

 MicroPython with Raspberry Pi Pico A Complete Beginner’s Guide to Programming

 Microcontroller Programming Series

 Sarful Hassan

 Published by Sarful Hassan, 2025.

MicroPython with Raspberry Pi Pico

A Complete Beginner’s Guide to Programming

By Sarful Hassan

Preface

Who This Book Is For

This book is written for beginners who are new to Raspberry Pi Pico and MicroPython programming. Whether you are a student, hobbyist, or electronics enthusiast, this guide will help you get started with coding and hardware projects step by step.

How This Book Is Organized

The book is divided into four parts:

Part I: Getting Started – Covers the basics of Raspberry Pi Pico hardware and setting up MicroPython.

Part II: Core Programming Foundations – Introduces Python fundamentals tailored for the Pico.

Part III: Interfacing with Hardware – Explains how to connect and control hardware components.

Part IV: Communication & Connectivity – Discusses protocols and Wi-Fi capabilities with Pico W.

What Was Left Out

To keep this book beginner-friendly, some advanced topics such as C/C++ SDK development, real-time operating systems, and advanced networking are not covered. These may be included in future editions.

Release Notes

This is the first edition of the book, prepared with a focus on clarity, simplicity, and practical examples.

Notes on the First Edition

As this is the first release, your feedback will be invaluable for improving future editions. Please share your suggestions for topics you’d like to see covered.

How to Contact Us

We value your feedback, questions, and suggestions. Feel free to reach out via email:

Email: mdmahbubahmed522503@gmail.com

Acknowledgments for the First Edition

Special thanks to my family, friends, and colleagues for their continuous support and encouragement during the writing of this book.

Copyright

© mechatronicslab.net. All rights reserved.

Disclaimer

Every effort has been made to ensure the accuracy of the information in this book. However, the author assumes no responsibility for errors or omissions. The content is provided "as is" without warranty of any kind. Readers are advised to use this book as a guide and apply concepts responsibly.

	[image:]

	
	[image:]

[image:]

Part I: Getting Started

[image:]

	[image:]

	
	[image:]

[image:]

Chapter-1 Introduction to Raspberry Pi Pico

[image:]

Introduction to Raspberry Pi Pico

The Raspberry Pi Pico is a tiny but powerful microcontroller board. Unlike a full Raspberry Pi computer, it doesn’t have a screen or operating system. Instead, you write a program on your computer and upload it to the Pico. Once programmed, it can control hardware like LEDs, motors, and sensors all by itself.

[Insert Image: Raspberry Pi Pico Board with Labels]

What Is the Raspberry Pi Pico?

	Built around the RP2040 microcontroller chip

	USB port for power and programming

	Multiple pins to connect with external components

	Small, lightweight, and affordable

Why Learn Raspberry Pi Pico?

	Control LEDs, buzzers, displays, and sensors

	Build simple robots and automation systems

	Create Internet of Things (IoT) projects with Raspberry Pi Pico W

	Learn programming and electronics in a practical way

Key Features

	
RP2040 dual-core processor with 133 MHz speed

	
264 KB RAM for running code

	
26 GPIO pins for input and output connections

	Supports MicroPython and C/C++

	Very low cost

What You Need to Begin

	Raspberry Pi Pico or Pico W

	USB cable for connection

	Computer with internet access

	Thonny IDE for MicroPython programming

	Optional: LEDs, resistors, sensors, jumper wires

Common Beginner Questions

	
Is it the same as Raspberry Pi 4? – No, Pico is a microcontroller, not a full computer

	
Does it need the internet? – No, but Pico W can use Wi-Fi if needed

	
Is it fragile? – It is durable if you connect components properly

	[image:]

	
	[image:]

[image:]

Chapter-2 Hardware Overview & Pinout

[image:]

Hardware Overview & Pinout

The Raspberry Pi Pico is a compact board with multiple useful hardware features. Understanding these features and the pinout is important before connecting components.

[Insert Image: Raspberry Pi Pico Board with Labels]

Main Components

	
RP2040 Microcontroller: Dual-core ARM Cortex-M0+ processor, up to 133 MHz

	
Flash Memory (2 MB): Stores programs and MicroPython firmware

	
SRAM (264 KB): Working memory for running code

	
Micro-USB Port: Power and programming interface

	
BOOTSEL Button: Used for entering firmware programming mode

	
Onboard LED: Connected to GP25, useful for testing

	
Voltage Regulator: Converts input power (1.8–5.5V) to 3.3V

	
Crystal Oscillator (12 MHz): Provides clock signal

	
SWD Debug Pins: For advanced debugging

Power Supply Options

	
VBUS (5V from USB): Power via computer or USB adapter

	
VSYS (1.8–5.5V): Power input from battery or other source

	
3V3 (Output Pin): Regulated 3.3V supply to external components (max 300 mA)

	
GND (Ground Pins): Common ground for all circuits

GPIO Functions

	
Digital Input/Output: Read HIGH/LOW or output HIGH/LOW

	
PWM (Pulse Width Modulation): Control motor speed, LED brightness

	
ADC (Analog to Digital Conversion): 12-bit, 3 channels (GP26, GP27, GP28)

	
UART: Serial communication, multiple pins available

	
I²C: Data transfer between sensors and devices, multiple pins available

	
SPI: High-speed device communication, multiple pins available

239DEBUG1LEDUSBBOOTSEL

Important Pins

	
Power Pins: VSYS, VBUS, 3V3, GND

	
Analog Pins: GP26 (ADC0), GP27 (ADC1), GP28 (ADC2)

	
Onboard LED: GP25

	
RUN Pin: Reset or enable/disable microcontroller

Example: Blink LED on GPIO 15

from machine import Pin

import time

led = Pin(15, Pin.OUT)

while True:

led.toggle()

time.sleep(1)

Raspberry Pi Pico Pin-by-Pin Reference Table

The Raspberry Pi Pico has 40 pins in total, with 26 multifunctional GPIO pins. Each pin can serve different purposes depending on how you configure it in code.

Pin Reference Table

	Pin No.

	Name

	Type / Function

	Notes

	1

	GP0

	GPIO / UART0 TX / I²C0 SDA / SPI0 RX

	Multipurpose

	2

	GP1

	GPIO / UART0 RX / I²C0 SCL / SPI0 CSn

	Multipurpose

	3

	GND

	Ground

	Common ground

	4

	GP2

	GPIO / UART1 TX / I²C1 SDA / SPI0 SCK

	Multipurpose

	5

	GP3

	GPIO / UART1 RX / I²C1 SCL / SPI0 TX

	Multipurpose

	6

	GND

	Ground

	Common ground

	7

	GP4

	GPIO / UART1 TX / I²C0 SDA / SPI0 RX

	Multipurpose

	8

	GP5

	GPIO / UART1 RX / I²C0 SCL / SPI0 CSn

	Multipurpose

	9

	GND

	Ground

	Common ground

	10

	GP6

	GPIO / UART1 TX / I²C1 SDA / SPI0 SCK

	Multipurpose

	11

	GP7

	GPIO / UART1 RX / I²C1 SCL / SPI0 TX

	Multipurpose

	12

	GND

	Ground

	Common ground

	13

	GP8

	GPIO / UART1 TX / I²C0 SDA / SPI1 RX

	Multipurpose

	14

	GP9

	GPIO / UART1 RX / I²C0 SCL / SPI1 CSn

	Multipurpose

	15

	GND

	Ground

	Common ground

	16

	GP10

	GPIO / UART1 TX / I²C1 SDA / SPI1 SCK

	Multipurpose

	17

	GP11

	GPIO / UART1 RX / I²C1 SCL / SPI1 TX

	Multipurpose

	18

	GND

	Ground

	Common ground

	19

	GP12

	GPIO / UART0 TX / I²C0 SDA / SPI1 RX

	Multipurpose

	20

	GP13

	GPIO / UART0 RX / I²C0 SCL / SPI1 CSn

	Multipurpose

	21

	GND

	Ground

	Common ground

	22

	GP14

	GPIO / UART0 TX / I²C1 SDA / SPI1 SCK

	Multipurpose

	23

	GP15

	GPIO / UART0 RX / I²C1 SCL / SPI1 TX

	Multipurpose

	24

	GND

	Ground

	Common ground

	25

	GP16

	GPIO / UART0 TX / I²C0 SDA / SPI0 RX

	Multipurpose

	26

	GP17

	GPIO / UART0 RX / I²C0 SCL / SPI0 CSn

	Multipurpose

	27

	GND

	Ground

	Common ground

	28

	GP18

	GPIO / UART0 TX / I²C1 SDA / SPI0 SCK

	Multipurpose

	29

	GP19

	GPIO / UART0 RX / I²C1 SCL / SPI0 TX

	Multipurpose

	30

	GND

	Ground

	Common ground

	31

	GP20

	GPIO / UART1 TX / I²C0 SDA / SPI0 RX

	Multipurpose

	32

	GP21

	GPIO / UART1 RX / I²C0 SCL / SPI0 CSn

	Multipurpose

	33

	GND

	Ground

	Common ground

	34

	GP22

	GPIO / General use

	Multipurpose

	35

	RUN

	Reset / Enable

	Active low reset

	36

	GP26

	ADC0 / GPIO

	Analog input (0–3.3V)

	37

	GP27

	ADC1 / GPIO

	Analog input (0–3.3V)

	38

	GND

	Ground

	Common ground

	39

	GP28

	ADC2 / GPIO

	Analog input (0–3.3V)

	40

	ADC_VREF

	ADC Reference Voltage

	Default 3.3V, external reference possible

	41

	3V3(OUT)

	Power Output

	3.3V regulated output, max ~300 mA

	42

	3V3_EN

	Enable

	Controls 3.3V regulator

	43

	GND

	Ground

	Common ground

	44

	VSYS

	Power Input

	1.8–5.5V input

	45

	VBUS

	USB Power (5V)

	From USB connector

	46

	SWCLK

	Debug

	Serial Wire Debug clock

	47

	SWDIO

	Debug

	Serial Wire Debug data

Notes

	Onboard LED is connected to GP25 (not on external pins).

	
ADC_VREF is normally tied to 3.3V but can be given an external reference.

	Multiple functions are flexible; you can reassign pins in MicroPython code.

	[image:]

	
	[image:]

[image:]

Chapter-3 Setting Up MicroPython & Thonny IDE

[image:]

Setting Up MicroPython & Thonny IDE

To program the Raspberry Pi Pico, you need to load it with MicroPython firmware and then use an editor to write and run code. The most beginner-friendly option is the Thonny IDE, which makes coding and uploading programs very simple.

[Insert Image: Raspberry Pi Pico Connected to Laptop with USB Cable]

Step 1: Install Thonny IDE on Your Computer

	Visit the official Thonny website: thonny.org

	Download the correct installer for your operating system:
	Windows: .exe installer

	macOS: .dmg file

	Linux: available as a package in most distributions

	Run the installer and complete the setup.

	After installation, open Thonny. You will see a simple coding environment with two main areas:
	
Editor: where you type your code

	
Shell: where you see the results and messages

[image: Thonny, Python IDE for beginners]

Step 2: Download the MicroPython Firmware

	Go to the Raspberry Pi official website (raspberrypi.com → Documentation → Pico → Getting Started).

	Find the MicroPython for RP2040 (UF2 file) download link.

	Download and save the .uf2 firmware file on your computer. This file will be used to install MicroPython on the Pico.

Step 3: Put the Pico into Bootloader Mode

	Unplug the Pico if it’s already connected.

	Press and hold the BOOTSEL button on the Pico board.

	While holding the button, connect the Pico to your computer with a USB cable.

	Release the button after plugging in.

	Your computer will detect the Pico as a USB storage drive (similar to a flash drive).

Step 4: Copy the Firmware File

	Open the Pico USB drive on your computer.

	Drag and drop the downloaded .uf2 file onto the Pico drive.

	Once copied, the Pico will automatically restart.

	After restarting, the Pico is now running MicroPython.

Step 5: Configure Thonny for Raspberry Pi Pico

	Open Thonny IDE.

	Go to the top menu and select Tools → Options → Interpreter.

	In the Interpreter dropdown menu, choose MicroPython (Raspberry Pi Pico).

	Under “Port” or “Device,” select the correct USB COM port (on Windows) or /dev/ttyACM0 (on Linux/macOS).

	Click OK.

[image: Thonny IDE User Guide - QuecPython]

Step 6: Verify Your Setup

	In Thonny’s editor, type the following program:

print("Hello, Raspberry Pi Pico!")

	Click the Run button (green triangle at the top).

	If everything is correct, you will see:

Hello, Raspberry Pi Pico!

printed in the Shell window.

Step 7: Save a Program to Pico

	Write another simple program in Thonny:

from machine import Pin

import time

led = Pin(25, Pin.OUT)

while True:

led.toggle()

time.sleep(0.5)

	Click Run. The built-in LED on your Pico should blink.

	To save permanently:
	Choose File → Save As.

	Select Raspberry Pi Pico.

	Save it as main.py.

	The Pico will now automatically run this program each time it is powered on.

	[image:]

	
	[image:]

[image:]

Part II: Core Programming Foundations

[image:]

	[image:]

	
	[image:]

[image:]

Chapter-4 Variables & Data Types

[image:]

Integer Numbers for Raspberry Pi Pico

Let’s Begin with Integer Numbers

When programming your Raspberry Pi Pico with MicroPython, one of the first things you will need is numbers. Numbers let us count, calculate, and control hardware. For example, if you want the Pico to blink an LED 10 times, you are already using an integer.

What Exactly Are Integer Numbers?

Integer numbers are whole numbers without decimals or fractions. In MicroPython on the Raspberry Pi Pico, integers can be positive, negative, or zero.

Why Do We Need Integer Numbers?

	To count how many times something happens

	To set loop limits (repeat an action 5 times)

	To store sensor values as whole numbers

	To control hardware using step values

Basic Rules for Integer Numbers

	Integers must not have decimal points

number = 10 # correct

number = 10.5 # not an integer

	You can use integers in calculations

a = 7

b = 3

result = a + b # 10

	Integers can be negative or zero

temp = -5

count = 0

Syntax: Integer Numbers

General usage:

variable_name = integer_value

Examples:

x = 25

y = -12

z = 0

Parameters: Integer Numbers

	Whole numbers only

	Can be positive, negative, or zero

	No decimal points allowed

Returns: Integer Numbers

	An integer value stored in the variable

	Can be used directly in math, loops, or conditions

Warnings: Integer Numbers

	Leading zeros are not allowed

	Mixing integers and strings without conversion causes errors

	Very large numbers may cause memory issues

Common Mistakes with Integer Numbers

Wrong code:

x = "10" + 5

This causes an error because string and integer cannot be added

Corrected code:

x = int("10") + 5

x = 15

Wrong code:

y = 05

This is invalid because leading zeros are not allowed

Corrected code:

y = 5

Try It Yourself Project: Integer Counter with LED

Project Overview

Blink an LED a specific number of times using an integer counter.

Things You’ll Need

	Raspberry Pi Pico board

	1 LED

	1 Resistor (220 Ω)

	Breadboard

	Jumper wires

Tools & Software

	Thonny IDE

	MicroPython firmware on Raspberry Pi Pico

Circuit Connection with Explanation

	Connect the long leg (anode) of the LED to GPIO 15 through a 220 Ω resistor

	Connect the short leg (cathode) of the LED to GND

Coding Time

from machine import Pin

from time import sleep

led = Pin(15, Pin.OUT)

blink_count = 5

for i in range(blink_count):

led.value(1) # LED ON

sleep(0.5)

led.value(0) # LED OFF

sleep(0.5)

print("Blinking complete!")

Run the Program

	Save the file as blink.py

	Upload it to the Raspberry Pi Pico

	Run the program from Thonny

Output You’ll Get

	LED blinks exactly 5 times

	Console prints: Blinking complete!

Floating-Point Numbers for Raspberry Pi Pico

Let’s Begin with Floating-Point Numbers

In many projects, you will need more than just whole numbers. Imagine measuring temperature, calculating sensor values, or working with precise timings. These values often include decimals, and that is where floating-point numbers come in.

What Exactly Are Floating-Point Numbers?

Floating-point numbers (often called floats) are numbers that can have a decimal point. In MicroPython on the Raspberry Pi Pico, floats let you represent values like 3.14, -2.5, or 0.01.

Why Do We Need Floating-Point Numbers?

	To represent fractions and decimal values

	For precise sensor readings such as temperature or voltage

	For timing calculations with decimal seconds

	To handle math functions like division or trigonometry

Basic Rules for Floating-Point Numbers

	Floats must contain a decimal point

pi = 3.14 # correct

pi = 3 # integer, not float

	Floats can be positive, negative, or zero

value = -2.5

temperature = 0.0

	Floats can be used in arithmetic operations

a = 5.5

b = 2.0

result = a / b # 2.75

Syntax: Floating-Point Numbers

General usage:

variable_name = float_value

Examples:

x = 10.0

y = -4.75

z = 0.5

Parameters: Floating-Point Numbers

	Any number with a decimal point

	Can be written in standard form (3.14)

	Can be written in scientific notation (1.2e3 means 1200.0)

Returns: Floating-Point Numbers

	A decimal value stored in the variable

	Usable in math operations, loops, and conditions

Warnings: Floating-Point Numbers

	Floating-point values may not be exact due to memory storage

	Large floats can lose precision

	Do not compare floats directly using ==, as tiny differences may occur

Common Mistakes with Floating-Point Numbers

Wrong code:

x = "3.5" + 2

This fails because a string and float cannot be added

Corrected code:

x = float("3.5") + 2

x = 5.5

Wrong code:

y = 5,5

This is invalid, Python reads it as two numbers separated by a comma

Corrected code:

y = 5.5

Try It Yourself Project: Using Float for LED Delay

Project Overview

Blink an LED with a floating-point delay to demonstrate decimal timing.

Things You’ll Need

	Raspberry Pi Pico board

	1 LED

	1 Resistor (220 Ω)

	Breadboard

	Jumper wires

Tools & Software

	Thonny IDE

	MicroPython firmware on Raspberry Pi Pico

Circuit Connection with Explanation

	Connect the long leg (anode) of the LED to GPIO 15 through a 220 Ω resistor

	Connect the short leg (cathode) of the LED to GND

Coding Time

from machine import Pin

from time import sleep

led = Pin(15, Pin.OUT)

delay_time = 0.25 # floating-point value in seconds

for i in range(10):

led.value(1) # LED ON

sleep(delay_time)

led.value(0) # LED OFF

sleep(delay_time)

print("Blinking with float delay complete!")

Run the Program

	Save the file as float_blink.py

	Upload it to the Raspberry Pi Pico

	Run the program from Thonny

Output You’ll Get

	LED blinks 10 times with 0.25 seconds ON and 0.25 seconds OFF

	Console prints: Blinking with float delay complete!

Boolean Values for Raspberry Pi Pico

Let’s Begin with Boolean Values

In programming, we often need simple answers like yes or no, on or off, true or false. Boolean values make this possible. With your Raspberry Pi Pico, Booleans are especially useful when checking conditions, controlling devices, or making decisions in code.

What Exactly Are Boolean Values?

Boolean values represent two possible states: True or False. In MicroPython on the Raspberry Pi Pico, Booleans are a data type that help you decide whether something should happen or not. For example, turning an LED on when a button is pressed can be controlled using a Boolean.

Why Do We Need Boolean Values?

	To represent conditions such as on/off or high/low

	To make decisions in programs with if statements

	To control hardware like LEDs, motors, or relays

	To check whether loops or actions should continue

Basic Rules for Boolean Values

	Booleans have only two values: True or False

light_on = True

door_open = False

	Booleans are often the result of comparisons

x = 5

y = 10

result = x < y # True because 5 is less than 10

	Booleans can be used directly in conditions

is_ready = True

if is_ready:

print("System is ready")

Syntax: Boolean Values

General usage:

variable_name = True

variable_name = False

Examples:

status = True

power = False

check = (5 > 3) # evaluates to True

Parameters: Boolean Values

	Accepts only True or False

	Can result from logical or comparison operations

Returns: Boolean Values

	Always returns True or False

	Can be used in conditions, loops, or logic checks

Warnings: Boolean Values

	Do not confuse Boolean True/False with string "True"/"False"

	1 is treated as True and 0 as False, but writing them directly can cause confusion

	Capitalization matters; true or false will not work

Common Mistakes with Boolean Values

Wrong code:

status = "True"

if status:

print("Active")

This works incorrectly because "True" is a string, not a Boolean

Corrected code:

status = True

if status:

print("Active")

Wrong code:

flag = true

This gives an error because true is not valid in Python

Corrected code:

flag = True

Try It Yourself Project: Button Control with Boolean

Project Overview

Use a Boolean to check button state and control an LED on the Raspberry Pi Pico.

Things You’ll Need

	Raspberry Pi Pico board

	1 LED

	1 Resistor (220 Ω)

	1 Push button

	Breadboard

	Jumper wires

Tools & Software

	Thonny IDE

	MicroPython firmware on Raspberry Pi Pico

Circuit Connection with Explanation

	Connect LED anode to GPIO 15 through a 220 Ω resistor

	Connect LED cathode to GND

	Connect button between GPIO 14 and GND

	Configure internal pull-up for the button in code

Coding Time

from machine import Pin

from time import sleep

led = Pin(15, Pin.OUT)

button = Pin(14, Pin.IN, Pin.PULL_UP)

while True:

button_state = button.value() == 0 # True when pressed

if button_state:

led.value(1) # LED ON

else:

led.value(0) # LED OFF

sleep(0.1)

Run the Program

	Save the file as boolean_led.py

	Upload it to the Raspberry Pi Pico

	Run the program from Thonny

Output You’ll Get

	LED turns ON when button is pressed

	LED turns OFF when button is released

Strings for Raspberry Pi Pico

Let’s Begin with Strings

Numbers are useful, but sometimes we need to work with text. For example, showing a message, reading sensor labels, or sending data over communication requires text handling. In MicroPython on the Raspberry Pi Pico, text is managed using strings.

What Exactly Are Strings?

Strings are sequences of characters enclosed in quotes. Characters can be letters, digits, or even symbols. In the Raspberry Pi Pico, strings are often used to display messages, store user input, or communicate with other devices.

Why Do We Need Strings?

	To display messages on the console or screen

	To label data values like temperature readings

	To send text through serial communication

	To combine words, numbers, or sensor outputs into readable text

Basic Rules for Strings

	Strings must be inside quotes

message = "Hello Pico"

name = 'Raspberry'

	Strings can be joined (concatenated)

a = "Raspberry"

b = "Pi Pico"

result = a + " " + b # Raspberry Pi Pico

	Strings can be repeated

star = "*" * 5

print(star) # *****

	You can access individual characters using indexes

word = "Pico"

print(word[0]) # P

print(word[2]) # c

Syntax: Strings

General usage:

variable_name = "text"

Examples:

x = "LED ON"

y = 'MicroPython'

z = "12345"

Parameters: Strings

	Any sequence of characters

	Must be enclosed in single or double quotes

	Can include spaces, digits, and symbols

Returns: Strings

	Always returns text data

	Can be used in print statements, combined with other strings, or stored in variables

Warnings: Strings

	Do not forget the quotes; without them, Python thinks it is a variable name

	Mixing strings and numbers directly causes errors

	String indexes start from 0, not 1

Common Mistakes with Strings

Wrong code:

text = Hello

Error because quotes are missing

Corrected code:

text = "Hello"

Wrong code:

x = "Age: " + 20

Error because you cannot add string and integer directly

Corrected code:

x = "Age: " + str(20)

Try It Yourself Project: Display Message with Button Press

Project Overview

When a button is pressed, display a string message in the console using the Raspberry Pi Pico.

Things You’ll Need

	Raspberry Pi Pico board

	1 Push button

	Breadboard

	Jumper wires

Tools & Software

	Thonny IDE

	MicroPython firmware on Raspberry Pi Pico

Circuit Connection with Explanation

	Connect one side of the button to GPIO 14

	Connect the other side to GND

	Use internal pull-up in code to detect press

Coding Time

from machine import Pin

from time import sleep

button = Pin(14, Pin.IN, Pin.PULL_UP)

while True:

if button.value() == 0: # Button pressed

message = "Button Pressed! Hello Raspberry Pi Pico"

print(message)

sleep(0.5)

Run the Program

	Save the file as string_button.py

	Upload it to the Raspberry Pi Pico

	Run the program from Thonny

Output You’ll Get

	When button is pressed, console shows: Button Pressed! Hello Raspberry Pi Pico

	If button is not pressed, nothing is displayed

Bytes for Raspberry Pi Pico

Let’s Begin with Bytes

In some Raspberry Pi Pico projects, you need to work with raw data. This happens when sending or receiving information over communication protocols like UART, I²C, or SPI. For this purpose, MicroPython provides a special data type called bytes.

What Exactly Are Bytes?

Bytes are sequences of numbers where each number represents a value between 0 and 255. In the Raspberry Pi Pico, bytes are often used for handling binary data, communication with sensors, or controlling hardware modules.

Why Do We Need Bytes?

	To communicate with hardware modules and sensors

	To store and transfer raw binary data

OEBPS/d2d_images/chapter_title_above.png

OEBPS/d2d_images/chapter_title_corner_decoration_left.png

OEBPS/d2d_images/cover.jpg
MICROPYTHON

WITH
RASPBERRY PIPICO

A Complete Beginner’s Guide
to Programming

SARFUL HASSAN

OEBPS/d2d_images/image001.png
Fie Gt View fun Took Help

DSE

0%

EERs

st st

=

OEBPS/d2d_images/chapter_title_corner_decoration_right.png

OEBPS/d2d_images/image000.png
T Thonry aptions
e rterprter dor The & fort. Ran &g Trminal Sl Asitnt

Wi i ot should heny e for iy o
cipbon erere)

oty e b compa s g el
o oty oy e st proper U5 diver .

e o pogram on ot
[Esean——,

9 e e i e e ok
[Er T ——

OEBPS/d2d_images/chapter_title_below.png

