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​Preface
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●  Python has solidified its place as one of the most versatile and widely used programming languages in the world. From data science to web development, from automation to artificial intelligence, Python's rich ecosystem of libraries enables developers, researchers, and engineers to bring their ideas to life with efficiency and precision.

●  This book explores the most commonly used Python libraries across various domains, offering insights into their functionality, applications, and best practices. Whether you are a beginner taking your first steps in Python or an experienced programmer looking to expand your toolkit, this book serves as a guide to understanding and utilizing the power of Python’s libraries effectively.

●  We begin with general-purpose libraries like NumPy, Pandas, and Matplotlib—indispensable tools for data manipulation and visualization. As we progress, we delve into specialized libraries tailored for machine learning, web development, automation, and more. Through real-world examples and practical applications, we aim to provide a hands-on approach to mastering these libraries.

●  Our goal is not just to introduce these tools but to equip readers with the knowledge and confidence to integrate them seamlessly into their projects. By the end of this book, you will have a solid foundation in Python’s extensive library ecosystem, empowering you to tackle a wide range of programming challenges with ease.

●  Happy coding!

●  ​e3

​

​General-Purpose Libraries

The most used Python libraries vary depending on the domain, but here are some of the most widely used ones across different fields:

​General-Purpose Libraries


	
NumPy – Numerical computing and array manipulation

	
Pandas – Data manipulation and analysis

	
Matplotlib – Data visualization

	
Seaborn – Statistical data visualization (built on Matplotlib)

	
Requests – HTTP requests handling

	
os & sys – Operating system and system-specific functions
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​NumPy
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​

​

Mathematics is the foundation of scientific computing, data analysis, and engineering. In the digital age, performing complex mathematical operations efficiently is crucial for researchers, analysts, and engineers. NumPy, a powerful numerical computing library in Python, provides a robust set of mathematical tools that streamline calculations, enhance performance, and simplify data processing. This book delves into NumPy’s advanced mathematical capabilities, focusing on essential concepts such as the Least Common Multiple (LCM), Greatest Common Divisor (GCD), trigonometric and hyperbolic functions, and set operations.

Understanding LCM and GCD is fundamental in number theory, algebra, and computational mathematics. NumPy provides efficient methods for calculating these values, whether for individual numbers or entire datasets. The ability to compute these values across arrays with minimal computational overhead makes NumPy a powerful tool for solving real-world problems.

Trigonometric and hyperbolic functions are indispensable in fields like physics, engineering, and computer graphics. NumPy offers built-in functions to compute sine, cosine, tangent, and their respective inverse values, allowing users to manipulate and analyze angles with ease. The ability to convert between radians and degrees further enhances usability, ensuring compatibility across different mathematical conventions.

Set operations, such as unions, intersections, and differences, are critical in data processing, statistical analysis, and machine learning. NumPy provides efficient methods for handling unique values, merging datasets, and performing complex set computations. These operations allow users to work seamlessly with large datasets while maintaining computational efficiency.

This book is designed for anyone seeking to deepen their understanding of NumPy’s mathematical capabilities. Whether you are a student, researcher, or professional, the concepts and examples presented here will equip you with the knowledge needed to leverage NumPy for advanced numerical computations. By mastering these functions, you will be able to perform complex mathematical operations with ease and efficiency, making NumPy an indispensable tool in your computational toolkit.

​

​

​Introduction to NumPy: A Comprehensive Guide to Python’s Numerical Computing Library

​What is NumPy?

NumPy, short for "Numerical Python," is a powerful library in Python designed for working with arrays. It provides functionalities for linear algebra, Fourier transforms, and matrices, making it an essential tool for data science and scientific computing. Developed in 2005 by Travis Oliphant, NumPy is an open-source project available for free use.

​Why Use NumPy?

While Python has built-in lists, they can be slow and inefficient for large-scale numerical computations. NumPy arrays, called ndarrays, are optimized for performance and can be up to 50 times faster than traditional lists. The core of NumPy is written in C and C++, allowing for high-speed computations.

​Installing NumPy

NumPy installation is straightforward with pip if Python and PIP are already installed:

python

––––––––
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​at the command prompt


​C:\Users>

pip install numpy

Alternatively, distributions like Anaconda and Spyder come with NumPy pre-installed.

​Importing NumPy

To use NumPy in a project, import it as follows:

python

import numpy  

A common convention is to use np as an alias:

python

import numpy as np  

You can check the installed NumPy version with:

python

print(np.__version__)  

​

​Creating NumPy Arrays

NumPy’s core data structure is the ndarray. It can be created using the array() function:

python

arr = np.array([1, 2, 3, 4, 5])  

print(arr)  

print(type(arr))  # Output: <class 'numpy.ndarray'>

You can also create arrays from tuples:

python

arr = np.array((1, 2, 3, 4, 5))  

print(arr)  

​Array Dimensions

NumPy arrays can have multiple dimensions, from simple scalars (0-D) to multi-dimensional tensors:


●  0-D Arrays (Scalars):



python

arr = np.array(42)  

print(arr)  


●  1-D Arrays:



python

arr = np.array([1, 2, 3, 4, 5])  

print(arr)  


●  2-D Arrays (Matrices):



python

arr = np.array([[1, 2, 3], [4, 5, 6]])  

print(arr)  


●  3-D Arrays (Tensors):



python

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])  

print(arr)  


●  Higher-Dimensional Arrays:

NumPy allows defining arrays with any number of dimensions using ndmin:



python

arr = np.array([1, 2, 3, 4], ndmin=5)  

print(arr)  

print("Number of dimensions:", arr.ndim)  # Output: 5

To check an array’s dimensions, use the .ndim attribute:

python

print(arr.ndim)  # Returns the number of dimensions

––––––––
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​Indexing in NumPy Arrays

Indexing allows access to specific elements in a NumPy array.

​Basic Indexing

NumPy follows zero-based indexing:

python

arr = np.array([1, 2, 3, 4])  

print(arr[0])  # Output: 1

print(arr[1])  # Output: 2

​Indexing in Multi-Dimensional Arrays


●  2-D Arrays: Access elements using row and column indices:



python

arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])  

print(arr[0, 1])  # Output: 2


●  3-D Arrays: Use three indices (depth, row, column):



python

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])  

print(arr[0, 1, 2])  # Output: 6


●  Negative Indexing: Allows access from the end:



python

arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])  

print(arr[1, -1])  # Output: 10 (last element of the second row)

––––––––
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​Conclusion

NumPy is a fundamental tool in Python for numerical computing. It provides fast, efficient array operations, multi-dimensional support, and indexing capabilities that make handling large datasets seamless. With its extensive functionality, NumPy is widely used in data science, machine learning, and scientific research.

​

​

​NumPy: A Comprehensive Guide to Array Manipulation and Data Types

​Slicing Arrays in NumPy

NumPy provides powerful tools for slicing arrays, allowing users to extract specific sections of an array based on indices. This process is similar to slicing lists in standard Python but with additional flexibility and efficiency.

​Slicing One-Dimensional Arrays

Slicing an array involves specifying a range of indices using the syntax:

python

[start:end]

This extracts elements starting from start index up to, but not including, the end index.

Example:

python

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[1:5])  # Output: [2 3 4 5]


●  If the start index is omitted, the slice begins from the first element.

●  If the end index is omitted, the slice extends to the last element.



Example:

python

print(arr[:4])  # Output: [1 2 3 4]

print(arr[4:])  # Output: [5 6 7]

​Slicing with Negative Indices

Negative indices count from the end of the array.

python

print(arr[-3:-1])  # Output: [5 6]

​Using Step in Slicing

The step parameter allows skipping elements at a defined interval:

python

[start:end:step]

Example:

python

print(arr[1:5:2])  # Output: [2 4]

print(arr[::2])  # Output: [1 3 5 7]

​Slicing Multi-Dimensional Arrays

For 2D arrays, slicing works along multiple axes.

Example:

python

arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])

print(arr[1, 1:4])  # Output: [7 8 9]  (Row 2, Columns 2 to 4)

print(arr[0:2, 2])  # Output: [3 8]  (Column 3 of all rows)

––––––––
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​Understanding Data Types in NumPy

NumPy provides a wide range of data types, allowing efficient memory usage and computations. The data type of an array can be explicitly defined when creating an array or converted afterward.

​Built-in Data Types in NumPy

Each NumPy data type has a shorthand notation:



	Data Type

	Description




	i

	Integer




	b

	Boolean




	u

	Unsigned Integer




	f

	Float




	c

	Complex Float




	m

	TimeDelta




	M

	DateTime




	O

	Object




	S

	String




	U

	Unicode String




	V

	Fixed memory block





​Checking the Data Type of an Array

Each NumPy array has an attribute dtype that returns its data type.

Example:

python

arr = np.array([1, 2, 3, 4])

print(arr.dtype)  # Output: int64

For a string array:

python

arr = np.array(['apple', 'banana', 'cherry'])

print(arr.dtype)  # Output: <U6 (Unicode string of length 6)>

​Creating Arrays with a Specific Data Type

NumPy allows specifying the data type explicitly when creating an array:

Example (creating an array with string data type):

python

arr = np.array([1, 2, 3, 4], dtype='S')

print(arr)  # Output: [b'1' b'2' b'3' b'4']

print(arr.dtype)  # Output: |S1 (Byte string)

For integer arrays with a specific byte size:

python

arr = np.array([1, 2, 3, 4], dtype='i4')

print(arr.dtype)  # Output: int32

​Handling Type Conversion Errors

If a specified data type is incompatible with array elements, NumPy raises a ValueError.

Example:

python

arr = np.array(['a', '2', '3'], dtype='i')  # Raises ValueError

​Changing Data Type of an Existing Array

To change the data type of an existing array, use the astype() function, which returns a copy of the array with the new type.

Example: Converting float to integer

python

arr = np.array([1.1, 2.1, 3.1])

newarr = arr.astype('i')

print(newarr)  # Output: [1 2 3]

print(newarr.dtype)  # Output: int32

Alternatively:

python

newarr = arr.astype(int)

print(newarr)  # Output: [1 2 3]

Example: Converting integers to boolean

python

arr = np.array([1, 0, 3])

newarr = arr.astype(bool)

print(newarr)  # Output: [ True False True]

print(newarr.dtype)  # Output: bool

––––––––

[image: ]


​Conclusion

This chapter covered fundamental operations with NumPy arrays, including slicing techniques and data type manipulations. Mastering these techniques allows for efficient data handling and manipulation in Python, making NumPy an essential tool for scientific computing and data analysis.

​

​Advanced NumPy Techniques: Copying, Viewing, Reshaping, and Flattening Arrays

NumPy provides a powerful array manipulation toolkit that allows users to copy arrays, create views, reshape data, and flatten multi-dimensional structures. Understanding the differences between copies and views, as well as how to reshape arrays, is crucial for efficient data processing.

​Copying vs. Viewing in NumPy

One of the fundamental aspects of working with NumPy arrays is understanding how data is stored and manipulated. The key difference between copying and viewing arrays is whether the new array retains ownership of the data or simply references the original.

​Copying Arrays

A copy creates a completely independent new array. Any modifications made to the copy do not affect the original array and vice versa.

​Example: Copying an Array

python

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

x = arr.copy()  # Create a copy

arr[0] = 42

print(arr)  # [42  2  3  4  5]

print(x)  # [1  2  3  4  5]

Since x is a separate copy, changing arr[0] to 42 does not affect x.

​Viewing Arrays

A view is a reference to the original data. Changes in the view affect the original array, and vice versa.

​Example: Viewing an Array

python

arr = np.array([1, 2, 3, 4, 5])

x = arr.view()  # Create a view

arr[0] = 42

print(arr)  # [42  2  3  4  5]

print(x)  # [42  2  3  4  5]

Since x is a view of arr, modifying arr also affects x.

​Checking Ownership of Data

To check whether an array owns its data or references another, use the .base attribute.

​Example: Checking Data Ownership

python

arr = np.array([1, 2, 3, 4, 5])

x = arr.copy()

y = arr.view()

print(x.base)  # None (x is a copy)

print(y.base)  # [1  2  3  4  5] (y is a view)

If .base returns None, the array owns its data (copy). If .base returns another array, the array is a view.

​Understanding Array Shape

The shape of a NumPy array refers to the number of elements in each dimension. The .shape attribute provides this information as a tuple.

​Getting the Shape of an Array

python

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

print(arr.shape)  # (2, 4)

This means the array has 2 rows and 4 columns.

​Reshaping NumPy Arrays

Reshaping means changing the dimensions of an array while preserving the data. This is useful when transitioning between 1D, 2D, and 3D structures.

​Reshaping from 1D to 2D

python

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

newarr = arr.reshape(4, 3)

print(newarr)

Output:

lua

[[ 1  2  3]

[ 4  5  6]

[ 7  8  9]

[10 11 12]]

Here, a 1D array with 12 elements is reshaped into a 2D array with 4 rows and 3 columns.

​Reshaping from 1D to 3D

python

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

newarr = arr.reshape(2, 3, 2)

print(newarr)

Output:

lua

[[[ 1  2]

[ 3  4]

[ 5  6]]

[[ 7  8]

[ 9 10]

[11 12]]]

The 1D array is now reshaped into a 3D array with 2 outer arrays, each containing 3 arrays of 2 elements.

​Reshaping Constraints

Reshaping works only if the number of elements remains the same. For example, an 8-element array cannot be reshaped into a (3,3) shape because 3×3=9 elements are required.

python

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

newarr = arr.reshape(3, 3)  # This will cause an error!

Error:

sql

ValueError: cannot reshape array of size 8 into shape (3,3)

––––––––
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​Checking if Reshape Creates a Copy or View

python

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

print(arr.reshape(2, 4).base)  # [1 2 3 4 5 6 7 8]

Since .base returns the original array, reshape created a view (not a copy).

​Using Unknown Dimensions (-1)

Instead of manually specifying one dimension, NumPy can infer the correct size by using -1.

​Example: Using -1 to Automatically Determine Dimensions

python

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

newarr = arr.reshape(2, 2, -1)

print(newarr)

Output:

lua

[[[1 2]

[3 4]]

[[5 6]

[7 8]]]

NumPy automatically calculates the missing dimension (2×2×2 = 8).

Note: You can only use one -1 per reshape operation.

​Flattening NumPy Arrays

Flattening converts multi-dimensional arrays into 1D arrays. This is useful for machine learning and data processing.

python

arr = np.array([[1, 2, 3], [4, 5, 6]])

newarr = arr.reshape(-1)

print(newarr)  # [1 2 3 4 5 6]

––––––––
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​Conclusion

NumPy provides powerful tools for managing and transforming arrays efficiently. Key takeaways include:


●  Copy vs. View: Copies are independent, while views reference original data.

●  Shape & Reshape: Understanding dimensions is crucial for reshaping arrays correctly.

●  Unknown Dimensions (-1): NumPy can auto-calculate missing dimensions.

●  Flattening: Reshapes multi-dimensional arrays into 1D for easier processing.



By mastering these concepts, you can efficiently manipulate and optimize data in NumPy. 🚀

​

​Iterating Over NumPy Arrays: A Comprehensive Guide

​Introduction to Iteration in NumPy

Iteration refers to the process of traversing through each element of an array one by one. In Python, iteration can be done using basic for loops. When dealing with NumPy arrays, iteration can be applied to one-dimensional (1D), two-dimensional (2D), and even multi-dimensional arrays.

In NumPy, iterating over a 1D array is straightforward, as each iteration retrieves a single scalar value. However, when working with higher-dimensional arrays, the iteration process requires additional considerations.

Let's start by iterating through a simple 1D array:

python

import numpy as np

arr = np.array([1, 2, 3])

for x in arr:

print(x)

Output:

1

2

3

This basic method works well for 1D arrays but requires a different approach when dealing with multi-dimensional arrays.

​Iterating Through Multi-Dimensional Arrays

​Iterating Over 2D Arrays

In a 2D array, iterating through the elements retrieves rows rather than individual values. The following example demonstrates this:

python

arr = np.array([[1, 2, 3], [4, 5, 6]])

for x in arr:

print(x)

Output:

csharp

[1 2 3]

[4 5 6]

Each iteration returns a 1D array (i.e., a row of the original array). To access individual elements within each row, we need to add a nested loop:

python

for x in arr:

for y in x:

print(y)

Output:

1

2

3

4

5

6

Here, the inner loop ensures that each scalar value is printed.

​Iterating Over 3D Arrays

For a 3D array, iteration works similarly, except that each iteration first retrieves a 2D array:

python

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

for x in arr:

print(x)

Output:

lua

[[1 2 3]

[4 5 6]]

[[ 7  8  9]

[10 11 12]]

To iterate through every individual element, we can use multiple nested loops:

python

for x in arr:

for y in x:

for z in y:

print(z)

Output:

1

2

3

4

5

6

7

8

9

10

11

12

While this method works, it becomes increasingly complex for high-dimensional arrays. Instead of using multiple nested loops, NumPy provides a more efficient way to iterate over elements: nditer().

​Efficient Iteration with nditer()

The nditer() function in NumPy simplifies iteration across multi-dimensional arrays without requiring nested loops.

​Iterating Over All Scalars Using nditer()

Rather than writing multiple loops, we can iterate through every scalar in an array using nditer():

python

arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

for x in np.nditer(arr):

print(x)

Output:

1

2

3

4

5

6

7

8

This method is far more efficient and convenient for high-dimensional arrays.

​Iterating Over Arrays with Different Data Types

By default, nditer() retains the original data type of the array elements. However, we can specify a different data type for iteration using the op_dtypes argument.

​Changing Data Type During Iteration

The example below iterates over an array while treating the elements as strings (S type):

python

arr = np.array([1, 2, 3])

for x in np.nditer(arr, flags=['buffered'], op_dtypes=['S']):

print(x)

Output:

bash

b'1'

b'2'

b'3'

Here, the flags=['buffered'] argument ensures that NumPy creates a temporary buffer to store the new data type during iteration.

​Iterating with a Custom Step Size

We can control the step size when iterating through an array by using slicing. For example, the following code iterates over every second element of a 2D array:

python

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

for x in np.nditer(arr[:, ::2]):  # Selects every second column

print(x)

Output:

1

3

5

7

This method is useful when we only need to process specific elements of an array.

​Enumerating Elements with ndenumerate()

​What is Enumeration?

Enumeration refers to assigning an index to each element while iterating through an array. This is particularly useful when we need to keep track of the position of each element.

​Enumerating 1D Arrays

The ndenumerate() function allows us to iterate while also retrieving the index of each element:

python

arr = np.array([1, 2, 3])

for idx, x in np.ndenumerate(arr):

print(idx, x)

Output:

scss

(0,) 1

(1,) 2

(2,) 3

Here, (0,) represents the index of the first element, (1,) the second, and so on.

​Enumerating 2D Arrays

For higher-dimensional arrays, ndenumerate() provides multi-index values:

python

arr = np.array([[1, 2], [3, 4]])

for idx, x in np.ndenumerate(arr):

print(idx, x)

Output:

scss

(0, 0) 1

(0, 1) 2

(1, 0) 3

(1, 1) 4

Each index tuple corresponds to the position of the element in the array.

​Conclusion

NumPy provides multiple ways to iterate through arrays efficiently. The standard for loop works well for small arrays, but as dimensions increase, methods like nditer() and ndenumerate() offer more optimized solutions.

​Key Takeaways:


	
Basic Iteration: Use a for loop to iterate over 1D arrays.

	
Multi-Dimensional Iteration: Use nested loops for 2D and 3D arrays.

	
Efficient Iteration: Use nditer() to simplify iteration across all elements.

	
Changing Data Types: Use op_dtypes in nditer() to modify data types.

	
Custom Step Sizes: Use slicing (arr[:, ::2]) to iterate selectively.

	
Enumerating Elements: Use ndenumerate() to retrieve both index and value.



By leveraging these techniques, we can iterate through NumPy arrays efficiently and effectively, regardless of their complexity.

​

​Advanced Operations on NumPy Arrays: Joining and Splitting

​Joining NumPy Arrays

Joining (concatenation) in NumPy refers to combining two or more arrays into a single array. Unlike SQL, where tables are joined based on keys, NumPy allows arrays to be merged along specified axes. The concatenate() function is used for this purpose, and if no axis is specified, it defaults to axis=0.

​Concatenating One-Dimensional Arrays

A basic example of joining two 1D arrays:

python

import numpy as np

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

arr = np.concatenate((arr1, arr2))

print(arr)

Output:

csharp

[1 2 3 4 5 6]

​Concatenating Two-Dimensional Arrays

When working with 2D arrays, concatenation can be performed along different axes.

python

arr1 = np.array([[1, 2], [3, 4]])

arr2 = np.array([[5, 6], [7, 8]])

arr = np.concatenate((arr1, arr2), axis=1)

print(arr)

Output:

lua

[[1 2 5 6]

[3 4 7 8]]

Here, the arrays are concatenated along axis=1, meaning they are combined column-wise.

​Stacking Arrays

Stacking is a similar concept to concatenation but introduces a new axis, effectively creating a higher-dimensional array.

​Stacking One-Dimensional Arrays

The stack() function is used to add a new dimension while joining arrays.

python

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

arr = np.stack((arr1, arr2), axis=1)

print(arr)

Output:

lua

[[1 4]

[2 5]

[3 6]]

Here, axis=1 ensures that the arrays are stacked column-wise.

​Stacking Along Rows (Horizontal Stacking)

NumPy provides the hstack() function for horizontal stacking.

python

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

arr = np.hstack((arr1, arr2))

print(arr)

Output:

csharp

[1 2 3 4 5 6]

This is similar to concatenation along axis=1.

​Stacking Along Columns (Vertical Stacking)

For stacking along rows, NumPy provides the vstack() function.

python

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

arr = np.vstack((arr1, arr2))

print(arr)

Output:

lua

[[1 2 3]

[4 5 6]]

This results in a 2D array where the original arrays are stacked row-wise.

​Stacking Along Depth (Depth Stacking)

The dstack() function stacks arrays along the third dimension.

python

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

arr = np.dstack((arr1, arr2))

print(arr)

Output:

lua

[[[1 4]

[2 5]

[3 6]]]

Here, the arrays are stacked depth-wise, forming a 3D array.

​Splitting NumPy Arrays

Splitting is the reverse of joining—it divides a single array into multiple arrays. This is done using the array_split() function, where the array and the number of divisions are specified.

​Splitting One-Dimensional Arrays

For example, splitting a 1D array into three parts:

python

arr = np.array([1, 2, 3, 4, 5, 6])

newarr = np.array_split(arr, 3)

print(newarr)

Output:

scss

[array([1, 2]), array([3, 4]), array([5, 6])]

If the number of splits does not evenly divide the elements, NumPy automatically adjusts:

python

arr = np.array([1, 2, 3, 4, 5, 6])

newarr = np.array_split(arr, 4)

print(newarr)

Output:

scss

[array([1, 2]), array([3, 4]), array([5]), array([6])]

Here, the last two arrays have fewer elements.

​Splitting Two-Dimensional Arrays

The same function can be applied to 2D arrays.

python

arr = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]])

newarr = np.array_split(arr, 3)

print(newarr)

Output:

lua

[array([[1, 2], [3, 4]]), 

array([[5, 6], [7, 8]]), 

array([[9, 10], [11, 12]])]

Each resulting array is still a 2D array.

​Splitting Along Different Axes

You can specify an axis along which the split occurs. The following example splits the array along columns (axis=1):

python

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15], [16, 17, 18]])

newarr = np.array_split(arr, 3, axis=1)

print(newarr)

Output:

css

[array([[ 1], [ 4], [ 7], [10], [13], [16]]), 

array([[ 2], [ 5], [ 8], [11], [14], [17]]), 

array([[ 3], [ 6], [ 9], [12], [15], [18]])]

Each column has been split into a separate sub-array.

​Alternative Methods for Splitting

NumPy provides specialized functions such as:


●  hsplit() for horizontal splits (row-wise)

●  vsplit() for vertical splits (column-wise)

●  dsplit() for depth-wise splits



Example using hsplit():

python

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15], [16, 17, 18]])

newarr = np.hsplit(arr, 3)

print(newarr)

Output:

css

[array([[ 1], [ 4], [ 7], [10], [13], [16]]), 

array([[ 2], [ 5], [ 8], [11], [14], [17]]), 

array([[ 3], [ 6], [ 9], [12], [15], [18]])]

Similarly, vsplit() and dsplit() provide ways to split arrays along their respective dimensions.

​Conclusion

Joining and splitting are essential operations in NumPy, allowing flexible manipulation of arrays for data processing. Whether concatenating along different axes, stacking arrays for new dimensions, or splitting arrays into smaller parts, NumPy provides efficient and intuitive functions to handle multidimensional data with ease.

​

​

Searching and Sorting in NumPy Arrays

Search in NumPy Arrays

NumPy allows us to search for specific values in an array and return the indices where those values match. The where() function is used for this purpose. For example, to find the indices where the value is 4 in an array:

python

arr = np.array([1, 2, 3, 4, 5, 4, 4])

x = np.where(arr == 4)

print(x)  # (array([3, 5, 6]),)

This returns a tuple indicating that the value 4 is present at indices 3, 5, and 6. You can also search for even numbers using a modulo condition:

python

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

x = np.where(arr % 2 == 0)

print(x)  # (array([1, 3, 5, 7]),)

Sorted Search

The searchsorted() function performs a binary search in a sorted array and returns the index where a specified value can be inserted while maintaining the order of the array. For example, to find the index where the value 4 should be inserted in the sorted array [1, 3, 5, 7, 9]:

python

arr = np.array([1, 3, 5, 7, 9])

x = np.searchsorted(arr, 4)

print(x)  # 2

The result indicates that 4 should be inserted at index 2 to maintain the sorted order. If the array is unsorted, the result will differ:

python

arr = np.array([1, 3, 5, 3, 1, 7, 9])

x = np.searchsorted(arr, 4)

print(x)  # 5

Searching from the Right

By default, searchsorted() returns the leftmost index. However, to get the rightmost index, the side='right' parameter can be passed:

python

arr = np.array([6, 7, 8, 9])

x = np.searchsorted(arr, 7, side='right')

print(x)  # 2

Searching Multiple Values

You can search for multiple values by passing a list to searchsorted():

python

arr = np.array([1, 3, 5, 7])

x = np.searchsorted(arr, [2, 4, 6])

print(x)  # [1 2 3]

This returns the indices where the values [2, 4, 6] should be inserted in the array [1, 3, 5, 7].

Sorting NumPy Arrays

Sorting refers to placing elements in a specific order, such as numerical or alphabetical, and can be in ascending or descending order. NumPy provides the sort() function to sort an array:

python

arr = np.array([3, 2, 0, 1])

print(np.sort(arr))  # [0 1 2 3]

Note that this method returns a sorted copy of the array, leaving the original array unchanged.

You can also sort arrays of strings alphabetically:

python

arr = np.array(['banana', 'cherry', 'apple'])

print(np.sort(arr))  # ['apple' 'banana' 'cherry']

For boolean arrays, True values are sorted after False values:

python

arr = np.array([True, False, True])

print(np.sort(arr))  # [False True True]

Sorting 2-D Arrays

When sorting a 2D array using sort(), each row is sorted independently:

python

arr = np.array([[3, 2, 4], [5, 0, 1]])

print(np.sort(arr))  # [[2 3 4] [0 1 5]]

––––––––
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Summary

In summary, NumPy provides powerful tools for searching and sorting arrays. The where() method allows searching for values, while searchsorted() performs binary searches in sorted arrays. Additionally, sorting arrays using sort() can be done for both 1D and 2D arrays, and multiple values can be searched or inserted efficiently with these methods.

​

​

Filtering NumPy Arrays

Filtering Arrays Using Boolean Indexing

Filtering is the process of extracting specific elements from an existing array and creating a new array. In NumPy, a boolean index list is used for filtering, where a list of logical values (True or False) corresponds to the indices of the original array. If the value at an index is True, the element at that index is included in the filtered array; otherwise, it is excluded.

For example, let's create a new array from the elements at index 0 and 2:

python

arr = np.array([41, 42, 43, 44])

x = [True, False, True, False]

newarr = arr[x]

print(newarr)  # [41 43]

Here, the output [41, 43] is returned because the boolean filter includes elements where the corresponding value in the boolean list is True.

Creating Filter Arrays Based on Conditions

In practice, filter arrays are usually created based on conditions rather than hardcoded boolean values. For example, let's filter values greater than 42 from an array:

python

arr = np.array([41, 42, 43, 44])

filter_arr = []

for element in arr:

if element > 42:

filter_arr.append(True)

else:

filter_arr.append(False)

newarr = arr[filter_arr]

print(filter_arr)  # [False, False, True, True]

print(newarr)  # [43 44]

In this case, only the values greater than 42 (i.e., 43 and 44) are included in the new array.

Similarly, let's filter out even numbers from an array:

python

arr = np.array([1, 2, 3, 4, 5, 6, 7])

filter_arr = []

for element in arr:

if element % 2 == 0:

filter_arr.append(True)

else:

filter_arr.append(False)

newarr = arr[filter_arr]

print(filter_arr)  # [False, True, False, True, False, True, False]

print(newarr)  # [2 4 6]

This filter creates an array containing only even numbers.

Direct Filtering Using Array Conditions

Instead of manually creating a filter array using a loop, NumPy allows for more concise filtering directly using array conditions. This method is both efficient and easier to read. For example, to filter values greater than 42 directly from the array:

python

arr = np.array([41, 42, 43, 44])

filter_arr = arr > 42

newarr = arr[filter_arr]

print(filter_arr)  # [False False  True  True]

print(newarr)  # [43 44]

Similarly, to filter even numbers directly from an array:

python

arr = np.array([1, 2, 3, 4, 5, 6, 7])

filter_arr = arr % 2 == 0

newarr = arr[filter_arr]

print(filter_arr)  # [False  True False  True False  True False]

print(newarr)  # [2 4 6]

––––––––
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Working with Random Numbers in NumPy

Pseudo-Random vs. True Random Numbers

In computing, the concept of randomness is often based on algorithms rather than true unpredictability. Computers follow precise instructions, so a random number generator is an algorithm that produces numbers that appear random but are, in fact, predictable. These are referred to as pseudo-random numbers.

True random numbers are generated from external, unpredictable sources like mouse movements, keystrokes, or network data. However, in most non-security applications (such as simulations or games), pseudo-random numbers are sufficient.

Generating Random Integers

NumPy's random module provides various functions for generating random numbers. For example, to generate a random integer between 0 and 100, we can use:

python

from numpy import random
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