulses, controlling LED brightness steps, timing motor rotations, or tracking button presses. Each task needs a data type that fits the number range you expect.

Basic Rules for Integer Data Types

	Always declare the data type before the variable name.

	Match the data type to the range of numbers you’ll store.

	
Use unsigned if you only need positive numbers.

	
Use signed if you need both positive and negative numbers.

	Avoid using larger data types than necessary; it wastes memory.

	
For constants, use a prefix or suffix like L for long values.

Syntax for Integer Data Types

int count;

unsigned int steps;

long distance;

unsigned long timer;

short level;

unsigned short brightness;

Syntax Explanation

Each declaration creates a variable — a named box that holds a number in memory. The keyword before the name decides how big that box is. For example, int count; creates a medium-sized box that can hold both positive and negative numbers. If you use unsigned int, the box becomes one-sided — it holds only positive numbers, so it can store a higher maximum value. The words short and long are like choosing smaller or bigger storage boxes. Selecting the correct size keeps your program efficient, like choosing the right container for the right amount of food.

Common Mistakes to Avoid

Beginners often use int for everything. This works but wastes memory. Another mistake is mixing signed and unsigned numbers, which can cause strange results when comparing or subtracting them. Also, avoid storing numbers larger than the type can hold — it causes overflow, like water spilling from a cup.

Best Practices

Plan your number ranges before writing code. Choose the smallest data type that safely fits your values. Use comments to explain your choice, such as // using unsigned short for 0–255 sensor range. This makes your code easier to understand and maintain.

Safety Notes

Be careful when working with numbers connected to hardware registers. These are often unsigned, meaning they cannot store negative values. Writing a negative number to such a register can cause unpredictable behavior.

Try It Yourself Project: Counting Button Presses

Project Overview

You’ll create a simple program that counts how many times a button is pressed using integer variables on the Nuvoton NuMicro M031SD2AE board.

Things You’ll Need (Hardware)

	Nuvoton NuMicro M031SD2AE development board

	Push button

	One LED

	220Ω resistor

	Breadboard and jumper wires

Tools & Software

	Nuvoton NuEclipse IDE or Keil µVision IDE

	USB Mini-B cable for uploading code

Power Source Clarification

Use the USB connection from your computer to power the M031SD2AE board.

Circuit Connection With Explanation

Connect one leg of the button to pin P0.0 (configured as input) and the other leg to GND. Connect the LED (with a 220Ω resistor) to P1.0 (configured as output). When the button is pressed, the counter variable will increase, and the LED will blink once.

Coding Time

#include "NuMicro.h"

unsigned int pressCount = 0; // count starts at zero

int main(void)

{

SYS_Init(); // system initialization

GPIO_SetMode(P0, BIT0, GPIO_MODE_INPUT); // set P0.0 as button input

GPIO_SetMode(P1, BIT0, GPIO_MODE_OUTPUT); // set P1.0 as LED output

while(1)

{

if(P0 == 0) // button pressed (active low)

{

pressCount++; // increase the counter

P1 = 1; // turn LED on

CLK_SysTickDelay(200000); // delay for visibility

P1 = 0; // turn LED off

CLK_SysTickDelay(200000);

}

}

}

Build & Upload the Program

Open the Nuvoton NuEclipse IDE, create a new C project, paste the code, and click Build. When the build is complete, connect your NuMicro M031SD2AE board via USB, and click Run or Download to upload the code.

What You’ll See (Output)

Each time you press the button, the LED blinks once. Internally, the variable pressCount increases by one each time. You can later display this value using UART or print it to a connected LCD screen.

Troubleshooting Tips

If the LED does not blink, check that P1.0 is correctly wired and defined as an output in the code. If the button causes rapid counting, the switch may be bouncing — add a longer delay or include debounce logic. If nothing happens, confirm the M031SD2AE board is powered and properly recognized by the IDE.

Try Something New

	
Show pressCount on a 7-segment display or LCD module.

	Reset the counter after every 10 presses.

	
Use unsigned short instead of unsigned int to explore memory efficiency.

	
Add a second LED that turns on when pressCount reaches 5.

Understanding Floating-Point Data Types in Nuvoton Microcontroller Programming

Let’s Begin

Welcome! In this chapter, we’ll explore floating-point data types using the Nuvoton NuMicro M031SD2AE board. These data types help your microcontroller work with numbers that have decimal points — like 3.14 or 0.25. Imagine you’re building a digital thermometer or measuring voltage. Integers alone can’t express “25.7°C” or “1.8V.” That’s where floating-point numbers come in.

What Are Floating-Point Data Types and Why Use Them?

A floating-point number is simply a number with a decimal point. In programming, it represents both very small and very large values, including fractions. Think of it like a measuring cup instead of a solid container — it can hold precise amounts, not just whole numbers. Floating-point types are important whenever you need accuracy beyond whole numbers, like in sensors or mathematical calculations.

Use Cases in Real Projects

Floating-point types are used in temperature sensors, analog voltage readings, distance measurement, and motor control. For example, if your Nuvoton Microcontroller reads a temperature of 25.68°C or a voltage of 3.33V from an analog sensor, you’ll need a floating-point variable to store those precise results.

Basic Rules for Floating-Point Data Types

	
Use float for most decimal calculations.

	
Use double for higher precision if needed.

	Floating-point numbers take more memory than integers.

	Avoid using floating-point math in time-critical code; it’s slower than integer math.

	
Always include a decimal point when assigning float values (e.g., 3.0, not 3).

	Floating-point types can represent both positive and negative numbers.

Syntax for Floating-Point Data Types

float temperature;

double voltage;

float pi = 3.14;

double distance = 12.6789;

Syntax Explanation

Each declaration defines a variable that can store a number with decimals. The keyword float creates a medium-precision variable, while double allows for higher precision and a wider range. For example, float temperature = 25.68; stores a value that includes a fractional part. Think of this as using a ruler with millimeter markings instead of one with only centimeters — you get finer detail.

Common Mistakes to Avoid

A common mistake is forgetting the decimal point when assigning a value. Writing float voltage = 5; actually creates an integer assignment. Another issue is using == to compare two floating-point numbers. Tiny rounding differences can make comparisons unreliable. Instead, compare their difference with a small tolerance. Also, using floating-point math inside interrupt routines can slow down performance — avoid it when possible.

Best Practices

Use float only when your application truly needs decimal precision. For example, use integers to count events or steps, and floats for sensor readings or measurements. When performing calculations, use constants with decimal points (like 2.0 instead of 2) to keep the math in floating-point form. Add comments describing the purpose of each variable for better readability.

Safety Notes

Floating-point math can increase computation time and power use. Avoid using it inside fast loops or hardware interrupts. Always make sure the data type matches your calculation needs — precision errors can lead to incorrect sensor readings or control outputs.

Try It Yourself Project: Measuring Analog Voltage

Project Overview

In this project, you’ll use your Nuvoton NuMicro M031SD2AE board to read an analog input voltage using a floating-point variable and display the precise voltage value through UART.

Things You’ll Need (Hardware)

	Nuvoton NuMicro M031SD2AE development board

	Potentiometer (10kΩ)

	Jumper wires

	Breadboard

Tools & Software

	Nuvoton NuEclipse IDE or Keil µVision IDE

	USB Mini-B cable for uploading code

Power Source Clarification

Use USB power from your computer to power the M031SD2AE board.

Circuit Connection With Explanation

Connect the middle pin of the potentiometer to ADC0 (P0.0) on the board. Connect one side to VCC (3.3V) and the other to GND. Rotating the potentiometer changes the voltage between 0V and 3.3V, which will be read by the ADC and stored in a float variable.

Coding Time

#include "NuMicro.h"

float voltage; // variable to store calculated voltage

int main(void)

{

SYS_Init(); // system initialization

UART_Open(UART0, 115200); // UART for display

ADC_Open(ADC, ADC_INPUT_MODE, ADC_OP_SINGLE, ADC_CH_0_MASK); // enable ADC0

while(1)

{

ADC_START_CONV(ADC); // start ADC conversion

while(!ADC_GET_INT_FLAG(ADC, ADC_ADF_INT)); // wait for conversion

ADC_CLR_INT_FLAG(ADC, ADC_ADF_INT); // clear flag

uint16_t adcValue = ADC_GET_CONVERSION_DATA(ADC, 0);

voltage = (adcValue * 3.3) / 4095.0; // convert to voltage

printf("Voltage: %.2f V\n", voltage); // print with 2 decimal points

CLK_SysTickDelay(500000); // 0.5 second delay

}

}

Build & Upload the Program

Open the Nuvoton NuEclipse IDE, create a new project, paste the code, and click Build. When done, connect your NuMicro M031SD2AE board, and upload the program using Run or Download.

What You’ll See (Output)

Open the serial monitor in the IDE. As you rotate the potentiometer knob, the displayed voltage will change smoothly between 0.00V and 3.30V. Each reading is a floating-point number showing real-time precision.

Troubleshooting Tips

If no voltage readings appear, check that UART is set to 115200 baud and the correct COM port is selected. If values seem incorrect, verify your potentiometer wiring to the ADC0 pin. If the voltage always reads 0, ensure ADC initialization is correct and the pin is set as an analog input.

Try Something New

	Display the voltage with three decimal places for higher accuracy.

	Add a second ADC channel to read another analog sensor.

	Calculate the average of five readings using float variables.

	
Use double instead of float and compare output precision.

Character Data Types in Nuvoton Microcontroller Programming

Let’s Begin

Welcome! In this chapter, you’ll learn how to use character data types on your Nuvoton NuMicro M031SD2AE board. Characters help your microcontroller store letters, symbols, or small text messages. Imagine teaching your microcontroller to display the letter “A” or send the word “OK” through serial communication — that’s what character data types make possible.

What Are Character Data Types and Why Use Them?

A character (or char) stores a single letter, number, or symbol inside a small memory space. For example, 'A', '5', or '!' are all characters. Inside your microcontroller, each character is actually stored as a number using the ASCII table — 'A' is 65, 'B' is 66, and so on. Think of it like your microcontroller learning to speak by numbers that represent letters.

Use Cases in Real Projects

Character variables are useful when you send or receive data through UART, display letters on an LCD, or process commands from sensors or keypads. For example, your Nuvoton Microcontroller might receive 'S' for “Start” or 'X' for “Stop.”

Basic Rules for Character Data Types

	
Use the keyword char to declare a character variable.

	
Always enclose character values in single quotes ('A', '3', '%').

	A character actually stores its ASCII code number, not the symbol itself.

	You can perform simple arithmetic on characters using their ASCII values.

	
Use arrays of char (called strings) for storing multiple letters or words.

Syntax for Character Data Types

char letter;

char grade = 'A';

char symbol = '#';

char name[10] = "Nuvoton";

Syntax Explanation

Each declaration reserves memory for storing characters. For example, char grade = 'A'; keeps the letter A in memory as its ASCII number 65. When you create char name[10] = "Nuvoton";, it stores each letter separately and ends with a special marker '\0' to show where the word stops. You can imagine it like writing letters in boxes — each box holds one character until the word is complete.

Common Mistakes to Avoid

Beginners sometimes use double quotes ("A") instead of single quotes ('A') for single characters. Double quotes create a string, not a character. Another mistake is forgetting that character variables are case-sensitive — 'A' and 'a' have different ASCII codes. Also, avoid exceeding the array size when storing strings; always leave room for the null character '\0'.

Best Practices

Use descriptive variable names, like char keyPressed or char userChoice. When working with strings, declare an array slightly larger than your text to avoid overflow. If you need to compare characters, use comparison operators like ==, but for strings, use proper string functions. Comment your code to remind yourself what each character represents in your program.

Safety Notes

When reading or writing characters through UART, check that your baud rate matches the sending device. Mismatched speeds can cause garbled or missing characters.

Try It Yourself Project: Serial Character Echo

Project Overview

You’ll write a program where the Nuvoton NuMicro M031SD2AE board reads a character from the computer and echoes it back through UART.

Things You’ll Need (Hardware)

	Nuvoton NuMicro M031SD2AE development board

	USB Mini-B cable

Tools & Software

	Nuvoton NuEclipse IDE or Keil µVision IDE

	Serial monitor (built into the IDE)

Power Source Clarification

Power your M031SD2AE board using the USB cable connected to your computer.

Circuit Connection With Explanation

No external wiring is needed. The UART pins are connected to the USB interface through the onboard converter. This allows the board to send and receive characters directly from your computer’s serial terminal.

Coding Time

#include "NuMicro.h"

char receivedChar; // variable to store the received character

int main(void)

{

SYS_Init(); // system initialization

UART_Open(UART0, 115200); // setup UART at 115200 baud

printf("Type a letter: \n"); // prompt user

while(1)

{

if(UART_IS_RX_READY(UART0)) // check if a character is received

{

receivedChar = UART_READ(UART0); // read character

printf("You typed: %c\n", receivedChar); // echo it back

}

}

}

Build & Upload the Program

Open the Nuvoton NuEclipse IDE, create a new project, paste the code, and click Build. When it compiles successfully, upload the program to your NuMicro M031SD2AE board. Open the serial monitor and set it to 115200 baud.

What You’ll See (Output)

When you type any letter or symbol in the serial monitor, the board instantly sends it back. If you type 'A', the microcontroller replies “You typed: A.”

Troubleshooting Tips

	If no output appears, check that the correct COM port is selected.

	If the characters look scrambled, make sure the baud rate is set to 115200.

	If the board does not respond, ensure the USB cable is fully connected.

Try Something New

	Modify the program to convert lowercase letters to uppercase before echoing.

	
Add a condition so typing 'X' turns on an LED connected to a GPIO pin.

	
Create a small “name input” feature using a char array.

	Send a message like “Hello” automatically when the program starts.

Boolean Data Types in Nuvoton Microcontroller Programming

Let’s Begin

Welcome! In this chapter, we’ll explore Boolean data types using the Nuvoton NuMicro M031SD2AE board. Booleans are special because they can only have two values: true or false. Think of them as tiny switches inside your code — ON or OFF, YES or NO, HIGH or LOW. Once you master Booleans, you can make your programs decide what to do based on simple conditions.

What Are Boolean Data Types and Why Use Them?

A Boolean data type is used to represent logical states. It helps your Nuvoton Microcontroller make decisions. For example, a Boolean variable can store whether a button is pressed, a light is on, or a sensor detects motion. In simple terms, it answers questions like “Is this true or false?” It’s like flipping a light switch — the result is either ON (true) or OFF (false).

Use Cases in Real Projects

Booleans are used in decision-making. You can use them to detect if a sensor value crosses a limit, to check if a motor should run, or to control LEDs based on conditions. For instance, you might have a Boolean called isPressed that turns on a light when the button is pressed.

Basic Rules for Boolean Data Types

	
Use the keyword bool to declare a Boolean variable.

	
The values are true or false (written in lowercase).

	
Booleans are part of logical expressions using ==, >, <, etc.

	
In C, true equals 1 and false equals 0.

	
Always include <stdbool.h> to enable the Boolean type.

	Use Booleans to make your code easier to read and debug.

Syntax for Boolean Data Types

#include <stdbool.h>

bool ledState;

bool buttonPressed = false;

bool sensorActive = true;

Syntax Explanation

Each Boolean variable stores a value that is either true or false. For example, bool buttonPressed = false; means the button is currently not pressed. Later in the program, when the button is pressed, you can set buttonPressed = true;. Think of Booleans like flags — little signposts your program uses to remember conditions and make choices.

Common Mistakes to Avoid

Beginners sometimes forget to include <stdbool.h>, which makes the compiler not recognize bool, true, or false. Another mistake is treating Booleans like integers and printing them directly — instead, display text like “ON” or “OFF.” Also, avoid using a single = when comparing values; use == for comparison.

Best Practices

Use clear and meaningful names like isButtonPressed or ledOn. Booleans are perfect for flags and conditions, so keep their purpose simple and specific. Avoid overcomplicating Boolean logic with unnecessary comparisons like if(ledOn == true) — just write if(ledOn). Always reset your Booleans properly to prevent unpredictable behavior in loops.

Safety Notes

Booleans often control GPIO pins or hardware states. Make sure your logic matches your circuit wiring. For example, a pressed button might give a low signal (0), but your Boolean should interpret that correctly.

Try It Yourself Project: Button-Controlled LED

Project Overview

You’ll write a program that turns an LED on when a button is pressed using a Boolean variable on the Nuvoton NuMicro M031SD2AE board.

Things You’ll Need (Hardware)

	Nuvoton NuMicro M031SD2AE development board

	Push button

	One LED

	220Ω resistor

	Breadboard and jumper wires

Tools & Software

	Nuvoton NuEclipse IDE or Keil µVision IDE

	USB Mini-B cable for uploading code

Power Source Clarification

Power your M031SD2AE board through the USB cable connected to your computer.

Circuit Connection With Explanation

Connect one leg of the push button to pin P0.0 (input) and the other to GND. Connect the LED (with resistor) to P1.0 (output). The button sets the Boolean buttonPressed to true, which turns the LED on.

Coding Time

#include "NuMicro.h"

#include <stdbool.h>

bool buttonPressed = false; // flag for button state

int main(void)

{

SYS_Init(); // system setup

GPIO_SetMode(P0, BIT0, GPIO_MODE_INPUT); // button pin

GPIO_SetMode(P1, BIT0, GPIO_MODE_OUTPUT); // LED pin

while(1)

{

if(P0 == 0) // button pressed (active low)

{

buttonPressed = true;

}

else

{

buttonPressed = false;

}

if(buttonPressed) // if true, turn on LED

{

P1 = 1;

}

else

{

P1 = 0;

}

}

}

Build & Upload the Program

Open the Nuvoton NuEclipse IDE, create a new C project, paste the code, and click Build. After compiling, connect your NuMicro M031SD2AE board via USB and click Run or Download to upload the program.

What You’ll See (Output)

When you press the button, the LED turns on. When you release it, the LED turns off. The Boolean variable buttonPressed keeps track of the button’s state and updates the LED accordingly.

Troubleshooting Tips

	If the LED stays on all the time, check if your button is wired correctly.

	
If the LED never turns on, try using !P0 or check for an inverted logic.

	If the LED flickers, add a small delay to debounce the button press.

Try Something New

	Add a second Boolean variable to toggle the LED on each press.

	Combine Booleans to control multiple LEDs based on different buttons.

	Use UART to print “Button Pressed” when the Boolean becomes true.

	Create a safety condition that prevents turning the LED on twice in a row.

Enumerated Data Types in Nuvoton Microcontroller Programming

Let’s Begin

Welcome! In this chapter, you’ll discover enumerated data types (also called enums) using the Nuvoton NuMicro M031SD2AE board. Enumerations help your code feel more natural and readable. Instead of remembering numbers, you can give names to meaningful values. Think of it like naming the days of the week instead of using numbers 1 to 7 — much easier to understand!

What Are Enumerated Data Types and Why Use Them?

An enumerated data type lets you create a list of named constants. Each name represents a number in sequence, starting from zero by default. This is useful when your program uses a small set of related choices — like colors, modes, or states. It keeps your code cleaner, clearer, and easier to maintain.

Use Cases in Real Projects

You can use enums to manage different system modes, LED colors, sensor states, or error codes. For example, you might create an enum called SystemMode with values like STARTUP, RUNNING, and SLEEP. Instead of writing if(mode == 2), you can write if(mode == SLEEP) — much more readable!

Basic Rules for Enumerated Data Types

	
Use the keyword enum to create an enumerated type.

	Each label inside an enum automatically gets an integer value.

	The first item starts at 0 by default, but you can assign custom numbers.

	Enum names must be unique within your program.

	Enums make your code easy to read and reduce logical mistakes.

Syntax for Enumerated Data Types

enum LED_State

{

LED_OFF,

LED_ON,

LED_BLINK

};

enum LED_State currentLED;

Syntax Explanation

The enum LED_State defines three possible states: LED_OFF, LED_ON, and LED_BLINK. Each one represents a number — 0, 1, and 2. When you declare enum LED_State currentLED;, you create a variable that can only take one of these three values. It’s like having a labeled switch with three clear positions instead of guessing which number means what.

Common Mistakes to Avoid

Beginners often forget to add the enum keyword before declaring the variable, or they try to assign values that don’t exist in the list. Another common mistake is mixing enums with unrelated integers — this defeats their purpose of clarity. Also, avoid using the same label name in different enums; it can confuse the compiler.

Best Practices

Use descriptive names for both the enum type and its members. For example, enum MotorSpeed { SPEED_LOW, SPEED_MEDIUM, SPEED_HIGH }; is clear and self-explanatory. When assigning custom values, keep the numbering consistent and logical. Use enums instead of multiple #define statements for better organization and type safety.

Safety Notes

Enums are stored as integers, so they can overflow if used in arithmetic operations. Always use them for clear states or modes, not for large calculations.

Try It Yourself Project: LED Mode Selector

Project Overview

You’ll create a program where the Nuvoton NuMicro M031SD2AE board cycles an LED through three states — off, on, and blink — using an enumerated data type.

Things You’ll Need (Hardware)

	Nuvoton NuMicro M031SD2AE development board

	One LED

	220Ω resistor

	Push button

	Breadboard and jumper wires

Tools & Software

	Nuvoton NuEclipse IDE or Keil µVision IDE

	USB Mini-B cable for uploading code

Power Source Clarification

Use the USB cable from your computer to power the M031SD2AE board.

Circuit Connection With Explanation

Connect the LED with a 220Ω resistor to pin P1.0 (output). Connect one leg of the push button to P0.0 (input) and the other to GND. Each time you press the button, the LED will change to the next mode: OFF → ON → BLINK → OFF again.

Coding Time

#include "NuMicro.h"

enum LED_Mode

{

LED_OFF,

LED_ON,

LED_BLINK

};

enum LED_Mode currentMode = LED_OFF; // start with LED off

int main(void)

{

SYS_Init(); // system setup

GPIO_SetMode(P0, BIT0, GPIO_MODE_INPUT); // button pin

GPIO_SetMode(P1, BIT0, GPIO_MODE_OUTPUT); // LED pin

while(1)

{

if(P0 == 0) // button pressed (active low)

{

currentMode++; // move to next mode

if(currentMode > LED_BLINK) // loop back after blink

{

currentMode = LED_OFF;

}

CLK_SysTickDelay(300000); // simple debounce delay

}

if(currentMode == LED_OFF)

{

P1 = 0; // LED off

}

else if(currentMode == LED_ON)

{

P1 = 1; // LED on

}

else if(currentMode == LED_BLINK)

{

P1 = 1;

CLK_SysTickDelay(200000);

P1 = 0;

CLK_SysTickDelay(200000);

}

}

}

Build & Upload the Program

Open the Nuvoton NuEclipse IDE, create a new project, paste the code, and click Build. Once compiled successfully, connect your NuMicro M031SD2AE board through USB and click Run or Download to upload the program.

What You’ll See (Output)

Each time you press the button, the LED changes mode. First press: LED turns ON. Second press: LED starts blinking. Third press: LED turns OFF again. This shows how easy it is to handle multiple states using enums.

Troubleshooting Tips

	
If the LED doesn’t change, check the button wiring to P0.0.

	If the LED flickers when pressing, add a longer debounce delay.

	If the LED doesn’t blink, verify your delays are long enough to notice.

Try Something New

	
Add more modes, like a slow blink and fast blink.

	Use a second LED to display a different state pattern.

	
Send the current LED mode name ("ON", "OFF", "BLINK") over UART.

	Combine enums with Boolean flags to build more complex control logic.

Derived Data Types (Arrays, Structures, Unions) in Nuvoton Microcontroller Programming

Let’s Begin

Welcome! In this chapter, we’ll explore derived data types — arrays, structures, and unions — using the Nuvoton NuMicro M031SD2AE board. These special types let you group and organize related data, making your programs easier to manage. Think of them as tools that help you store not just one piece of information, but collections or combinations of data in a single place.

What Are Derived Data Types and Why Use Them?

Derived data types are built from basic types like int, float, or char. They allow you to work with groups of values instead of single ones. Arrays hold multiple values of the same type, structures combine different data types, and unions let you share memory between variables. These tools make your Nuvoton Microcontroller programs more efficient and organized.

Use Cases in Real Projects

Arrays store readings from sensors or a sequence of LED states. Structures can represent complex data, like temperature and humidity readings together. Unions are useful when reading data in multiple formats, such as combining bytes into a 16-bit value from an ADC or communication buffer.

Basic Rules for Derived Data Types

	Arrays group elements of the same data type.

	Structures group variables of different types under one name.

	Unions store different variables in the same memory space.

	Array indexes start at zero.

	Always declare the size of an array.

	
Access structure or union members using the dot (.) operator.

Syntax for Arrays, Structures, and Unions

// Array

int sensorValues[5];

// Structure

struct SensorData

{

float temperature;

float humidity;

char status;

};

// Union

union DataConverter

{

int intValue;

float floatValue;

};

Syntax Explanation

An array is like a row of labeled boxes, each storing the same type of value. For example, sensorValues[5] holds five integer readings. A structure combines variables of different types into one “package.” You might store temperature, humidity, and a status character together. A union shares the same memory space among its members — it can hold one value at a time, but in different forms. This is useful for saving memory or interpreting data in multiple ways.

Common Mistakes to Avoid

Beginners often forget that array indexes start at 0, not 1. Accessing outside the defined range can cause errors. Another mistake is forgetting to use the dot operator when working with structures. For unions, remember that writing to one member overwrites the others, so use them carefully when sharing memory.

Best Practices

Give arrays, structures, and unions meaningful names. Always define array sizes that fit your data. Use structures to organize related information instead of separate variables. For unions, add comments explaining how each member is used. This helps you and others understand your code later.

Safety Notes

When using arrays, ensure your code never writes beyond the array size — it can corrupt memory. For unions, always know which member was written last to avoid unexpected results.

Try It Yourself Project: Multi-Sensor Display

Project Overview

You’ll create a program on the Nuvoton NuMicro M031SD2AE board that uses arrays and structures to store and display multiple sensor readings through UART.

Things You’ll Need (Hardware)

	Nuvoton NuMicro M031SD2AE development board

	DHT11 temperature and humidity sensor (or simulated values)

	Breadboard and jumper wires

Tools & Software

	Nuvoton NuEclipse IDE or Keil µVision IDE

	USB Mini-B cable for uploading code

Power Source Clarification

Use your computer’s USB power to run the M031SD2AE board.

Circuit Connection With Explanation

Connect the DHT11 sensor’s data pin to P0.0, VCC to 3.3V, and GND to GND. The microcontroller will read sensor data and store it in an array and structure for processing and display.

Coding Time

#include "NuMicro.h"

#include <stdio.h>

#define NUM_READINGS 3

struct SensorData

{

float temperature;

float humidity;

char status;

};

struct SensorData readings[NUM_READINGS]; // array of structures

union DataConverter

{

int intValue;

float floatValue;

};

union DataConverter converter; // example union

int main(void)

{

SYS_Init();

UART_Open(UART0, 115200);

// Simulated sensor readings

readings[0].temperature = 25.5;

readings[0].humidity = 60.2;

readings[0].status = 'N';

readings[1].temperature = 27.0;

readings[1].humidity = 58.9;

readings[1].status = 'N';

readings[2].temperature = 30.1;

readings[2].humidity = 65.3;

readings[2].status = 'H';

printf("Sensor Data Log:\n");

for(int i = 0; i < NUM_READINGS; i++)

{

printf("Reading %d - Temp: %.1f°C, Humidity: %.1f%%, Status: %c\n",

i + 1, readings[i].temperature, readings[i].humidity, readings[i].status);

}

converter.floatValue = 12.34; // store as float

printf("\nUnion stored float: %.2f\n", converter.floatValue);

converter.intValue = 1234; // overwrite with integer

printf("Union stored int: %d\n", converter.intValue);

while(1);

}

Build & Upload the Program

Open the Nuvoton NuEclipse IDE, create a new project, paste the code, and click Build. Once compiled, connect your NuMicro M031SD2AE board via USB and click Run or Download to upload the program.

What You’ll See (Output)

The serial monitor displays three sets of sensor readings — each with temperature, humidity, and status. You’ll also see how the union stores and overwrites data, showing how it shares memory between types.

Troubleshooting Tips

	If nothing appears, check the UART baud rate (should be 115200).

	If numbers look strange, verify your variable types and array sizes.

	If the program crashes, ensure you’re not accessing an array index beyond its limit.

Try Something New

	
Add a new field in the structure, like float pressure;.

	Store more readings using a larger array size.

	Use a union to interpret an integer’s bytes individually.

	Combine structures and arrays to log data from multiple sensors.

Pointer Data Types in Nuvoton Microcontroller Programming

Let’s Begin

Welcome! In this chapter, you’ll learn how to use pointer data types with your Nuvoton NuMicro M031SD2AE board. Pointers may sound tricky at first, but don’t worry — we’ll go step by step. Think of a pointer as a “map” that tells your microcontroller where a variable lives in memory. Once you understand pointers, you’ll unlock powerful ways to handle data and interact directly with memory and hardware.

What Are Pointer Data Types and Why Use Them?

A pointer is a special variable that stores the address of another variable, not its value. You can think of it like a note that tells you where something is stored instead of holding the thing itself. Pointers are extremely useful in embedded programming because they help access memory efficiently, share data between functions, and control peripherals through memory-mapped registers.

Use Cases in Real Projects

Pointers are used everywhere in Nuvoton Microcontroller projects — passing data to functions, handling arrays, communicating with sensors, and controlling registers directly. For example, you might use a pointer to point to a GPIO register, so you can turn an LED on or off without using high-level library functions.

Basic Rules for Pointer Data Types

	
Declare a pointer with an asterisk (*) before its name.

	
Use the address-of operator (&) to get a variable’s address.

	
Use the dereference operator (*) to access the value stored at that address.

	The data type of a pointer must match the variable it points to.

	Always initialize pointers before using them.

	Be careful with invalid or NULL pointers — they can crash your program.

Syntax for Pointer Data Types

int value = 10;

int *ptr; // pointer declaration

ptr = &value; // assign address of variable

OEBPS/d2d_images/chapter_title_above.png

OEBPS/d2d_images/chapter_title_corner_decoration_left.png

OEBPS/d2d_images/cover.jpg
LEARN & MASTER !MEEDDED SYSTEMS

NUVOTON

MICROCONTROLLER
 PROGRAMMING HANDBOOK -

</> Embedded C Programming

{8 Hardware & Peripheral Control

N

... SARFUL HASSAN

OEBPS/d2d_images/chapter_title_corner_decoration_right.png

OEBPS/d2d_images/chapter_title_below.png

