

C Programming for Beginners

By

Sarful Hassan

Welcome! This book is here to help you learn C programming step by step, even if you’ve never written a line of code before. The explanations are simple, the examples are practical, and everything is designed to make learning smooth and clear.

Who This Book Is For

This book is for complete beginners. If you’ve always wanted to learn programming but didn’t know where to start, this guide is for you. It’s also helpful for students who want to strengthen their understanding of C programming from the ground up.

How This Book Is Organized

Each chapter builds on what you learned before. You’ll start with the basics like setting up your environment, writing your first program, and understanding how a C program runs. Then you’ll explore variables, data types, operators, control flow, functions, arrays, pointers, file handling, and more. Finally, you’ll touch on some C++ concepts like classes and inheritance to give you a complete learning journey.

What Was Left Out

The focus is only on what you really need as a beginner. Rarely used or confusing advanced features are not included, so you can build a strong, clear foundation first.

Release Notes

This edition improves explanations, adds more practical examples, and makes each topic easier to follow. Everything has been updated for modern learners.

Notes on the First Edition

The first edition helped many new learners begin programming with confidence. This edition is even clearer, friendlier, and more beginner-focused.

How to Contact Us

mechatronicslab.net@gmail.com

Free Learning Website

Learn programming and embedded systems for free with mechatronicslab.net. This platform offers clear explanations, practical examples, and step-by-step guidance to help you build real skills with confidence.

Acknowledgments for the First Edition

Thanks to all learners and teachers whose feedback helped shape this book into a friendly learning guide.

Copyright

© mechatronicslab.net. All rights reserved.

Disclaimer

This book is for learning purposes. While every effort has been made to ensure accuracy, the author and publisher are not responsible for errors or their consequences.

Important Notice

Do not copy, distribute, publish, or use any part of this book or its content on other platforms or websites without prior written permission from mechatronicslab.net. Free learning resources are available exclusively at mechatronicslab.net.

	[image:]

	
	[image:]

[image:]

Chapter-1 Getting Started

[image:]

Overview of C Programming Language

What C Programming Is

C is a powerful and flexible programming language used to build everything from operating systems to small applications. It teaches you how computers really work, making it perfect for beginners who want strong foundations. Once you understand C, learning other languages becomes much easier.

Why C Is Important

C is close to the machine’s language but still simple enough for humans to read and write. It gives you full control over your program and how it runs. Many modern languages were built on top of C, so learning it opens many doors.

How C Programs Work

A C program is a set of instructions written inside a text file. This file is compiled into a form the computer can understand and run. Every C program starts from a special function called main(), which tells the computer where to begin.

History and Features of C Programming

Origin and Development of C Language

The C programming language was created in the early 1970s at Bell Labs by Dennis Ritchie. It was designed to help build the Unix operating system. C quickly became popular because it offered both power and simplicity, making it useful for system software and applications.

Early Development at Bell Labs

Before C was born, programmers at Bell Labs were working on operating systems using older languages that lacked flexibility. Dennis Ritchie improved on these ideas and created C to make coding more efficient and easier to manage. This step made Unix portable to different machines, which was a big achievement at that time.

Influence of B and BCPL Languages

C was inspired by earlier languages called B and BCPL. These languages introduced basic programming structures but had limitations. C added new features like data types and better control structures, making it more powerful while keeping it simple.

Standardization of C Language (ANSI C)

In the 1980s, different versions of C existed, which caused confusion among programmers. To solve this, the American National Standards Institute created a standard version called ANSI C. This standard made sure C programs could work on any computer with minimal changes.

Portability and Efficiency of C

C is known for its portability, meaning the same program can run on many different types of computers with little or no modification. It is also very efficient, allowing programs to run fast and use system resources wisely.

Structured Programming Support in C

C supports structured programming, which means breaking a program into smaller parts called functions. This makes programs easier to write, read, and maintain. It also helps reduce errors and improves clarity.

Low-Level Memory Access Capability

Unlike many modern languages, C allows direct access to memory using pointers. This gives programmers precise control over how data is stored and managed, which is especially useful in system programming.

Rich Set of Operators and Data Types

C provides a wide range of operators, such as arithmetic, logical, and bitwise operators. It also supports various data types like int, float, char, and double, giving programmers flexibility to work with different kinds of data.

Modularity and Reusability of Code

C encourages modular programming, where a program is divided into smaller modules or functions. These modules can be reused in different programs, saving time and reducing repeated work.

Role of C in Modern Programming and Systems Development

Even today, C plays a key role in building operating systems, embedded systems, and performance-critical applications. Many modern programming languages and compilers are built using C, proving its lasting impact on the programming world.

Structure of a C Program

Documentation Section

This is the first part of a C program where comments are written to describe the purpose of the program. It usually includes details like the program’s name, author, and what the program does. Comments are written using /* ... */ and are ignored by the compiler.

/* Program: Simple Calculator

Author: John

Purpose: To perform basic arithmetic operations */

Preprocessor Directives Section

This section tells the compiler to include necessary files before the actual compilation begins. The most common directive is #include, which adds standard libraries to the program.

#include <stdio.h>

Global Declarations Section

Variables and functions declared outside the main() function belong here. These global elements can be accessed by any function in the program.

int total;

main() Function Definition

Every C program must have a main() function. This is where the program starts its execution. It controls the flow of the entire program.

int main() {

// program starts here

}

Variable Declarations inside main()

Local variables are declared inside the main() function. These variables are used only within this function.

int a, b, sum;

Executable Statements inside main()

This section contains the actual instructions that perform tasks. Statements are written in order, and the program executes them step by step.

a = 10;

b = 20;

sum = a + b;

printf("Sum = %d\n", sum);

User-Defined Functions Section

In addition to main(), you can create your own functions to handle specific tasks. This makes the program more organized and easier to manage.

void displayMessage() {

printf("This is a user-defined function.\n");

}

Function Prototypes

A function prototype tells the compiler about the function’s name, return type, and parameters before its actual definition. It is usually placed before main().

void displayMessage();

Header Files Inclusion

Header files contain predefined functions and macros. By including them, you can use built-in functions like printf() without defining them yourself.

#include <math.h>

Program Termination with return Statement

The return statement marks the end of the main() function. It sends a value back to the operating system. return 0; is commonly used to indicate successful execution.

return 0;

Steps to Create and Run a C Program

Creating a Source File with .c Extension

To begin programming in C, open any text editor such as Notepad on Windows or a code editor like Visual Studio Code. Type your C code in the editor and save the file with a .c extension. For example, name the file program.c. The .c extension tells the compiler that this is a C source code file. It’s best to save the file in a folder you can easily access, like your Desktop or Documents.

Writing the main() Function

Every C program must have a main() function because this is where the execution begins. Inside the main() function, you write the logic of your program step by step. The return 0; statement at the end tells the operating system that the program finished successfully.

int main() {

// program starts here

return 0;

}

Including Standard Header Files

Header files give access to predefined functions. For basic input and output functions like printf() and scanf(), you must include the standard input-output library at the top of your code. This line tells the compiler to use the features from that library.

#include <stdio.h>

If your program uses math functions like square roots or powers, you can also include:

#include <math.h>

Declaring Variables and Writing Statements

Inside the main() function, declare variables to store information. Every variable in C must have a type that defines the kind of data it can hold. For example, int is for whole numbers, float for decimal numbers, and char for characters. After declaring, you can write statements that assign values and perform operations.

int a, b, sum;

a = 10;

b = 20;

sum = a + b;

Using Standard I/O Functions (printf, scanf)

C provides standard input and output functions for user interaction. printf() is used to display messages or results on the screen. scanf() is used to accept input from the user during program execution.

#include <stdio.h>

int main() {

int a, b, sum;

printf("Enter two numbers: ");

scanf("%d %d", &a, &b);

sum = a + b;

printf("The sum is: %d\n", sum);

return 0;

}

Here, %d is a format specifier for integers. The & symbol is used to store the user input in the given variables.

Saving the Source Code

After writing your program, save the file again to make sure all your changes are stored. Saving the file ensures that the compiler reads the most up-to-date version of your program when you compile it.

Compiling the Program with a C Compiler (e.g., gcc)

To run a C program, you must compile it first. Compilation is the process of translating your code into machine language. Open the terminal or command prompt, go to the folder where your file is saved, and type:

gcc program.c -o program

Here,

	gcc is the compiler command.

	program.c is your source file.

	-o program tells the compiler to create an output file named program.

Checking and Fixing Compilation Errors

If your code has mistakes, the compiler will show error messages with the line numbers. Common errors include missing semicolons, wrong variable names, or unmatched brackets. Read each message carefully, open your source file, fix the problem, save it, and compile again. Repeat this until there are no errors.

Generating the Executable File

Once the code compiles successfully, the compiler creates an executable file. This file is ready to run on your computer. On Windows, the file will be named program.exe. On Linux or macOS, it will be named program.

Running the Compiled Program

To run the program, type the following in the terminal or command prompt:

./program

(Use program.exe if you’re on Windows.)

When you press Enter, the program will start, and if it asks for input, type the required values.

Verifying the Output

After the program runs, check whether the displayed output matches what you expected. If it doesn’t, review your logic and variable usage in the code. You can add extra printf() statements to help find where something went wrong. Once the output is correct, your program is successfully created and executed.

C Program Execution Flow

Source Code Creation

The first step in the execution flow of a C program is writing the source code. You create a text file containing your C program and save it with a .c extension, for example, program.c. This file includes the main() function, variable declarations, and any logic your program needs to perform.

Preprocessing Phase

When you compile the program, the first phase is preprocessing. In this stage, all preprocessor directives like #include and #define are handled. The preprocessor copies the contents of the included header files into the program and replaces any macros before the actual compilation begins. This step prepares the code for the compiler.

Compilation Phase

Next, the compiler translates the preprocessed source code into assembly code. It checks the program for syntax errors and ensures that all statements follow the rules of the C language. If errors are found, the compilation stops, and error messages are displayed so you can fix them.

Assembly Code Generation

After successful compilation, the compiler converts the code into assembly language instructions. These instructions are specific to the computer’s processor and are easier for the machine to understand than the original C source code.

Object Code Generation

The assembler then converts the assembly code into object code. This code is in machine language but is not yet ready to run. The output of this stage is usually stored in a file with the .o or .obj extension. It represents the program in a low-level, machine-readable format.

Linking Phase

The linker takes the object code and combines it with other necessary files, such as library functions from standard header files. For example, if your program uses printf(), the linker adds the required code from the standard library. If the linker cannot find a required function, it generates an error.

Executable File Creation

Once linking is complete, the program is converted into an executable file. This file can be directly run by the operating system. On Windows, the file is usually named program.exe. On Linux or macOS, it is simply named program.

Program Loading into Memory

When you run the program, the operating system loads the executable file into memory. This process prepares the CPU to begin executing the instructions stored in the file.

Execution of main() Function

The execution officially starts with the main() function. All statements inside main() are executed in the order they appear. If there are function calls, the control temporarily moves to those functions and then returns to main().

Program Termination and Return to Operating System

After executing all instructions, the program reaches the return statement in the main() function. At this point, the program finishes and returns control to the operating system. If return 0; is used, it usually indicates successful completion. The memory used by the program is released, and the process ends.

Basic Syntax and Semantics of C Programming

Keywords and Identifiers

Keywords are reserved words that have special meaning in C and cannot be used for other purposes. Examples include int, return, if, else, and while. Identifiers are the names given to variables, functions, or other user-defined elements. Identifiers must start with a letter or underscore and can include letters, digits, or underscores. They are case-sensitive.

int total; // 'int' is a keyword, 'total' is an identifier

Character Set and Tokens

The character set of C includes letters (A–Z, a–z), digits (0–9), special characters (like {}, [], (), ;, #), and whitespace characters. Tokens are the smallest building blocks of a C program. These include keywords, identifiers, constants, operators, and punctuation symbols.

int a = 5;

In this line, int is a keyword, a is an identifier, = is an operator, and 5 is a constant.

Variables and Data Types

Variables are memory locations used to store values. Each variable must be declared with a data type, which determines the kind of data it can hold. Common data types include int for integers, float for decimal numbers, and char for single characters.

int age;

float price;

char grade;

Constants and Literals

Constants are fixed values that do not change during program execution. Literals are the actual values used in the program, such as numbers, characters, or strings.

const int max = 100;

Here, 100 is a literal, and max is a constant.

Statements and Blocks

A statement is a single instruction that the program can execute. A block is a group of statements enclosed within {}. Blocks are used to organize multiple statements together.

{

int x = 10;

x = x + 5;

printf("%d", x);

}

Semicolons and Statement Terminators

In C, each statement must end with a semicolon (;). It tells the compiler where one instruction ends and the next begins. Missing semicolons are one of the most common syntax errors.

int a = 5;

printf("%d", a);

Whitespace and Indentation Rules

Whitespace refers to spaces, tabs, and newlines. The compiler ignores extra whitespace, but proper indentation makes the code easier to read. Indentation is not required by the compiler but is considered good programming practice.

int main() {

int a = 5;

printf("%d", a);

return 0;

}

Comments in C (// and / /)

Comments explain the code and make it easier to understand. They are ignored by the compiler. Single-line comments start with //, and multi-line comments are written between /* and */.

// This is a single-line comment

/* This is

a multi-line

comment */

Case Sensitivity in C

C is case-sensitive, which means Total and total are treated as different identifiers. Be consistent with naming to avoid errors.

int total = 10;

int Total = 20; // different variable from 'total'

Syntax Rules vs Semantic Rules

Syntax rules define the correct structure of the code. For example, statements must end with semicolons. Semantic rules define the meaning of the statements. A program with correct syntax can still be wrong semantically if it does something invalid, like dividing by zero.

Common Syntax Errors

Typical syntax mistakes include missing semicolons, unmatched braces or parentheses, undeclared variables, and incorrect use of keywords. These errors prevent the program from compiling and must be fixed before execution.

int a = 5 // Error: missing semicolon

printf("%d", a; // Error: unmatched parenthesis

Comments and Readability in C Programs

Purpose of Comments in C

Comments are notes written inside the source code that help explain what the program or a specific part of it does. They are ignored by the compiler, so they do not affect how the program runs. Comments are especially useful when you or someone else reads the code later.

Types of Comments

C supports two types of comments: single-line and multi-line.

	
Single-line comments start with // and end at the end of the line.

	
Multi-line comments start with /* and end with */.

// This is a single-line comment

/* This is a

multi-line comment

used to explain more details */

Where to Use Comments

Comments should be placed above or beside the code they describe. You can use them to explain the purpose of variables, functions, loops, or calculations. This makes the code easier to follow and maintain.

// Declare two integer variables

int a, b;

/* Read values from the user

and store them in variables a and b */

scanf("%d %d", &a, &b);

Improving Readability with Proper Formatting

Readable code is just as important as correct code. Using proper indentation, spacing, and line breaks helps others understand your program quickly. Well-structured code reduces confusion and makes debugging easier.

int main() {

int x, y, sum; // declare variables

printf("Enter two numbers: ");

scanf("%d %d", &x, &y);

sum = x + y; // calculate sum

printf("Sum = %d\n", sum);

return 0;

}

Writing Meaningful Comments

Good comments should explain the purpose or logic behind the code, not just restate the obvious. Avoid unnecessary or overly long comments. A short and clear explanation is most effective.

// Correct: Explains the logic

sum = x + y; // Add the two input numbers

// Unnecessary: Repeats the code itself

sum = x + y; // sum equals x plus y

Balancing Code and Comments

Too many comments can clutter the code, while too few can make it hard to understand. A well-written program uses comments where needed—especially around complex or important sections of code. Aim for clarity and simplicity.

Setting Up the C Programming Environment (Step-by-Step with Full Details)

Installing a C Compiler (e.g., GCC or Clang)

A compiler is the heart of the C programming environment. It converts your human-readable code into machine instructions the computer can run. The two most common compilers are GCC and Clang.

	
On Windows (using MinGW):
	Download MinGW from its official site.

	Run the installer and choose mingw32-gcc-g++ during installation.

	Wait for it to download the components and complete the setup.

	After installation, locate the bin directory inside the MinGW folder (e.g., C:\MinGW\bin).

	You will add this path to the environment variable later so you can run GCC from anywhere in the terminal.

	
On macOS:
	Open the Terminal.

	Run the command:

	xcode-select—install

	A popup will appear — confirm the installation of Command Line Tools.

	This installs Clang and all the basic build tools needed for compiling C programs.

	
On Linux (Ubuntu/Debian):
	Open the Terminal.

	Update the package manager:

	sudo apt update

	Install GCC and build tools:

	sudo apt install build-essential

	Once completed, GCC will be available system-wide.

Installing an Integrated Development Environment (IDE) or Text Editor

While you can write C programs in any text editor, using an IDE makes the process smoother. IDEs include features like auto-completion, syntax highlighting, error detection, and built-in debugging.

	
Popular IDEs for C Programming:
	Code::Blocks — Ideal for beginners, simple setup with built-in compiler support.

	Visual Studio Code — Lightweight, powerful, supports extensions like C/C++ IntelliSense.

	Dev-C++ — Traditional IDE designed especially for C/C++.

	Eclipse IDE for C/C++ Developers — More advanced, suitable for large projects.

	
Text Editors:
If you prefer minimal tools, you can use Notepad++, Sublime Text, or even the built-in Notepad. But remember, these don’t have built-in compilers—you’ll need to compile separately in the terminal.

Configuring Environment Variables (PATH)

Configuring the PATH allows you to run gcc or clang from any folder without typing the full path to the compiler.

	
On Windows:
	Press Win + R, type sysdm.cpl, and press Enter.

	Go to Advanced → Environment Variables.

	Under “System variables,” find and select Path, then click Edit.

	Click New and paste the path to MinGW’s bin folder (e.g., C:\MinGW\bin).

	Click OK to save and close all windows.

	Restart the terminal or command prompt to apply changes.

	
On macOS/Linux:
Usually, the compiler is already added to the PATH during installation. If not, you can add it manually by editing your shell configuration file:

	nano ~/.bashrc

Add:

export PATH=$PATH:/usr/local/bin

Save the file, then run:

source ~/.bashrc

Verifying Compiler Installation

To confirm the compiler is installed and working:

gcc—version

or

clang—version

You should see version details of the compiler. If not, the PATH may be incorrect, or the installation didn’t complete properly.

Creating a Project Workspace

A well-organized workspace helps keep your projects clean and manageable.

	Create a folder named C_Projects in your preferred location (e.g., Desktop).

	Inside C_Projects, create a new folder for each project, such as HelloWorld.

	Store all related .c files, header files, and executables inside their project folder.

	This makes it easy to compile and manage multiple programs without mixing files.

Writing and Saving Source Files (.c files)

Create a new file in your editor or IDE and write your C code. Save it with a .c extension.

#include <stdio.h>

int main() {

printf("Hello, C Programming!\n");

return 0;

}

	#include <stdio.h> includes the standard input-output library.

	int main() is the entry point of every C program.

	printf() prints text to the console.

	return 0; tells the OS the program ended successfully.

Save the file as hello.c inside your project folder.

Compiling C Programs from the Command Line

	Open the terminal or command prompt.

	Use the cd command to move to the project directory:

	cd Desktop/C_Projects/HelloWorld

	Compile the file with GCC:

	gcc hello.c -o hello
	gcc is the compiler.

	hello.c is the source file.

	-o hello names the output file hello.

If there are no errors, an executable file will be created.

Running the Compiled Executable

	On Windows:

	hello

	On macOS/Linux:

	./hello

Expected output:

Hello, C Programming!

If the output doesn’t appear, check your file path, compilation errors, or PATH settings.

Using a Debugger (e.g., GDB)

GDB (GNU Debugger) helps track down bugs, runtime errors, or logical mistakes.

	Compile with debugging information:

	gcc -g hello.c -o hello

	Start GDB:

	gdb ./hello

	Set a breakpoint at main():

	(gdb) break main

	Run the program inside GDB:

	(gdb) run

	Step through the code line by line:

	(gdb) next

	Inspect variable values:

	(gdb) print variable_name

	Continue execution or stop at another point:

	(gdb) continue

	Exit the debugger:

	(gdb) quit

Using a debugger gives you full control over the execution flow, helping you understand what your program is doing and where it might be going wrong.

Writing Your First C Program

Step 1: Open a Text Editor or IDE

To write your first program, open any text editor or an IDE. If you are using Visual Studio Code, Code::Blocks, or Notepad++, create a new file and make sure to save it with the .c extension. For example, save it as hello.c.

Step 2: Include the Standard Header File

Every basic C program begins with the standard input-output header file. This file provides functions like printf() and scanf() that allow the program to display messages and take input.

#include <stdio.h>

Step 3: Define the main() Function

The main() function is the starting point of every C program. When the program runs, execution begins from this function. It must return an integer value.

int main() {

return 0;

}

Step 4: Write the Program Logic

Inside the main() function, you can write instructions for the computer to follow. In this example, we will display a simple message on the screen using printf().

int main() {

printf("Hello, C Programming!\n");

return 0;

}

	printf() prints the text on the screen.

	\n moves the cursor to the next line.

	return 0; ends the program and signals successful execution.

Step 5: Save the File

Save the file after writing the code. Make sure the extension is .c (e.g., hello.c). Saving ensures that the compiler can read the latest version of your program.

Step 6: Compile the Program

Open the terminal or command prompt and navigate to the folder where you saved your file. Use the compiler command to convert the source code into an executable file.

gcc hello.c -o hello

	gcc is the compiler.

	hello.c is your source file.

	-o hello tells the compiler to create an executable named hello.

Step 7: Run the Program

Once compilation is successful, run the executable.

	On Windows:

	hello

	On macOS/Linux:

	./hello

You should see the output:

Hello, C Programming!

Step 8: Verify the Output

If the program runs correctly, the message should appear exactly as written in the code. If you made a typo or missed a semicolon, the compiler will show an error message. Go back to the code, fix the error, save the file, and compile again.

Step 9: Understand the Program Flow

	The preprocessor reads #include <stdio.h> and brings in the required library.

	The compiler checks the syntax and converts the code into machine instructions.

	The program executes main().

	
printf() displays the output on the screen.

	
return 0; ends the program and gives control back to the operating system.

This simple program is the foundation of all C programming. Once you understand how this works, you can build programs that use variables, calculations, conditions, and loops.

	[image:]

	
	[image:]

[image:]

Chapter-2 Data Types

[image:]

Integer Type in C Programming

Let’s Begin

Numbers are everywhere — in counting, measuring, and calculating. In programming, we also work with numbers all the time. Integers are special because they store whole numbers like 5, -3, or 1000. Learning how to use different integer types in C gives your programs more control and precision. By the end of this chapter, you’ll know which integer type to use and why.

What Is an Integer and Why Use It?

An integer is a number without a decimal part. Think of it like counting apples: 1 apple, 2 apples, or even -1 apple if you owe someone. In C, the int type and its variations (short, long, unsigned) store whole numbers in memory. It’s like having different box sizes to store different sizes of numbers.

Use Cases in Real Projects

Integers are used to count scores in games, store sensor readings in embedded systems, handle menu options, control loops, and keep track of time. Choosing the right type helps make your program faster and saves memory.

Basic Rules for Integers

	
Use int to store regular whole numbers.

	
Use short for smaller numbers to save memory.

	
Use long when you need larger numbers.

	
Add unsigned if the number will never be negative.

	Integers cannot store decimal values.

	Always declare before using.

	
Use printf with the correct format specifier.

Integer Types in C

	Type

	Size (Typical)

	Range

	Description

	short int

	2 bytes

	-32,768 to 32,767

	Small numbers

	unsigned short int

	2 bytes

	0 to 65,535

	Only positive small numbers

	int

	4 bytes

	-2,147,483,648 to 2,147,483,647

	Regular whole numbers

	unsigned int

	4 bytes

	0 to 4,294,967,295

	Positive whole numbers only

	long int

	4 or 8 bytes

	Very large negative to positive range

	Larger whole numbers

	unsigned long int

	4 or 8 bytes

	Large positive numbers only

	Big counts or sizes

(Note: Actual size can vary slightly by system.)

Syntax for Integers

short int a;

unsigned int b;

long int c;

Syntax Explanation

The first word tells the size (short, long), the second tells if it can be negative or not (unsigned), and int means it’s an integer.

Example:

unsigned long int population;

This means “a big box named population that can only hold positive numbers.”

Common Mistakes to Avoid with Integers

Many beginners use int for everything. While it works, it may waste memory or cause overflow with very large numbers. Another mistake is storing negative numbers in unsigned types. This leads to unexpected values. Also, trying to store decimal values in integers will round them down.

Best Practices for Integers

Pick the smallest type that fits your data. For counts that won’t be negative, prefer unsigned. For very large numbers, use long. Always match the printf format specifier with the variable type to avoid wrong outputs.

Try It Yourself Project: Number Size Checker

Project Overview

You’ll create a program that uses different integer types and displays their sizes and values.

Coding Time

#include <stdio.h>

int main()

{

short int smallNumber = 100;

unsigned int age = 25;

long int bigNumber = 1000000;

printf("Small Number (short int): %d\n", smallNumber);

printf("Age (unsigned int): %u\n", age);

printf("Big Number (long int): %ld\n", bigNumber);

printf("Size of short int: %zu bytes\n", sizeof(short int));

printf("Size of unsigned int: %zu bytes\n", sizeof(unsigned int));

printf("Size of long int: %zu bytes\n", sizeof(long int));

return 0;

}

What You’ll See (Output)

The program will print the values and the sizes of each integer type.

For example:

Small Number (short int): 100

Age (unsigned int): 25

Big Number (long int): 1000000

Size of short int: 2 bytes

Size of unsigned int: 4 bytes

Size of long int: 8 bytes

Try Something New

	
Change unsigned int to int and use a negative number.

	
Use a number larger than 32,767 in short int to see overflow.

	
Try unsigned long int with a big number.

	
Print the result of negative values in unsigned.

Float Type in C Programming

Let’s Begin

Not all numbers are whole. Sometimes you need to work with numbers like 2.5, 0.1, or -3.75. These are called floating-point numbers — or simply floats. With floats, your programs can measure distances, store prices, calculate averages, or handle any number that has a decimal part.

What Is a Float and Why Use It?

A float is a variable that can store a number with a decimal point. Imagine a float as a bigger, flexible box that can hold values between whole numbers. If an int is like counting apples (1, 2, 3), a float is like weighing sugar (1.5 kg, 2.75 kg).

Use Cases in Real Projects

Floats are used in real-world projects to store sensor readings (like temperature 25.6 °C), prices in shopping apps (like 4.99), speed in games, or any value where precision matters.

Basic Rules for Floats

	
Use float to store decimal numbers.

	Floats can also store whole numbers, but they’re meant for decimals.

	
Use printf with %f to display float values.

	Floats can be positive or negative.

	Floats have limited precision — very long decimals may be rounded.

Float Types in C

	Type

	Size (Typical)

	Precision (Decimal Places)

	Description

	float

	4 bytes

	~6–7 digits

	Standard floating-point type

	double

	8 bytes

	~15 digits

	Double precision, more accurate

	long double

	12 or 16 bytes

	Varies by system

	Extra precision for advanced uses

(Note: Size may vary slightly depending on your system.)

Syntax for Floats

float variableName = value;

double anotherVariable = value;

Syntax Explanation

This tells the computer to create a variable that can store decimal numbers.

Example:

float temperature = 26.5;

Here, float is the type, temperature is the variable name, and 26.5 is the stored value.

Think of it like a measuring cup — it can hold precise amounts, not just whole cups.

Common Mistakes to Avoid with Floats

One common mistake is using the wrong printf format specifier. Using %d for a float gives garbage output. Another mistake is expecting perfect precision — floats can round off numbers slightly. Also, avoid using floats for exact values like money calculations in serious financial applications.

Best Practices for Floats

Use float when you need moderate precision and double when you need more accurate results. Always use the correct format specifier: %f for float and %lf for double. Be careful with comparisons, as tiny rounding errors can affect equality checks.

Try It Yourself Project: Temperature Calculator

Project Overview

You’ll create a program that uses floats to calculate the average temperature for three days.

Coding Time

#include <stdio.h>

int main()

{

float tempDay1 = 24.5;

float tempDay2 = 26.8;

float tempDay3 = 25.2;

float average;

average = (tempDay1 + tempDay2 + tempDay3) / 3;

printf("Day 1 Temperature: %.2f°C\n", tempDay1);

printf("Day 2 Temperature: %.2f°C\n", tempDay2);

printf("Day 3 Temperature: %.2f°C\n", tempDay3);

printf("Average Temperature: %.2f°C\n", average);

return 0;

}

What You’ll See (Output)

Day 1 Temperature: 24.50°C

Day 2 Temperature: 26.80°C

Day 3 Temperature: 25.20°C

Average Temperature: 25.50°C

Try Something New

	Change one of the temperature values.

	Add more days to calculate the new average.

	
Use a double instead of float and observe any difference.

	
Print more decimal places using %.4f.

Char Type in C Programming

Let’s Begin

Programs don’t just work with numbers. They also handle letters, symbols, and small pieces of text. For example, your name starts with a letter, and commands often use characters like Y or N for “Yes” or “No.” In C, the char type is used to store a single character. It’s simple but very powerful.

What Is a Char and Why Use It?

A char is short for “character.” It can hold a single letter, number, or symbol. Think of it as a small sticky note with exactly one character written on it — like A, b, 7, or @. It is perfect when you only need to store one character, not a full sentence.

Use Cases in Real Projects

Characters are used in text-based menus, password inputs, keyboard inputs, and messages. For example, pressing y or n to confirm an action uses char. It’s also common in working with arrays of characters, like strings.

Basic Rules for Char

	
Use char to store one character at a time.

	
Always enclose the character in single quotes ('A').

	char can store letters, numbers, or symbols.

	
Each character is stored as a numeric ASCII code internally.

	
Use printf with %c to display characters.

	
You can also print its ASCII code with %d.

Char Types in C

	Type

	Size (Typical)

	Range (ASCII)

	Description

	char

	1 byte

	-128 to 127 or 0 to 255

	Standard character type

	signed char

	1 byte

	-128 to 127

	Supports negative values

	unsigned char

	1 byte

	0 to 255

	Positive values only

(Note: Range may vary slightly depending on your system.)

Syntax for Char

char variableName = 'A';

Syntax Explanation

This line tells the computer to store the character A inside a variable named variableName.

Example:

char grade = 'A';

Here, char is the type, grade is the variable name, and 'A' is the value. It’s like putting the letter A on a sticky note labeled “grade.”

Common Mistakes to Avoid with Char

A common mistake is forgetting to use single quotes. Writing char letter = A; without quotes will cause an error. Another mistake is trying to store multiple characters in one char variable. For example, char word = 'Hi'; is invalid because a char can only hold one character. Also, using double quotes ("A") creates a string, not a single character.

Best Practices for Char

Always use single quotes for characters. Use meaningful variable names like initial or choice. If you need more than one character, use a character array (string), not a single char. You can also work with ASCII values to do simple tricks, like turning lowercase letters into uppercase.

Try It Yourself Project: Character to ASCII Converter

Project Overview

You’ll create a small program that reads a character and prints both the character and its ASCII value.

Coding Time

#include <stdio.h>

int main()

{

char letter = 'A';

printf("The character is: %c\n", letter);

printf("The ASCII value is: %d\n", letter);

return 0;

}

What You’ll See (Output)

The character is: A

The ASCII value is: 65

Try Something New

	Change the character to a lowercase letter and note the new ASCII value.

	
Try a symbol like # or @.

	
Replace the character with a number, like '5'.

	
Add a second char variable and print both.

Void Type in C Programming

Let’s Begin

Not every function in a program needs to return a value. Sometimes a function is created only to do a job — like printing a message or turning on a light — without giving anything back. In C, we use the void type for this purpose. It’s like a messenger who doesn’t bring anything with them.

What Is Void and Why Use It?

void simply means “nothing” or “no value.” When used as a function return type, it means the function does not return anything. When used as a parameter type, it means the function takes no arguments. It can also be used with pointers for more advanced uses.

Use Cases in Real Projects

Void functions are used to display messages, control devices, clear screens, or perform actions where no calculation result is needed. They keep your code clean and easy to organize.

Basic Rules for Void

	
Use void as a return type if the function doesn’t return a value.

	
Use void inside the parentheses if the function doesn’t take any parameters.

	
You can also use void with pointers for generic data types.

	
A void function must not use the return statement with a value.

Void in C

	Use

	Example

	Meaning

	Return type

	void greet()

	Function returns nothing

	Parameter type

	void greet(void)

	Function takes no arguments

	Pointer type

	void *ptr;

	Generic pointer

Syntax for Void

void functionName(void);

Syntax Explanation

This tells the computer to create a function that does something but does not return a value.

Example:

void sayHello(void)

{

printf("Hello, World!\n");

}

Here, void before the function name means it doesn’t return anything. void inside the parentheses means it doesn’t take any input.

Common Mistakes to Avoid with Void

A common mistake is trying to return a value from a void function. For example, return 5; inside a void function will cause an error. Another mistake is forgetting to use void in the parameter list when no arguments are expected, which can confuse the compiler in some cases.

Best Practices for Void

Use void functions when you only need an action, not a result. Keep them simple and focused on one task. If you later need the function to return something, change its return type and add a proper return statement.

Try It Yourself Project: Simple Greeting Function

Project Overview

You’ll create a function that prints a greeting message without returning anything.

Coding Time

#include <stdio.h>

// Function with void return type and no parameters

void greet(void)

{

printf("Welcome to C Programming!\n");

}

int main()

{

greet(); // Call the void function

return 0;

}

What You’ll See (Output)

Welcome to C Programming!

Try Something New

	
Add another void function to print a goodbye message.

	Call the greeting function multiple times.

	
Create a void function that accepts no parameters but prints a different message.

	Add a variable inside the function and print its value.

Signed and Unsigned Types in C Programming

Let’s Begin

Numbers in programming can be positive, negative, or only positive, depending on how we define them. In C, you can control this using signed and unsigned types. Understanding these two keywords helps you use your computer’s memory more wisely and avoid unexpected results.

What Are Signed and Unsigned Types and Why Use Them?

	
Signed types can store both positive and negative numbers.

	
Unsigned types can store only positive numbers, but their maximum value is bigger because no space is used for negative values.

Think of it like a number line:

	
A signed line goes from negative to positive (for example, -128 to +127).

	
An unsigned line starts at 0 and goes higher (for example, 0 to 255).

Use Cases in Real Projects

	
Signed types are great when values might be negative — like temperatures, gains and losses, or positions.

	
Unsigned types are used for values that can never be negative — like age, scores, counters, or memory addresses.

Basic Rules for Signed and Unsigned

	
Add signed or unsigned before the data type (char, int, short, long).

	signed is the default for int if you don’t write anything.

	unsigned doubles the positive range by removing the negative range.

	
Use the correct printf format: %d for signed integers, %u for unsigned.

	Unsigned types cannot represent negative numbers.

Signed vs Unsigned Integer Ranges (Typical 32-bit System)

	Type

	Signed Range

	Unsigned Range

	char

	-128 to 127

	0 to 255

	short int

	-32,768 to 32,767

	0 to 65,535

	int

	-2,147,483,648 to 2,147,483,647

	0 to 4,294,967,295

	long int

	very large negative to positive

	0 to a very large positive value

(Note: Exact ranges can vary depending on your system.)

Syntax for Signed and Unsigned

signed int temperature;

unsigned int age;

Syntax Explanation

Here, signed int creates a variable that can hold both negative and positive numbers. unsigned int creates a variable that holds only positive numbers.

Example:

signed int temp = -5;

unsigned int score = 100;

This is like choosing whether your number line includes negative values or not.

Common Mistakes to Avoid with Signed and Unsigned

A common mistake is using a negative value in an unsigned variable. For example,

unsigned int num = -3;

This doesn’t store -3 — it wraps around and stores a large number instead. Another mistake is mixing signed and unsigned values in calculations, which can give unexpected results.

Best Practices for Signed and Unsigned

Use unsigned when negative values will never happen. Use signed when both positive and negative numbers are possible. Avoid mixing signed and unsigned values in the same expression if possible. Always use the correct printf format specifier.

Try It Yourself Project: Score Tracker

Project Overview

You’ll use both signed and unsigned integers to store different kinds of numbers and display them.

Coding Time

#include <stdio.h>

int main()

{

signed int temperature = -10;

unsigned int score = 120;

printf("Temperature (signed): %d\n", temperature);

printf("Score (unsigned): %u\n", score);

// Demonstrating unsigned wraparound

unsigned int wrongValue = -5;

printf("Wrong unsigned value: %u\n", wrongValue);

return 0;

}

What You’ll See (Output)

Temperature (signed): -10

Score (unsigned): 120

Wrong unsigned value: 4294967291 // may vary depending on system

Try Something New

	Change the signed variable to a positive number.

	Use a negative number in the unsigned variable and observe the wraparound.

	
Try unsigned char with values above 255 and see what happens.

	Mix signed and unsigned in a calculation to understand the result.

Short and Long Modifiers in C Programming

Let’s Begin

Not all numbers need the same amount of space in memory. Sometimes you only need to store small numbers. Other times, you need to store very big numbers. In C, the short and long modifiers help you control how much space your number takes. Think of it like choosing between a small box or a big box to store your number.

What Are Short and Long Modifiers and Why Use Them?

	
short is used when you need a smaller range of numbers and want to save memory.

	
long is used when you need to store larger numbers.
These modifiers can make your program more efficient, especially when dealing with big data or limited memory systems like microcontrollers.

Use Cases in Real Projects

	short is useful in sensors, small counters, or small calculations.

	long is common in timers, file sizes, and large data calculations.

	Using the right modifier can save memory and make programs faster on embedded systems.

Basic Rules for Short and Long

	
You can use short and long with int.

	short uses less memory but has a smaller range.

	long uses more memory but has a bigger range.

	
You can also use unsigned with short or long.

	
Always use the correct printf format specifier:
	%hd for short

	%ld for long

	%hu for unsigned short

	%lu for unsigned long

Short vs Long Integer Ranges (Typical 32-bit System)

	Type

	Size (Typical)

	Range

	short int

	2 bytes

	-32,768 to 32,767

	unsigned short int

	2 bytes

	0 to 65,535

	long int

	4 or 8 bytes

	Very large negative to positive numbers

	unsigned long int

	4 or 8 bytes

	0 to a very large positive number

(Note: Exact range may vary depending on your system.)

Syntax for Short and Long

short int smallNumber;

long int bigNumber;

unsigned short int counter;

unsigned long int largeValue;

Syntax Explanation

The keyword short makes the variable use less space. The keyword long gives the variable extra space.

Example:

short int age = 25;

long int population = 7800000000;

Here, age uses less memory because it’s a small number. population needs more space because it’s a big number.

Common Mistakes to Avoid with Short and Long

A common mistake is using a number too big for a short variable. This causes overflow, and the value wraps around. Another mistake is forgetting to use the correct format specifier when printing, which can display wrong values or cause errors.

Best Practices for Short and Long

Use short when numbers are guaranteed to stay small. Use long when dealing with big numbers. Always check the expected range before choosing the modifier. Match your printf format specifier with the variable type to avoid confusion.

Try It Yourself Project: Population Tracker

Project Overview

You’ll use short and long to store and display different kinds of numbers.

Coding Time

#include <stdio.h>

int main()

{

short int cityPopulation = 25000;

unsigned short int visitors = 60000;

long int worldPopulation = 7800000000;

unsigned long int starsInGalaxy = 4000000000;

printf("City Population (short): %hd\n", cityPopulation);

printf("Visitors (unsigned short): %hu\n", visitors);

printf("World Population (long): %ld\n", worldPopulation);

printf("Stars in Galaxy (unsigned long): %lu\n", starsInGalaxy);

return 0;

}

What You’ll See (Output)

City Population (short): 25000

Visitors (unsigned short): 60000

World Population (long): 7800000000

Stars in Galaxy (unsigned long): 4000000000

Try Something New

	
Change the short variable to a number above 32767 and see the overflow.

	Make the visitors variable negative and observe the result.

	
Try using long with a very small number.

	
Add another long variable and do a calculation with it.

Type Conversion and Casting in C Programming

Let’s Begin

In real life, sometimes you need to change how you measure something. For example, converting minutes to hours or grams to kilograms. In C, you often need to convert one data type into another — like turning an integer into a float. This is called type conversion or type casting. Understanding this gives you more control over how your program handles numbers.

What Is Type Conversion and Why Use It?

Type conversion means changing the type of a value from one data type to another. For example, turning an int (like 5) into a float (like 5.0).

This is useful when:

	You want accurate results in calculations.

	You need to match variable types in expressions.

	You want to control how the computer treats a value.

Use Cases in Real Projects

Type conversion is common in sensor readings (integer to float), mathematical formulas (integer division converted to decimal), time calculations, and data formatting before display.

Basic Rules for Type Conversion

	
Implicit conversion happens automatically when C converts a type behind the scenes.

	
Explicit conversion (casting) happens when you manually convert a value to another type.

	
Conversion follows a promotion hierarchy: smaller types are promoted to larger types automatically.

	
When converting from float to int, the decimal part is truncated, not rounded.

	Always cast when mixing different data types to avoid unexpected results.

Two Types of Conversion

	Type

	Description

	Example

	Implicit Conversion

	Done automatically by the compiler.

	int x = 5; float y = x;

	Explicit Conversion (Cast)

	Done by the programmer using casting syntax.

	float y = (float)5 / 2;

Syntax for Type Casting

(type) expression

Syntax Explanation

This tells the compiler to temporarily treat the expression as a different type.

Example:

int a = 5, b = 2;

float result;

result = (float)a / b;

Here, (float)a changes a from an integer to a float, so the division produces a decimal result (2.5) instead of truncating to 2.

Common Mistakes to Avoid with Type Conversion

A common mistake is forgetting to cast during division. For example, int x = 5/2; gives 2, not 2.5. Another mistake is assuming casting changes the variable’s original type permanently — it doesn’t. Also, casting between incompatible types (like char to pointer) can cause serious bugs.

Best Practices for Type Conversion

Always cast when doing mixed-type calculations. Use explicit casting instead of relying on implicit conversion to make your code clear. Be careful when converting from larger to smaller types, as data may be lost. Keep your expressions simple to avoid confusion.

Try It Yourself Project: Average Calculator

Project Overview

You’ll calculate the average of two integers using both implicit and explicit type conversion to see the difference.

Coding Time

#include <stdio.h>

int main()

{

int num1 = 5, num2 = 2;

float average1, average2;

// Implicit conversion

average1 = num1 / num2;

// Explicit conversion (casting)

average2 = (float)num1 / num2;

printf("Without casting (implicit): %f\n", average1);

printf("With casting (explicit): %f\n", average2);

return 0;

}

What You’ll See (Output)

Without casting (implicit): 2.000000

With casting (explicit): 2.500000

Try Something New

	Cast both numbers instead of just one.

	Try casting float to int and print the result.

	
Use different data types like char or long.

	Add a third number and calculate a more complex average.

	[image:]

	
	[image:]

[image:]

Chapter-3 Variables

[image:]

Variable Declaration in C Programming

Let’s Begin

Every program needs a way to store information — like a number, a letter, or a calculation result. That’s where variables come in. A variable is like a small labeled box where you can put data and use it later. Once you understand how to declare variables, you’ll be able to build real, working programs with ease.

What Is Variable Declaration and Why Use It?

Variable declaration is the process of creating a box in memory to store data. You give it a name, tell the computer what kind of data it will hold, and then use it in your program. Just like labeling a jar in your kitchen, you need a clear name so you can find and use it easily later.

Use Cases in Real Projects

Variables are used in every single program. They store temperatures from sensors, scores in games, prices in shops, time in clocks, and even control how a robot moves. Without variables, a program wouldn’t remember anything between one step and the next.

Basic Rules for Variable Declaration

	
Every variable must have a type and a name.

	
The name must start with a letter or underscore, not a number.

	Variable names cannot have spaces or special symbols.

	
A variable must be declared before you use it.

	
Choose clear and meaningful names.

	
C is case sensitive, so Age and age are different.

Syntax for Variable Declaration

dataType variableName;

Syntax Explanation

dataType tells the computer what kind of value the variable will store (like int for numbers).

variableName is the label you give that memory box.

Example:

int age;

Here, int tells the computer to make a box that stores an integer. age is the name of that box. You can then store values in it or use it in calculations.

You can also declare and assign in one line:

int age = 18;

This means “create a box named age and put 18 inside it.”

Common Mistakes to Avoid with Variable Declaration

Many beginners forget to declare a variable before using it, which causes errors. Another common mistake is using spaces or special characters in names, like int total score;. That won’t work. Also, avoid reusing the same variable name for different things in the same scope.

Best Practices for Variable Declaration

Always use clear and descriptive names like totalPrice instead of x. Declare variables at the top of your function so they’re easy to find. Use the right data type to save memory and make your program efficient. Stick to one naming style to keep your code clean.

Try It Yourself Project: Simple Calculator Box

Project Overview

You’ll declare variables to store numbers, add them together, and display the result.

Coding Time

#include <stdio.h>

int main()

{

int number1; // declare a variable for the first number

int number2; // declare a variable for the second number

int sum; // declare a variable to store the result

number1 = 10; // assign a value to number1

number2 = 5; // assign a value to number2

sum = number1 + number2; // calculate the sum

printf("The sum is: %d\n", sum);

return 0;

}

What You’ll See (Output)

The sum is: 15

Try Something New

	
Change the values of number1 and number2.

	Declare a new variable for subtraction and print it.

	
Use float instead of int and see how it changes the output.

	
Try giving your variables more meaningful names like appleCount or orangeCount.

Variable Initialization in C Programming

Let’s Begin

Declaring a variable gives it a name and a type. But initializing a variable gives it a starting value. Think of it like labeling a jar (declaration) and then putting something inside it (initialization). Without initialization, your variable is just an empty jar — and in C, an empty jar doesn’t start with zero. It holds garbage data until you give it a value.

What Is Variable Initialization and Why Use It?

Variable initialization means assigning a value to a variable at the time of declaration. This ensures the variable always starts with a known value, not random bits in memory. It’s like writing your name on a form before handing it in — the information is ready to use right away.

Use Cases in Real Projects

Initialization is used everywhere: setting counters to zero, assigning default sensor readings, starting timers, or setting up game scores. A good initialization prevents unpredictable bugs and makes your program more reliable.

Basic Rules for Variable Initialization

	Always initialize a variable before using it.

	Initialization can happen during declaration or later in the program.

	The value must match the variable’s data type.

	Multiple variables can be initialized in one line.

	
Uninitialized variables contain garbage values.

Syntax for Variable Initialization

dataType variableName = value;

Syntax Explanation

dataType defines the kind of value. variableName is the label for the box. = puts the value inside the box.

Example:

int age = 18;

This line tells the computer: “Create a box named age that stores an integer, and put 18 inside it.” You can also initialize several variables together:

int a = 5, b = 10, c = 15;

Common Mistakes to Avoid with Variable Initialization

A common mistake is using a variable before giving it a value. This can lead to random, unpredictable outputs. Another mistake is using a value with the wrong type. For example, storing a decimal in an int variable will truncate the decimal part. Also, forgetting the semicolon at the end of the line is a frequent beginner error.

Best Practices for Variable Initialization

Always give your variables a starting value to avoid bugs. Initialize counters with 0 and strings with '\0' or an empty string. Use the correct data type to store your value accurately. If you declare multiple variables, initialize them right away when possible.

Try It Yourself Project: Number Starter

Project Overview

You’ll initialize variables with starting values, then use them in a simple calculation.

Coding Time

#include <stdio.h>

int main()

{

int apples = 10; // initialized to 10

int oranges = 5; // initialized to 5

int totalFruits = apples + oranges; // initialized using other variables

printf("Apples: %d\n", apples);

printf("Oranges: %d\n", oranges);

printf("Total fruits: %d\n", totalFruits);

return 0;

}

What You’ll See (Output)

Apples: 10

Oranges: 5

Total fruits: 15

Try Something New

	Change the initial values and see how the output changes.

	
Initialize variables with expressions (e.g., int total = 2 + 3;).

	
Add a float variable and initialize it with a decimal number.

	
Try printing an uninitialized variable and compare the result.

Variable Naming Rules in C Programming

Let’s Begin

Every variable in your program needs a name. This name is how your program remembers and uses the stored data. If variable declaration is like creating a box, then naming is like putting a clear label on it. A good name makes your code easy to read, understand, and maintain.

What Are Variable Naming Rules and Why Use Them?

Variable naming rules tell you how to write valid variable names in C. These rules keep your code neat and help the compiler understand your program correctly. Just like road rules keep traffic smooth, naming rules keep your program clean and error-free.

Use Cases in Real Projects

Well-chosen names make your programs easier to debug and share. In real projects, variable names describe things like sensor values, game scores, account balances, or button states. Good naming can save time for you and anyone else reading your code.

Basic Rules for Variable Naming

	
A variable name can contain letters, digits, and underscores.

	
The first character must be a letter or an underscore.

	
Variable names cannot start with a digit.

	
No spaces or special characters are allowed (like @, $, %).

	
Variable names are case sensitive (total and Total are different).

	
Keywords like int, for, or return cannot be used as names.

	
Names should be meaningful to describe the stored value.

Syntax for Variable Naming

dataType variableName = value;

Syntax Explanation

Here, variableName is the label used to store and retrieve data.

Example:

int totalScore = 100;

int is the data type. totalScore is the variable name. 100 is the value stored in it. Using a name like totalScore is clearer than something like ts or x.

Common Mistakes to Avoid with Variable Naming

Beginners often use names that start with numbers, like 2ndValue, which is invalid. Another common mistake is using spaces (total score) or special characters (total$). Also, using very short or unclear names makes your code hard to read later.

Best Practices for Variable Naming

Choose names that make sense, like speed, distance, or temperature. Use lowercase letters for most variable names. If your name has multiple words, use camel case (totalScore) or underscores (total_score) consistently. Avoid using single letters unless it’s for simple, short loops.

Try It Yourself Project: Fruit Counter

Project Overview

You’ll create variables with clear, valid names and display their values.

Coding Time

#include <stdio.h>

int main()

{

int appleCount = 10; // valid name using camel case

int orange_count = 5; // valid name using underscore

int totalFruits = appleCount + orange_count; // meaningful name

printf("Apple Count: %d\n", appleCount);

printf("Orange Count: %d\n", orange_count);

printf("Total Fruits: %d\n", totalFruits);

return 0;

}

What You’ll See (Output)

Apple Count: 10

Orange Count: 5

Total Fruits: 15

Try Something New

	Try naming a variable with a number at the start and see the error.

	
Use different naming styles like total_score or TotalScore.

	Create an invalid name with a special character and observe the error.

	Rename your variables to make them even more descriptive.

Scope of Variables in C Programming

Let’s Begin

When you declare a variable in C, it’s not visible everywhere in your program. Where a variable can be used depends on its scope. You can think of scope like the walls of a room — a variable exists and can be accessed only inside its own room. Understanding scope helps you write clean, bug-free code.

What Is Variable Scope and Why Use It?

Variable scope refers to the region of the program where a variable can be used. Some variables work only inside a single function, while others can be shared across the entire program. Scope prevents accidental errors by keeping variables in their proper place.

Use Cases in Real Projects

Scope is used to control where and how data can be accessed. In real programs, local variables store temporary values like counters or loop indexes. Global variables store shared data like game scores, system states, or configuration settings.

Basic Rules for Variable Scope

	
Local variables are declared inside functions or blocks and can only be used there.

	
Global variables are declared outside functions and can be used anywhere in the program.

	
Variables declared inside a block ({ }) exist only within that block.

	
When a local variable has the same name as a global variable, the local one takes priority inside the block.

	A variable’s scope ends when the block in which it’s declared ends.

Types of Variable Scope in C

	Scope Type

	Where Declared

	Where Accessible

	Local Scope

	Inside a function or block

	Only inside that function or block

	Global Scope

	Outside all functions

	Anywhere in the program

	Block Scope

	Inside { } braces

	Only inside that block

Syntax for Variable Scope

int globalVar = 100; // Global variable

int main()

{

int localVar = 10; // Local variable

{

int blockVar = 5; // Block variable

}

}

Syntax Explanation

	globalVar can be used anywhere in the program because it’s declared outside the main function.

	localVar can be used only inside main.

	blockVar lives only inside its block and disappears when the block ends.
This is like having a tool in a shared workshop (global), your personal desk (local), or a drawer (block).

Common Mistakes to Avoid with Variable Scope

A common mistake is trying to use a variable outside its scope. For example, declaring a variable inside an if block and trying to print it outside will cause an error. Another mistake is using the same variable name in different scopes without realizing which one is active. Global variables can also create confusion if overused.

Best Practices for Variable Scope

Keep variables as local as possible to make your code clear and avoid conflicts. Use global variables only when data must be shared. Choose unique names to avoid shadowing (when a local variable hides a global one). Keep your blocks tidy and avoid unnecessary variables.

Try It Yourself Project: Score Manager

Project Overview

You’ll use a global variable for the total score and local variables inside functions to update and display it.

Coding Time

#include <stdio.h>

int totalScore = 0; // global variable

void addPoints()

{

int points = 10; // local variable

totalScore += points;

printf("Points added: %d\n", points);

}

int main()

{

addPoints();

printf("Total Score: %d\n", totalScore);

{

int bonus = 5; // block variable

totalScore += bonus;

printf("Bonus points added: %d\n", bonus);

}

// bonus is no longer accessible here

printf("Final Total Score: %d\n", totalScore);

return 0;

}

What You’ll See (Output)

Points added: 10

Total Score: 10

Bonus points added: 5

Final Total Score: 15

Try Something New

	
Move bonus outside the block and print it after the block ends.

	Add another function to subtract points using the global variable.

	Create two variables with the same name in different scopes and observe the result.

	Declare all variables as local and see how the program behavior changes.

Local Variables in C Programming

Let’s Begin

When writing a program, sometimes you need variables that are only used inside one specific function or block. These are called local variables. Think of them like tools kept in a small toolbox: they’re useful where they belong but not accessible elsewhere. Local variables keep your program neat and organized.

What Are Local Variables and Why Use Them?

A local variable is a variable declared inside a function or a block. It exists only within that block and disappears when the block ends. This is useful because it keeps the variable’s value private and prevents it from affecting other parts of your program.

Use Cases in Real Projects

Local variables are perfect for temporary values like counters, loop indexes, or sensor readings. In real programs, they handle data needed only for a short time, like storing a temperature reading or a calculation inside a single function.

Basic Rules for Local Variables

	
Declare local variables inside a function or block.

	
They can only be accessed within the same block.

	They are created when the block starts and destroyed when the block ends.

	They do not keep their values between function calls.

	
Local variables must be initialized before use.

	You can have variables with the same name in different functions (they won’t conflict).

Syntax for Local Variables

void functionName()

{

dataType variableName = value;

}

Syntax Explanation

Here, the variable is declared inside a function. It exists only while the function runs.

Example:

void greet()

{

int count = 1;

printf("Greeting number %d\n", count);

}

count is a local variable. It is created each time greet() runs and destroyed right after.

Common Mistakes to Avoid with Local Variables

One common mistake is trying to use a local variable outside its block. This causes an error because the variable doesn’t exist there. Another mistake is assuming a local variable keeps its value between function calls — it doesn’t. Also, forgetting to initialize it may lead to garbage values.

Best Practices for Local Variables

Use local variables when you need temporary, private data. Keep their names meaningful and short. Avoid using global variables when a local one is enough. Initialize them as soon as you declare them to avoid unpredictable behavior.

Try It Yourself Project: Counter Inside Function

Project Overview

You’ll use a local variable inside a function to keep a temporary count.

Coding Time

#include <stdio.h>

void showCount()

{

int count = 1; // local variable

printf("Current count: %d\n", count);

count++; // this change is temporary

}

int main()

{

showCount();

showCount();

showCount();

return 0;

}

What You’ll See (Output)

Current count: 1

Current count: 1

Current count: 1

Each time the function runs, count is created, set to 1, and then destroyed after printing.

Try Something New

	
Move int count outside the function and see how the behavior changes.

	Add another local variable and use it in a calculation.

	Declare a local variable inside a loop and print it.

	
Try to print count in main() and observe the error.

Global Variables in C Programming

Let’s Begin

Sometimes you want a variable that can be used by more than one function. Instead of creating separate copies in each function, you can declare a single variable outside all functions and make it global. Think of it like a notice board on a wall — everyone can see it and update it.

What Are Global Variables and Why Use Them?

A global variable is a variable declared outside any function. It can be accessed and modified by any function in the program. This makes it easy to share information between different parts of your program without passing it around.

Use Cases in Real Projects

Global variables are often used to keep track of shared values like total scores in games, system states in embedded programs, sensor data in IoT projects, or configuration settings that must be accessible from multiple functions.

Basic Rules for Global Variables

	
Declare global variables outside of all functions (usually at the top of the program).

	
All functions in the same file can access and modify them.

	Global variables are created when the program starts and destroyed when the program ends.

	
They are automatically initialized to 0 if not given an initial value.

	Their value remains the same between function calls.

Syntax for Global Variables

dataType variableName = value; // global variable

int main()

{

// functions can use variableName here

}

Syntax Explanation

The variable is declared outside any function, so it lives throughout the entire program.

Example:

int total = 0; // global variable

void addPoints()

{

total = total + 10;

}

Here, total is shared by every function in the program.

Common Mistakes to Avoid with Global Variables

One common mistake is relying too much on global variables. This can make your program hard to debug if many functions change the same value. Another mistake is forgetting that global variables keep their values, leading to unexpected results. Also, using the same variable name locally can shadow the global one inside a function.

Best Practices for Global Variables

Use global variables only when you really need to share data between functions. Give them clear and unique names to avoid confusion. Keep the number of global variables small and controlled. If only one function needs the variable, make it local instead.

Try It Yourself Project: Score Keeper

Project Overview

You’ll use a global variable to store a game score and update it from different functions.

Coding Time

#include <stdio.h>

int score = 0; // global variable

void addPoints()

{

score += 10;

printf("Added 10 points. Score: %d\n", score);

}

void subtractPoints()

{

score -= 5;

printf("Subtracted 5 points. Score: %d\n", score);

}

int main()

{

addPoints();

addPoints();

subtractPoints();

printf("Final Score: %d\n", score);

return 0;

}

What You’ll See (Output)

Added 10 points. Score: 10

Added 10 points. Score: 20

Subtracted 5 points. Score: 15

Final Score: 15

Try Something New

	Add another function to reset the score to 0.

	Declare a local variable with the same name inside a function and observe what happens.

	Use multiple global variables and update them in different functions.

	Remove the global variable and try passing the value as a function parameter.

Static Variables in C Programming

Let’s Begin

When you declare a variable inside a function, it usually disappears once the function ends. But what if you want the variable to remember its value even after the function finishes? This is where static variables come in. Think of a static variable like a notebook kept inside a drawer — it stays there and remembers everything between visits.

What Are Static Variables and Why Use Them?

A static variable is a variable that keeps its value between function calls. Unlike regular local variables, it isn’t destroyed when the function ends. It is created once and stored for the entire lifetime of the program. This makes it perfect when you want a value to build up over time without making it global.

Use Cases in Real Projects

Static variables are used to store counters, track state, or save data between function calls. For example, you might use a static variable to count how many times a sensor function was called or keep track of a running total in a program.

Basic Rules for Static Variables

	
Use the keyword static before the data type.

	A static variable inside a function retains its value between calls.

	
It is initialized only once.

	
The default value of a static variable is 0 if not explicitly initialized.

	A static variable inside a function can only be accessed in that function.

	A static variable declared outside functions has file scope (visible only in that file).

Syntax for Static Variables

static dataType variableName = value;

Syntax Explanation

The keyword static tells the compiler to keep the variable in memory throughout the program’s execution.

Example:

void counter()

{

static int count = 0; // static variable

count++;

printf("Count: %d\n", count);

}

Here, count starts at 0 only once, then remembers its updated value each time counter() is called.

Common Mistakes to Avoid with Static Variables

A common mistake is expecting a static variable to reset each time the function runs — it won’t. Another mistake is thinking a static variable is global. It only keeps its value but is still limited to its scope. Also, forgetting to initialize when needed can lead to unexpected outputs.

Best Practices for Static Variables

Use static variables when you need a function to remember information between calls but don’t want to use global variables. Keep their use minimal and clear to avoid confusion. Use meaningful names and comments to explain their purpose in your code.

Try It Yourself Project: Visit Counter

Project Overview

You’ll use a static variable to count how many times a function is called.

Coding Time

#include <stdio.h>

void visit()

{

static int count = 0; // static variable

count++;

printf("This function was called %d times.\n", count);

}

int main()

{

visit();

visit();

visit();

return 0;

}

What You’ll See (Output)

This function was called 1 times.

This function was called 2 times.

This function was called 3 times.

Try Something New

	
Move count outside the function and remove static to see the difference.

	
Initialize count with a different starting number.

	Create another static variable in a different function.

	Call the function inside a loop and watch the counter grow.

Extern Variables in C Programming

Let’s Begin

In some programs, you may want to use the same variable across multiple files or functions without declaring it repeatedly. This is where extern variables come in. Think of an extern variable like a shared signboard outside a room — many people can see and use it, but it’s only written once.

What Are Extern Variables and Why Use Them?

An extern variable is a global variable that is declared in one file (or location) and used in another. You use the extern keyword to declare the variable without creating a new copy. This avoids duplication and keeps your program organized when working with multiple files.

Use Cases in Real Projects

Extern variables are useful when different parts of a project need to share the same data — for example, configuration settings in embedded systems, scores and states in games, or global status flags in large applications.

Basic Rules for Extern Variables

	
Declare the variable normally in one file (or before main).

	
Use the keyword extern to reference it in another file or function.

	extern does not create a new variable — it uses the existing one.

	
Extern variables have global scope and static storage duration.

	
They must be defined once in the program, but can be declared many times with extern.

	
If not explicitly initialized, their value defaults to 0.

Syntax for Extern Variables

// Definition (creates the variable)

dataType variableName = value;

// Declaration (tells the compiler it exists elsewhere)

extern dataType variableName;

Syntax Explanation

The variable is defined only once but can be declared anywhere using extern.

Example:

int total = 0; // definition

void showTotal()

{

extern int total; // declaration

printf("Total: %d\n", total);

}

Here, total is created once but can be used inside any function with extern.

Common Mistakes to Avoid with Extern Variables

A common mistake is using extern without actually defining the variable anywhere. This will cause a linker error. Another mistake is declaring the same variable in multiple places without extern, which creates multiple definitions. Also, remember that extern doesn’t give the variable a new value — it just references the existing one.

Best Practices for Extern Variables

Use extern variables only when multiple files truly need to share the same data. Keep their names clear and unique. Define the variable in one .c file and declare it in a shared header file to keep your project organized. Don’t overuse extern — too many global variables can make debugging difficult.

Try It Yourself Project: Shared Counter

Project Overview

You’ll define a global variable and use extern inside a function to access and modify it.

Coding Time

#include <stdio.h>

int counter = 0; // global variable definition

void increase()

{

extern int counter; // extern declaration

counter++;

printf("Counter increased to: %d\n", counter);

}

void display()

{

extern int counter; // extern declaration

printf("Current counter value: %d\n", counter);

}

int main()

{

increase();

increase();

display();

return 0;

}

What You’ll See (Output)

Counter increased to: 1

Counter increased to: 2

Current counter value: 2

Try Something New

	
Create another function that decreases the counter using extern.

	Move the definition to the top of the file and declare it in multiple functions.

	Add another extern variable and update it from different places.

	Split the definition and declarations into separate files (advanced).

Constants and Read-only Variables in C Programming

Let’s Begin

Some values in a program should never change once they are set. For example, the value of π (3.14159), the number of days in a week, or a system’s maximum speed. In C, you can use constants and read-only variables to protect these values. Think of them like a locked box — once you store something inside, you can look at it, but you can’t change it.

OEBPS/d2d_images/chapter_title_above.png

OEBPS/d2d_images/chapter_title_corner_decoration_left.png

OEBPS/d2d_images/cover.jpg
PROGRAMMING

for Beginners

| <>© : \? |

Sarful Hassan

OEBPS/d2d_images/chapter_title_corner_decoration_right.png

OEBPS/d2d_images/chapter_title_below.png

