

Lua Programmeren

Van Beginner tot Expert

Christopher Ford

2025

Copyright © 2025 by Christopher Ford

Inhoud

Voorwoord

Doel van het boek

Voor wie dit boek bedoeld is

Benodigde voorkennis

Hoe dit boek te gebruiken

Deel I — Introductie tot Lua

Hoofdstuk 1 — Wat is Lua?

Geschiedenis en ontwerpfilosofie

Toepassingsgebieden (games, embedded systems, tooling)

Waarom Lua kiezen

Installatie en eerste stappen

Hoofdstuk 2 — De Lua-omgeving

Lua-interpreter starten

Lua in de terminal en scripts uitvoeren

Een eerste script: “Hello, World”

Best practices voor projectstructuur

Deel II — Basisconcepten

Hoofdstuk 3 — Variabelen en Types

Dynamische typing

Nil, booleans, numbers, strings

Typeconversies

Hoofdstuk 4 — Expressies en Operatoren

Wiskundige operatoren

Vergelijkingsoperatoren

Logische operatoren

String-operatoren

Hoofdstuk 5 — Controlestructuren

If-statements

While, repeat-until

For-loops

Break, goto

Hoofdstuk 6 — Functies

Functies definiëren

Parameters en return-waarden

Anonieme functies

Closures en lexical scoping

Deel III — Kern van Lua

Hoofdstuk 7 — Tabellen (Tables)

De datastructuur die alles kan

Associatieve tabellen en arrays

Nested tables

Itereren met pairs en ipairs

Hoofdstuk 8 — Metatables en Metamethods

Wat is een metatable?

Operator-overloading

Index en NewIndex

Gebruik in objectgeoriënteerde patronen

Hoofdstuk 9 — Modules en Packages

Modules maken en importeren

Namespaces

Package search paths

Best practices voor grotere projecten

Deel IV — Geavanceerde Concepten

Hoofdstuk 10 — Coroutines

Wat zijn coroutines?

Samenwerking tussen functies

Coroutine-patronen

Use-cases (scheduler, state machines)

Hoofdstuk 11 — Geheugenbeheer en Garbage Collection

Hoe Lua geheugen beheert

Optimalisaties

Veelvoorkomende valkuilen

Hoofdstuk 12 — Debugging en Profiling

De debug-library

Tracebacks en error-afhandeling

Performantie-metingen

Deel V — Lua in de Praktijk

Hoofdstuk 13 — Bestandsbeheer & I/O

Bestanden lezen en schrijven

Werken met buffers

String-manipulatie

Hoofdstuk 14 — Netwerkprogrammering

Basis van TCP/UDP

Sockets

Voorbeeld: eenvoudige HTTP-client

Hoofdstuk 15 — Lua embedden in andere talen

Lua integreren in C/C++

Het Lua-C-API

Data uitwisselen tussen C en Lua

Hoofdstuk 16 — LuaJIT

Wat is LuaJIT?

FFI (Foreign Function Interface)

Prestatievoordelen en beperkingen

Deel VI — Toepassingen en Case Studies

Hoofdstuk 17 — Lua in Game Development

Gebruik in game-engines (bijv. Love2D, Roblox, Defold)

Game object scripting

Voorbeeldproject: een eenvoudige 2D-game

Hoofdstuk 18 — Lua voor Embedded Systems

Microcontrollers en IoT

Lua op OpenWRT, NodeMCU

Voorbeeld: sensordata uitlezen

Hoofdstuk 19 — Automatisering en Tools

Lua als scriptingtaal voor tools

Voorbeelden: Nginx, Wireshark, Neovim

Praktisch automatiseringsproject

Deel VII — Referentie & Bijlagen

Bijlage A — Lua Standaardbibliotheek

Bijlage B — Veelvoorkomende Problemen & Oplossingen

Voorwoord

Doel van het boek

Het doel van dit boek is om lezers stap voor stap vertrouwd te maken met de programmeertaal Lua, van de absolute basis tot gevorderde concepten en praktische toepassingen. Lua staat bekend om zijn eenvoud, flexibiliteit en snelheid, en wordt gebruikt in uiteenlopende domeinen zoals game­ontwikkeling, embedded systemen, automatisering en applicatiescripting.

Dit boek wil:

	
Beginners zonder programmeerervaring op een toegankelijke manier introduceren tot de taal en de kernprincipes van programmeren.

	
Ervaren programmeurs een solide en diepgaande referentie bieden om Lua effectief in te zetten in grotere of complexere projecten.

	
Lezers helpen praktische vaardigheden op te bouwen door middel van duidelijke voorbeelden, oefeningen en realistische case studies.

	
Inzicht geven in zowel de fundamentele concepten van Lua (zoals tables, metatables, functies en coroutines) als in het gebruik van Lua in echte omgevingen zoals game-engines, IoT-apparaten en tooling.

	
Een volledige en betrouwbare gids vormen, geschikt als leerboek, naslagwerk of studiehandleiding voor ontwikkelaars, studenten en hobbyisten.

Uiteindelijk streeft dit boek ernaar om lezers voldoende kennis en vertrouwen te geven om Lua efficiënt en creatief toe te passen in hun eigen projecten, ongeacht hun startniveau of toepassingsgebied.

Voor wie dit boek bedoeld is

Dit boek is bedoeld voor iedereen die Lua wil leren of zijn bestaande kennis wil verdiepen. Het richt zich op een breed publiek, waaronder:

	
Beginnende programmeurs
Lezers zonder ervaring die op een toegankelijke manier willen kennismaken met programmeren. Lua’s eenvoudige syntaxis maakt het ideaal als eerste taal.

	
Ervaren ontwikkelaars
Programmeurs die Lua willen inzetten voor scripting, configuratie, automatisering of integratie in bestaande software.

	
Game-ontwikkelaars
Makers die werken met engines waarin Lua een centrale rol speelt, zoals Love2D, Roblox, Defold of interne studioscripting.

	
Embedded- en IoT-ontwikkelaars
Ontwikkelaars die Lua gebruiken op lichte of embedded platforms zoals NodeMCU, OpenWRT of ESP-gebaseerde systemen.

	
Technische ontwerpers en tools-bouwers
Professionele gebruikers die Lua inzetten om workflows te automatiseren of applicaties uit te breiden (bijv. in Nginx, Neovim of Wireshark).

	
Studenten en hobbyisten
Iedere nieuwsgierige lezer die een flexibele, krachtige en lichtgewicht taal wil leren voor persoonlijke of educatieve projecten.

Of je nu voor het eerst programmeert, Lua aan je toolkit wilt toevoegen of de taal wilt toepassen in professionele systemen: dit boek biedt duidelijke uitleg, praktische voorbeelden en een geleidelijke opbouw geschikt voor elk ervaringsniveau.

Benodigde voorkennis

Voor dit boek is geen uitgebreide programmeerervaring vereist. Lua is ontworpen om eenvoudig te leren en te begrijpen, en dit boek bouwt de concepten stap voor stap op. Wel zijn de volgende basisvaardigheden en voorkennis nuttig, maar niet strikt noodzakelijk:

	
Algemene computervaardigheden
Je kunt met bestanden en mappen werken, programma’s installeren en eenvoudige opdrachten in een terminal of opdrachtprompt uitvoeren.

	
Basisbegrip van logisch redeneren
Concepten zoals “als... dan...”, herhaling en volgorde kunnen helpen bij het begrijpen van programmeerstructuren.

	
Ervaring met een andere programmeertaal (optioneel)
Wie al eerder heeft geprogrammeerd (bijv. in Python, JavaScript of C) zal sommige onderwerpen sneller herkennen, maar dit is absoluut geen vereiste.

Het boek is geschreven zodat zowel complete beginners als ervaren programmeurs vlot kunnen volgen. Waar nodig worden termen helder uitgelegd, en wordt achtergrondinformatie gegeven om de onderwerpen inzichtelijk te maken.

Hoe dit boek te gebruiken

Dit boek is opgebouwd om zowel beginners als ervaren ontwikkelaars stap voor stap door de wereld van Lua te leiden. Je kunt het lineair lezen, maar het is ook geschikt als naslagwerk. Afhankelijk van je leerstijl kun je het op verschillende manieren gebruiken:

Volg de hoofdstukken in volgorde (aanbevolen voor beginners)

Deel I en II vormen de basis van Lua. Elk hoofdstuk bouwt voort op het vorige. Door deze volgorde te volgen, ontwikkel je een solide fundament voordat je aan de geavanceerde onderwerpen begint.

Gebruik het als naslagwerk (handig voor ervaren programmeurs)

Als je al programmeerervaring hebt of Lua wilt gebruiken voor een specifiek project, kun je direct naar de relevante delen springen, zoals:

	Tabellen en metatables

	Coroutines

	Modules

	Embedded gebruik of LuaJIT

Door duidelijke titelstructuren en voorbeelden kun je snel vinden wat je zoekt.

Experimenteer actief met codevoorbeelden

Lua is compact en vergevingsgezind: probeer elk voorbeeld zelf uit.

Experimenteer, pas code aan en voeg je eigen testen toe. Zo leer je de taal het snelst en wordt de kennis beter verankerd.

Maak de oefeningen aan het einde van elk hoofdstuk

Elk hoofdstuk bevat praktische opdrachten. Ze variëren van eenvoudig tot uitdagend en helpen je om de nieuwe concepten toe te passen in realistische situaties.

Raadpleeg de uitgebreide bijlagen wanneer je snel iets wilt opzoeken

De bijlagen bieden een overzicht van de standaardbibliotheek, veelvoorkomende valkuilen en aanvullende bronnen. Dit maakt ze ideaal voor snelle referentie tijdens het programmeren.

Pas de concepten toe in kleine projecten

In de latere hoofdstukken vind je case studies en voorbeelden van complete toepassingen. Het is aan te raden deze projecten zelf na te bouwen en verder uit te breiden.

Deel I — Introductie tot Lua

Hoofdstuk 1 — Wat is Lua?

	[image:]

	
	[image:]

[image:]

Geschiedenis en ontwerpfilosofie

[image:]

Geschiedenis van Lua

Lua ontstond begin jaren ’90 aan de Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) in Brazilië. Het werd ontwikkeld door Roberto Ierusalimschy, Luiz Henrique de Figueiredo en Waldemar Celes. In deze periode hadden veel Braziliaanse bedrijven te maken met importbeperkingen en dure licentiekosten voor software. Hierdoor bestond er behoefte aan een lichte, uitbreidbare en flexibel inzetbare scripttaal die eenvoudig in bestaande applicaties kon worden geïntegreerd.

Belangrijke historische mijlpalen:

	
1993 — Eerste release van Lua 1.0
Gericht op data-descriptie en eenvoudige configuratie.

	
Lua 2.x — Introductie van functies en betere datastructuren
Hierdoor werd Lua bruikbaar als volwaardige programmeertaal.

	
1998 — Lua 3.0 en 4.0
Sterkte de taal als embedded oplossing en introduceerden metatables.

	
2003 — Lua 5.0
Een volledige herziening met lexical scoping, verbeterde modulaire structuur en een robuuste garbage collector.

	
Lua 5.1 t/m 5.4
Verdere optimalisaties, coroutines, environments, bitwise operators, verbeterde prestaties en moderne features.

Lua groeide internationaal snel dankzij zijn eenvoud, compactheid en de mogelijkheid om het in andere systemen te embedden. Het wordt vandaag gebruikt in games, netwerksoftware, embedded systemen, tools en wetenschappelijke toepassingen.

Ontwerpfilosofie

De ontwerpfilosofie van Lua is uniek en sterk gericht op praktische eenvoud, flexibiliteit en inbedding. Enkele kernprincipes:

Klein en lichtgewicht

Lua bestaat uit een zeer compacte codebase (vaak < 300 KB).

Dit maakt het ideaal voor embedded systemen, mobiele apparaten, games en andere omgevingen waar geheugen of opslagruimte beperkt zijn.

Extreem uitbreidbaar

Lua is ontworpen om te worden geïntegreerd in andere programma’s.

De taal fungeert als een “powerful extension language”, waarbij de C-API ontwikkelaars volledige controle geeft over hoe Lua met de hostapplicatie communiceert.

Eenvoud boven complexiteit

Lua heeft een heldere syntaxis en een beperkt aantal kernconcepten.

Dit maakt de taal makkelijk te leren en voorkomt overbelasting met zeldzame of ingewikkelde constructies.

Een enkele, krachtige datastructuur: de table

Lua gebruikt tables voor bijna alles: arrays, dictionaries, objecten, modules en meer.

Dat minimaliseert complexiteit en verhoogt flexibiliteit.

Metatables voor dynamisch gedrag

In plaats van ingebakken objectgeoriënteerde systemen gebruikt Lua metatables en metamethoden om gedrag dynamisch te definiëren.

Dit benadering levert maximale vrijheid in hoe ontwikkelaars hun structuren ontwerpen.

Prestaties en eenvoud gecombineerd

Lua’s implementatie is geschreven in ANSI C en is opmerkelijk snel voor een scripttaal.

LuaJIT laat daarnaast zien dat de taal uitstekend geschikt is voor high-performance omgevingen.

Stabiliteit en backward compatibility

Lua ontwikkelt bewust langzaam, met een focus op stabiliteit.

Nieuwe features worden slechts toegevoegd wanneer ze zinvol en consistent zijn.

	[image:]

	
	[image:]

[image:]

Toepassingsgebieden (games, embedded systems, tooling)

[image:]

Lua is een veelzijdige scripttaal die dankzij zijn compacte ontwerp, hoge snelheid en eenvoudige integratie in uiteenlopende omgevingen kan worden toegepast. Hieronder volgt een overzicht van de belangrijkste domeinen waarin Lua veel wordt gebruikt.

Games en interactieve toepassingen

Lua heeft een sterke reputatie binnen de game-industrie. Game studio’s kiezen voor Lua omdat het:

	lichtgewicht en snel is

	eenvoudig te embedden is in engines

	een flexibele scriptlaag biedt voor gameplay-logica

	snel te itereren is voor designers en ontwikkelaars

Bekende toepassingen:

	
Roblox (aanpasbare variant van Lua voor gameplay-scripting)

	
Love2D (populaire 2D game-engine)

	
Defold, CryEngine, World of Warcraft UI en vele interne engines van grote gamebedrijven

Met Lua kunnen ontwikkelaars o.a. AI-gedrag, gameobjecten, UI, animaties en event-systemen scriptmatig aansturen.

Embedded systems en IoT

Dankzij zijn kleine footprint en beperkte geheugenbehoeften is Lua ideaal voor ingebedde apparaten en IoT-platformen.

Waarom Lua geschikt is voor embedded development:

	draait op zeer beperkte hardware

	heeft een kleine runtime

	is eenvoudig aanpasbaar via C-extensies

	ondersteunt snelle iteratie voor firmware en scripts

Typische toepassingen:

	
NodeMCU / ESP8266 / ESP32 microcontrollers

	configuratie-interfaces voor routers (bijv. OpenWRT)

	sensoren, meetapparatuur en industriële controllers

Lua wordt hier gebruikt voor taken zoals protocolafhandeling, configuratie, data-acquisitie en automatisering.

Tooling, automatisering en uitbreidbaarheid van software

Veel professionele softwarepakketten gebruiken Lua als interne scripttaal om functionaliteit uitbreidbaar te maken. Hierdoor kunnen gebruikers hun eigen scripts en automatiseringen schrijven zonder de kernsoftware aan te passen.

Voorbeelden van tools en applicaties met Lua-ondersteuning:

	
Nginx (via OpenResty)

	
Wireshark (packet-analyse scripting)

	Adobe Photoshop Lightroom

	
Neovim (configuratie en plugin-ontwikkeling)

	
Premake (build automation)

	
Redis (server-side scripting)

In deze context wordt Lua gebruikt voor configuratie, bewerkingen op data, protocollogica, verwerking van gebruikersacties of het aanroepen van gespecialiseerde functies via de C-API.

Wetenschappelijk gebruik en data-analyse

Hoewel Lua minder prominent is in data science dan talen zoals Python, wordt het wel gebruikt in situaties waarin:

	beperkte hardware beschikbaar is

	real-time prestaties nodig zijn

	code moet worden geïntegreerd in andere systemen

Voorbeelden zijn simulaties, robotica, embedded AI-modellen en modellen voor computergrafica.

Webservers en backend-logica

Met platforms zoals OpenResty kan Lua worden gebruikt om webserverlogica te schrijven die extreem snel en schaalbaar is—vaak sneller dan traditionele server scripts.

Typische use-cases:

	API-gateway scripting

	dynamische request routing

	real-time monitoring

	lightweight microservices

Lua wordt gekozen wanneer flexibiliteit, prestaties en een compacte runtime belangrijk zijn.

Of het nu gaat om games, IoT-apparaten, professionele tools of netwerkservers: Lua biedt een snelle, robuuste basis voor automatisering, uitbreiding of volledige applicatielogica.

	[image:]

	
	[image:]

[image:]

Waarom Lua kiezen

[image:]

Lua onderscheidt zich van veel andere scripttalen door een combinatie van eenvoud, flexibiliteit en hoge prestaties. Deze eigenschappen hebben ervoor gezorgd dat Lua populair is in uiteenlopende domeinen, van gameontwikkeling tot embedded systemen. Hieronder staan de voornaamste redenen waarom ontwikkelaars en organisaties voor Lua kiezen.

Eenvoudig om te leren en te gebruiken

Lua heeft een bijzonder heldere en minimale syntaxis, waardoor beginners snel resultaten kunnen boeken. De taal vermijdt complexe constructies en biedt een compacte set kernconcepten. Hierdoor kun je je richten op logica en probleemoplossing, in plaats van op taalcomplexiteit.

Lichtgewicht en snel

Lua is ontworpen met prestaties in gedachten:

	De interpreter is klein (enkele honderden kilobytes).

	De taal is verrassend snel voor een scripttaal.

	LuaJIT biedt prestaties die vaak in de buurt komen van gecompileerde talen.

Dit maakt Lua bijzonder geschikt voor geheugenarme en performancekritische omgevingen.

Zeer flexibel en uitbreidbaar

Lua werkt naadloos samen met C en andere talen. Dankzij de C-API kan Lua eenvoudig worden ingebed in bestaande software, waarbij ontwikkelaars bepalen welke functionaliteit beschikbaar wordt voor Lua-scripts.

Het resultaat:

Lua kan worden gebruikt als scriptlaag bovenop een grote applicatie

Functionaliteit kan worden uitgebreid door modules in C/C++

De taal past zich aan de omgeving aan, in plaats van andersom

Een krachtige, uniforme datastructuur

Lua gebruikt één centrale datastructuur: de table.

Hiermee kun je:

	arrays opbouwen

	dictionaries maken

	objecten simuleren

	modules definiëren

	zelfs metatables en metamethoden beheren

Deze eenvoud biedt enorme flexibiliteit zonder extra syntaxis of complexe klassenstructuren.

Uitstekend voor embedded en IoT

Dankzij het kleine geheugenverbruik kan Lua draaien op:

	microcontrollers

	routers

	sensoren

	industriële hardware

	mobiele devices

Lua is een van de weinige scripttalen die zonder aanpassingen geschikt is voor hardware met zeer beperkte middelen.

Breed gebruik in de game-industrie

Game studios gebruiken Lua voor gameplay-logica, AI, UI en tools omdat:

	code snel te itereren is

	designers eenvoudige scripts kunnen aanpassen

	prestatieverlies minimaal is

	de engine en Lua strak geïntegreerd kunnen worden

Lua is de taal achter talloze game-engines en miljoenen spelersinterface-scripts.

Heldere en stabiele ontwikkeling

Lua volgt een conservatief releasebeleid. Het ontwikkelteam voegt alleen nieuwe features toe als ze echt zinvol zijn en de eenvoud van de taal behouden blijft. Hierdoor is:

	backward compatibility sterk

	de taal stabiel en betrouwbaar

	documentatie duurzaam bruikbaar

Uitgebreide toepasbaarheid

Of je nu werkt aan:

	games

	embedded firmware

	webservers

	automatietools

	wetenschappelijke modellen

	plugins en uitbreidingen

	configuratiebestanden

Lua past zich moeiteloos aan, zonder zware frameworks of ingewikkelde ecosysteemstructuren.

Je kiest Lua wanneer je behoefte hebt aan een taal die:

	
licht,

	
snel,

	
flexibel,

	
makkelijk te integreren,

	
en uitstekend geschikt is voor embedded en project-specifieke toepassingen.

Lua geeft je kracht zonder complexiteit — precies wat veel moderne softwareprojecten nodig hebben.

	[image:]

	
	[image:]

[image:]

Installatie en eerste stappen

[image:]

Voordat je begint met programmeren in Lua, moet de taal op je systeem geïnstalleerd zijn. Lua is lichtgewicht en werkt op vrijwel elk platform: Windows, macOS, Linux en zelfs op embedded systemen. In dit hoofdstuk leer je hoe je Lua installeert en je eerste script uitvoert.

Lua installeren

Windows

Voor Windows zijn er twee eenvoudige opties:

Optie 1: LuaBinaries (aanbevolen voor beginners)

	Ga naar de officiële downloadpagina van LuaBinaries.

	Download de Windows-versie (ZIP-bestand).

	Pak het bestand uit op een locatie naar keuze (bijv. C:\Lua).

	Voeg het pad toe aan de PATH-variabele om Lua vanuit de terminal te kunnen gebruiken.

Optie 2: Via Chocolatey (voor gebruikers van package managers)

Open PowerShell als administrator en voer uit:

choco install lua

macOS

Op macOS gebruik je het best Homebrew:

	Installeer Homebrew (indien nog niet aanwezig).

	Open de Terminal en voer uit:

brew install lua

Lua staat daarna direct klaar in je PATH.

Linux

Op Linux is Lua meestal beschikbaar in de standaard pakketrepositories.

Ubuntu/Debian:

sudo apt install lua5.4

Fedora:

sudo dnf install lua

Arch Linux:

sudo pacman -S lua

Controleren of Lua werkt

Open een terminal (of PowerShell/Command Prompt) en typ:

lua -v

Je zou een versie-informatiebericht moeten zien, zoals:

Lua 5.4.x Copyright (C) ...

Als dit werkt, is Lua correct geïnstalleerd.

Werken met de Lua-interpreter

Lua kan op twee manieren worden uitgevoerd:

Interactieve modus

Open een terminal en typ:

lua

Je ziet een prompt:

>

Nu kun je direct Lua-code typen, bijvoorbeeld:

print("Hallo wereld!")

Druk op Enter, en de output verschijnt onmiddellijk.

De interactieve modus is ideaal om concepten snel te testen.

Verlaten doe je met:

os.exit()

of door Ctrl + D (Linux/macOS) of Ctrl + Z gevolgd door Enter (Windows).

Lua-scripts uitvoeren

Naast de interactieve shell kun je Lua-scripts opslaan in bestanden.

Voorbeeldscript

	Maak een tekstbestand hallo.lua aan.

	Plaats deze inhoud erin:

print("Hallo Lua!")

	Voer het uit met:

lua hallo.lua

De tekst “Hallo Lua!” verschijnt in de terminal.

Een eenvoudige projectstructuur

Voor kleine projecten is dit een goede startindeling:

mijn_project/

│

├── src/

│ ├── main.lua

│ └── utils.lua

│

├── tests/

│ └── test_main.lua

│

└── README.md

Deze structuur houdt je code overzichtelijk zodra het project groeit.

Veelvoorkomende installatieproblemen

Lua wordt niet herkend als commando

→ De PATH-variabele is niet goed ingesteld. Voeg het pad naar de Lua-binary toe.

Meerdere Lua-versies geïnstalleerd

→ Controleer met:

which lua

(Linux/macOS)

of

where lua

(Windows)

Geen rechten op Linux/macOS

→ Voeg sudo toe of gebruik een gebruikersinstallatie.

	Lua is eenvoudig te installeren op alle besturingssystemen.

	De interactieve shell is ideaal voor experimenten.

	Lua-scripts worden uitgevoerd door ze aan de interpreter te geven.

Een eenvoudige projectstructuur helpt bij grotere codebases.

Hoofdstuk 2 — De Lua-omgeving

	[image:]

	
	[image:]

[image:]

Lua-interpreter starten

[image:]

De Lua-interpreter is het programma waarmee je Lua-code direct kunt uitvoeren en testen. Na installatie kun je de interpreter starten vanuit de terminal of opdrachtprompt van je besturingssysteem. Dit is een van de snelste manieren om met Lua te experimenteren, kleine stukjes code te proberen of functies te testen voordat je ze in een script plaatst.

Interpreter starten op verschillende systemen

Windows

Open Opdrachtprompt of PowerShell en typ:

lua

Druk op Enter.

Verschijnt er een prompt met >? Dan draait de interpreter.

macOS

Open de Terminal en typ:

lua

Je komt direct in de interactieve omgeving terecht.

Linux

Open een terminal en voer uit:

lua

Of, als meerdere versies bestaan:

lua5.4

Wat je ziet bij het starten

Als de interpreter correct is gestart, zie je iets als:

Lua 5.4.x Copyright (C) ...

>

Het >-symbool is de Lua-prompt: hier kun je code intypen die meteen wordt uitgevoerd.

Eerste commando’s proberen

Typ:

print("Hallo Lua!")

Lua voert dit direct uit en geeft de output terug:

Hallo Lua!

Je kunt alles proberen: wiskunde, variabelen, functies, loops — ideaal om snel te testen.

Interpreter verlaten

Je kunt de interpreter afsluiten met:

	os.exit()

	
Ctrl + D (Linux/macOS)

	
Ctrl + Z gevolgd door Enter (Windows)

Wanneer je terug bent in de terminal, is de interpreter gesloten.

Waarom de interactieve interpreter gebruiken?

De interactieve Lua-omgeving is handig voor:

	het testen van korte codefragmenten

	het verkennen van nieuwe functies of libraries

	het debuggen van kleine stukjes code

	het leren van de taal door direct te experimenteren

Het is een essentieel hulpmiddel tijdens het leerproces en bij het werken met Lua.

	[image:]

	
	[image:]

[image:]

Lua in de terminal en scripts uitvoeren

[image:]

Naast de interactieve interpreter kun je Lua ook gebruiken om volledige scripts uit te voeren. Dit is handig wanneer je grotere programma’s schrijft die je niet handmatig wilt typen in de interactieve modus.

Lua in de terminal

Je kunt Lua direct vanuit de terminal gebruiken zonder een apart scriptbestand:

	Open de terminal of opdrachtprompt.

	
Typ lua -e "<lua-code>" om een éénregelige opdracht uit te voeren.

Voorbeeld:

lua -e "print('Hallo vanuit de terminal!')"

Output:

Hallo vanuit de terminal!

Dit is handig voor snelle tests of kleine berekeningen.

Lua-scripts maken en uitvoeren

Een Lua-script is een tekstbestand met de extensie .lua.

Stap 1: Maak een scriptbestand

Maak een bestand aan, bijvoorbeeld hallo.lua, met de volgende inhoud:

print("Hallo Lua!")

Stap 2: Voer het script uit

Open de terminal in de map waar het script staat en typ:

lua hallo.lua

Output:

Hallo Lua!

De Lua-interpreter leest het bestand en voert de code regel voor regel uit.

Scriptargumenten gebruiken

Je kunt argumenten aan je Lua-script meegeven via de terminal. Bijvoorbeeld:

lua hallo.lua argument1 argument2

In Lua zijn deze beschikbaar via de arg-table:

for i, v in ipairs(arg) do print(i, v) end

Output als je lua hallo.lua a b uitvoert:

1 a

2 b

Combinatie van interactieve modus en scripts

Je kunt ook Lua starten in interactieve modus met een script als startpunt:

lua -i hallo.lua

	
-i start de interactieve interpreter na het uitvoeren van het script.

	Zo kun je variabelen en functies uit het script verder testen.

Best practices bij scripts

	
Gebruik .lua als bestandsextensie om duidelijk te maken dat het Lua-code is.

	
Bewaar scripts in een overzichtelijke projectstructuur (bijv. src/).

	Begin met kleine scripts en breid ze geleidelijk uit.

	Gebruik de interactieve interpreter om onderdelen van je script te testen voordat je het volledig uitvoert.

OEBPS/d2d_images/chapter_title_above.png

OEBPS/d2d_images/chapter_title_corner_decoration_left.png

OEBPS/d2d_images/cover.jpg
Lua Prog‘rammeren
Van Beginner tot Expert

Christopher Ford

OEBPS/d2d_images/chapter_title_corner_decoration_right.png

OEBPS/d2d_images/chapter_title_below.png

