

Exclusive Online Resources for You

As our valued reader, your purchase of this book includes access to exclusive online resources designed to enhance your learning experience. These resources can be downloaded from our website, www.vibrantpublishers.com, and are created to help you apply Java® concepts effectively.

Online resources for this book include the following:

1.Java codes used in the book

2.Additional coding tasks

Why are these online resources valuable:

●Practical application: The downloadable codes are provided for easy testing and use.

●Enhanced learning experience: The additional coding tasks will provide hands-on experience and help you apply the knowledge learned from the book in practical scenarios.

How to access your online resources:

1.Visit the website: Go to www.vibrantpublishers.com

2.Find your book: Navigate to the book’s product page via the “Shop” menu or by searching for the book title in the search bar.

3.Request the resources: Scroll down to the "Request Sample Book/Online Resource" section.

4.Enter your details: Enter your preferred email ID and select "Online Resource" as the resource type. Lastly, select “user type” and submit the request.

5.Check your inbox: The resources will be delivered directly to your email.

Alternatively, for quick access: simply scan the QR code below to go directly to the product page and request the online resources by filling in the required details.

[image:]

Happy learning!

[image: image]

JAVA ESSENTIALS VOLUME 2:

OBJECT-ORIENTED PROGRAMMING AND BEYOND

Copyright © 2026, by Vibrant Publishers LLC, USA. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior permission of the publisher.

Published by Vibrant Publishers LLC, USA, www.vibrantpublishers.com

Paperback ISBN 13: 978-1-63651-656-1

Ebook ISBN 13: 978-1-63651-657-8

Hardback ISBN 13: 978-1-63651-658-5

This publication is designed to provide accurate and authoritative information regarding the subject matter covered. The Author has made every effort in the preparation of this book to ensure the accuracy of the information. However, information in this book is sold without warranty, either expressed or implied. The Author or the Publisher will not be liable for any damages caused or alleged to be caused either directly or indirectly by this book.

All trademarks and registered trademarks mentioned in this publication are the property of their respective owners. These trademarks are used for editorial and educational purposes only, without intent to infringe upon any trademark rights. This publication is independent and has not been authorized, endorsed, or approved by any trademark owner.

Vibrant Publishers’ books are available at special quantity discounts for sales promotions, or for use in corporate training programs. For more information, please write to bulkorders@vibrantpublishers.com

Please email feedback/corrections (technical, grammatical, or spelling) to
spellerrors@vibrantpublishers.com

Vibrant publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books in print-on-demand. To access the complete catalog of Vibrant Publishers, visit www.vibrantpublishers.com

SELF-LEARNING MANAGEMENT SERIES

	TITLE
	PAPERBACK* ISBN

	BUSINESS AND ENTREPRENEURSHIP

	BUSINESS COMMUNICATION ESSENTIALS
	9781636511634

	BUSINESS ETHICS ESSENTIALS
	9781636513324

	BUSINESS LAW ESSENTIALS
	9781636511702

	BUSINESS PLAN ESSENTIALS
	9781636511214

	BUSINESS STRATEGY ESSENTIALS
	9781949395778

	ENTREPRENEURSHIP ESSENTIALS
	9781636511603

	INTERNATIONAL BUSINESS ESSENTIALS
	9781636513294

	PRINCIPLES OF MANAGEMENT ESSENTIALS
	9781636511542

	COMPUTER SCIENCE AND TECHNOLOGY

	BLOCKCHAIN ESSENTIALS
	9781636513003

	CYBERSECURITY ESSENTIALS
	9781636514888

	MACHINE LEARNING ESSENTIALS
	9781636513775

	PYTHON ESSENTIALS
	9781636512938

	DATA SCIENCE FOR BUSINESS

	BUSINESS ANALYTICS ESSENTIALS
	9781636514154

	BUSINESS INTELLIGENCE ESSENTIALS
	9781636513362

	DATA ANALYTICS ESSENTIALS
	9781636511184

	FINANCIAL LITERACY AND ECONOMICS

	COST ACCOUNTING & MANAGEMENT ESSENTIALS
	9781636511030

	FINANCIAL ACCOUNTING ESSENTIALS
	9781636510972

	FINANCIAL MANAGEMENT ESSENTIALS
	9781636511009

	MACROECONOMICS ESSENTIALS
	9781636511818

	MICROECONOMICS ESSENTIALS
	9781636511153

	PERSONAL FINANCE ESSENTIALS
	9781636511849

	PRINCIPLES OF ECONOMICS ESSENTIALS
	9781636512334

	HR, DIVERSITY, AND ORGANIZATIONAL SUCCESS

	DIVERSITY, EQUITY, AND INCLUSION ESSENTIALS
	9781636512976

	DIVERSITY IN THE WORKPLACE ESSENTIALS
	9781636511122

	HR ANALYTICS ESSENTIALS
	9781636510347

	HUMAN RESOURCE MANAGEMENT ESSENTIALS
	9781949395839

	ORGANIZATIONAL BEHAVIOR ESSENTIALS
	9781636512303

	ORGANIZATIONAL DEVELOPMENT ESSENTIALS
	9781636511481

	LEADERSHIP AND PERSONAL DEVELOPMENT

	DECISION MAKING ESSENTIALS
	9781636510026

	INCLUSIVE LEADERSHIP ESSENTIALS
	9781636514765

	INDIA’S ROAD TO TRANSFORMATION: WHY LEADERSHIP MATTERS
	9781636512273

	LEADERSHIP ESSENTIALS
	9781636510316

	TIME MANAGEMENT ESSENTIALS
	9781636511665

	MODERN MARKETING AND SALES

	CONSUMER BEHAVIOR ESSENTIALS
	9781636513263

	DIGITAL MARKETING ESSENTIALS
	9781949395747

	MARKETING MANAGEMENT ESSENTIALS
	9781636511788

	MARKET RESEARCH ESSENTIALS
	9781636513744

	MODERN ADVERTISING ESSENTIALS
	9781636514857

	SALES MANAGEMENT ESSENTIALS
	9781636510743

	SERVICES MARKETING ESSENTIALS
	9781636511733

	SOCIAL MEDIA MARKETING ESSENTIALS
	9781636512181

	OPERATIONS MANAGEMENT

	AGILE ESSENTIALS
	9781636510057

	OPERATIONS & SUPPLY CHAIN MANAGEMENT ESSENTIALS
	9781949395242

	PRODUCT MANAGEMENT ESSENTIALS
	9781636514796

	PROJECT MANAGEMENT ESSENTIALS
	9781636510712

	STAKEHOLDER ENGAGEMENT ESSENTIALS
	9781636511511

	CURRENT AFFAIRS

	DIGITAL SHOCK
	9781636513805

*Also available in Hardback & Ebook formats

To Odette, my wonderful mom, who inspired me to always reach for the stars.

To Michelle, my wife, who inspired me to always do better.

To Danielle and Elisha, our wonderful daughters and our bundle of joy.

To our Lord Jesus Christ, who sustained me and gave us everything that we need according to His riches and Glory.

About the Author

[image:]

Lawrence G. Decamora III, Ph.D., is an accomplished computer science educator, author, and industry professional with extensive experience in software development and academia. Holding prestigious certifications including Sun Certified Java Programmer (SCJP) and Oracle Certified Professional Java Programmer (OCPJP), he has contributed significantly to the field of information technology.

Dr. Decamora has been a dedicated instructor in computer science, information systems, and information technology for over two decades. He has taught at renowned institutions such as the University of Santo Tomas, De La Salle-College of Saint Benilde, and Mapua Institute of Technology. His academic leadership includes serving as the Acting ITE Program Director and an Academic Head, mentoring countless students and aspiring IT professionals.

In the industry, Dr. Decamora has collaborated with leading organizations like Sun Microsystems Philippines, Phoenix One Knowledge Solutions Inc. , and ActiveLearning Inc., providing Java training and software development solutions. His expertise spans Java programming, enterprise applications, and web technologies.

Beyond teaching, Dr. Decamora is a sought-after speaker and trainer, having conducted seminars and workshops on Java programming, software engineering, and emerging technologies. His passion for knowledge sharing is evident in his commitment to empowering learners through practical insights and real-world applications.

This book is a testament to his dedication to making Java accessible to learners at all levels. Through clear explanations and hands-on examples, Dr. Decamora continues to inspire and guide the next generation of developers.

What Experts Say About This Book!

Java Essentials Volume 2 is a well-crafted text that sets clear learning objectives for each chapter. It leads students through the material with clear, well-coded examples. I support the focus on design and engineering, not “programming.”

– John McManus, Ph.D.
Associate Professor of Computer Science
Randolph-Macon College

Having interviewed, technically assessed, mentored, and worked alongside engineers at every level in both start-ups and larger organisations, I’ve seen how easy it is to drift away from core Java best practices over time. This book is a valuable reference to the fundamentals and a strong guide to staying current with the modern language features, benefiting developers at all stages of their careers.

– Shay Brennan-Kelly
Principal Software Engineer

Finally, a Java book that respects my experience while challenging my complacency. The conversational flow keeps you engaged, the curveball exercises keep you honest, and the depth keeps you coming back. This is technical writing done right.

– Dineshotham Kumar K
Software Engineer
Candescent Technologies

Preface

Java Essentials Volume 2: Object Oriented Programming and Beyond is a natural continuation of the foundational topics introduced in Volume 1. While the first volume focused on building a solid grasp of Java fundamentals—covering syntax, control structures, arrays, strings, and the basic building blocks of Java programs—this second volume shifts the focus to more advanced, structured, and professional programming concepts using object-oriented programming (OOP) as the central theme.

This volume is written for learners who are ready to move beyond writing simple programs and begin understanding the true power of Java—encapsulation, inheritance, polymorphism, and the wide array of tools that make Java a platform for building scalable, maintainable, and modular software applications.

Starting with a bridge chapter that connects the procedural programming mindset to the object-oriented paradigm, each chapter builds on the previous one, reinforcing understanding through well-structured explanations, sample code, real-world analogies, coding tasks, and review quizzes.

From mastering Java’s reference data types to understanding class design, method overloading, inheritance structures, exception handling, and the collection framework, this book is designed to equip students with both theoretical concepts and practical skills. You will also explore Graphical User Interfaces (GUI) and the foundations of event-driven programming, ultimately culminating in building full-fledged desktop applications using Java Swing.

Whether you’re a computer science student, a self-taught programmer, or an instructor looking for a structured resource, Volume 2 serves as a guide to help you think like a Java developer and write code the way professionals do.

I hope that this volume not only helps solidify your Java skills but also inspires confidence in creating applications that are elegant, reusable, and scalable. Let this be your stepping stone toward becoming a proficient Java programmer.

– Dr. Lawrence Decamora
Author & Instructor

Introduction to the Book

Welcome to Java Essentials: Volume 2—a comprehensive guide designed to help you master the principles of object-oriented programming (OOP) and deepen your understanding of advanced Java topics.

In Volume 1, we laid the groundwork by exploring Java’s syntax, primitive data types, control structures, arrays, strings, and how to write and run basic Java applications. These topics formed the foundation for thinking like a programmer and writing correct, efficient Java code.

In Volume 2, we build on that foundation. This book shifts focus from procedural programming to a more structured and scalable approach using objects and classes—the heart of Java programming. Here, you will learn how to design and build real-world applications using OOP concepts such as encapsulation, inheritance, and polymorphism, and how to implement them in your own programs.

But we don’t stop there.

This volume also introduces you to:

●The Java API and how to navigate its documentation effectively

●The concept of exception handling to make your programs more robust and error-tolerant

●Working with Java’s Collection Framework and Generics for managing data efficiently

●Creating text-based and graphical user interface (GUI) applications using AWT and Swing

●Implementing event-driven programming and packaging your Java applications for distribution

Each chapter is designed with clarity and progression in mind. You’ll encounter:

●Illustrative code examples to guide your understanding

●Hands-on coding tasks to reinforce concepts through practice

●Quizzes and chapter summaries to help you assess your progress

●Reflection questions and real-world insights to deepen your critical thinking as a developer

Whether you’re a student preparing for exams, a self-taught programmer aiming to level up, or a developer looking to strengthen your Java fundamentals, this book is your next step toward becoming a confident and capable Java programmer.

Let’s continue your journey—one object, one method, one application at a time.

Happy coding!

Who Can Benefit From This Book?

Java Essentials Volume 2: Object Oriented Programming and Beyond is written with a wide audience in mind, particularly those who are ready to take the next step in their Java programming journey. If you’ve completed the basics—whether through Volume 1 or other introductory courses—this volume is designed to elevate your skills and deepen your understanding of object-oriented and advanced Java concepts.

Here’s who will benefit the most from this book:

Students taking object-oriented programming courses

This book aligns with most university-level curricula for second-semester Java programming courses. It introduces key object-oriented concepts like classes, inheritance, polymorphism, interfaces, exception handling, and file I/O in a structured, student-friendly way.

Self-taught programmers

If you’ve learned Java fundamentals on your own, or with Volume 1, and are now ready to go beyond writing simple scripts or programs, this book will guide you through more sophisticated techniques and design patterns used in real-world Java development.

Instructors and trainers

Educators looking for a well-organized, comprehensive teaching companion will find this volume valuable. The structured format—complete with summaries, quizzes, and coding tasks—makes it easy to build lectures, assignments, and exams around.

Career shifters and bootcamp graduates

If you’re shifting into software development or have just completed a coding bootcamp, this book will help you reinforce and expand your skills—especially in object-oriented design, Java Collections, and graphical user interface development.

Junior developers looking to strengthen their foundation

Early-career developers who need to solidify their understanding of core Java and object-oriented programming will find this book an excellent reference and practice guide for everyday development scenarios.

No matter your background, if you’re ready to move from beginner to intermediate-level Java programming, this book is designed to support and accelerate your learning journey.

How to Use This Book?

Java Essentials Volume 2 is designed as a step-by-step guide to help learners transition from basic Java knowledge to mastering object-oriented programming and other advanced Java features. Here's how to make the most of it:

1. Follow the chapters in sequence

The chapters in this book are organized progressively. It is strongly recommended to read them in order, as each chapter builds on the concepts covered in the previous ones. For example, understanding reference types and the this keyword in Chapter 1 will make it easier to comprehend inheritance and polymorphism in later chapters.

2. Start with the bridge chapter

Before diving into OOP, Chapter 0 offers a bridge from procedural thinking to object-oriented design. It refreshes key ideas from Volume 1 and prepares your mindset for writing structured, reusable code using objects and classes.

3. Pay attention to code examples

Each chapter contains carefully selected code snippets that illustrate new concepts. Type these examples on your own, run them in your IDE or terminal, and modify them to deepen your understanding.

4. Try the coding tasks

At the end of most chapters, you’ll find Coding Tasks that challenge you to apply what you’ve learned. These exercises range from reinforcing basic concepts to building small functional programs. Use them as practice or mini-projects to test your skills.

5. Use the chapter summaries and quizzes

Every chapter ends with a Chapter Summary that recaps the key takeaways, followed by a Quiz that reinforces comprehension through multiple-choice or short-answer questions. These tools are especially useful for exam preparation or self-assessment.

6. Explore further with reflections and projects

Some chapters include reflection questions or encourage small projects. These are meant to get you thinking critically about how concepts apply to real-world programming scenarios or future software projects.

7. Make use of additional resources

Where applicable, references and screenshots to Java API documentation, additional reading, or helpful tools are provided. Familiarizing yourself with the use of the Java API Documentation will improve your skills in developing Java Apps.

8. Practice consistently

Mastering Java requires consistent practice. Don’t just read—code! Use what you learn in each chapter to build small programs, experiment with variations, and try integrating new topics into your past exercises.

This book is more than just a collection of Java topics—it's a roadmap to becoming a confident object-oriented programmer. Take your time, code regularly, and don’t be afraid to make mistakes. Every error is an opportunity to grow.

Happy coding!

CHAPTER 0

The Bridge to Volume 2: Bridging Fundamentals with Object-Oriented Programming

[image:]Key Learning Objectives

●Review the foundational knowledge from Volume 1 and understand how it connects to object-oriented programming.

●Understand the role of reference data types in object modeling.

●Differentiate between primitive and reference data types through real-world analogies and practical code.

●Recognize the purpose of object-oriented concepts like encapsulation, inheritance, and polymorphism in software development.

●Prepare their learning environment for Volume 2’s topics, including multi-class projects, API documentation, and advanced file structures.

0.1Looking Back: What You Already Know

Before we dive into the more advanced world of Java programming, let’s take a moment to look back at everything you’ve learned so far. In Volume 1, you started your journey by learning how to install Java and set up your development environment. This included installing the JDK (Java Development Kit) and a text editor (i.e., Notepad++). Once everything was set up, you were able to write and run your very first program.

Your first Java program probably looked something like this:

1 // Filename: HelloWorld.java

2 public class HelloWorld {

3    public static void main(String[] args) {

4        System.out.println("Hello, world!");

5    }

6 }

In this example, you learned about the basic structure of a Java program. The main method is the starting point of every Java application, and System.out.println() is used to display messages on the screen.

As you wrote more programs, you became familiar with Java’s syntax rules. You learned that every statement in Java ends with a semicolon (;), code is grouped into blocks using curly braces { }, and good indentation and spacing help make your code easier to read.

Here’s an example with proper indentation:

if (score >= 75) {
    System.out.println("You passed!");
} else {
    System.out.println("Try again.");
}

Java programs store and process data using primitive data types such as byte, short, int, and long for whole numbers, float and double for decimals, char for single characters, and boolean for true or false values. You might remember using them like this:

int age = 16;
double gpa = 3.75;
char grade = 'A';
boolean isEnrolled = true;

Each data type has a specific purpose, and choosing the right one makes your code more efficient and understandable.

To make your programs interactive, you learned how to ask for input using the Scanner class. This allowed users to type in answers and data at runtime.

 1  // Filename: AskName.java

2 import java.util.Scanner;
 3
 4 public class AskName {
 5    public static void main(String[] args) {
 6       Scanner input = new Scanner(System.in);
 7       System.out.print("Enter your name: ");
 8       String name = input.nextLine();
 9       System.out.println("Hello, " + name + "!");
10   }
11 }

This example asks the user for their name and then prints a greeting. You used similar programs to read numbers and make simple calculators.

You also explored how to make decisions in your code using if, if-else-if, and else statements. These control structures allowed your programs to choose different paths based on conditions.

int score = 85;
if (score >= 90) {
     System.out.println("Grade: A");
} else if (score >= 80) {
     System.out.println("Grade: B");
} else {
     System.out.println("Keep working!");
}

You learned about loops, which are used to repeat code. Java provides several types of loops, such as while, for, and do-while.

for (int i = 1; i <= 5; i++) {
     System.out.println(i);
}

Loops help automate repetitive tasks and make your code shorter and more powerful.

Text in Java is handled by the String class. You learned how to combine strings, check their length, and change their format.

String name = "Michelle";
System.out.println("Your name has " +
     name.length() + " letters.");
System.out.println(name.toUpperCase());

You also explored more advanced string tools like StringBuilder and StringBuffer for modifying text efficiently.

Sometimes you need to store a list of values, like test scores or student names. That’s where arrays came in.

int[] scores = {85, 90, 78, 92};
System.out.println("First score: " + scores[0]);

Arrays helped you manage multiple pieces of data using a single variable.

All these concepts—variables, data types, input/output, decisions, loops, strings, and arrays—are the building blocks of every Java program. They prepared you to move on to something even more powerful: object-oriented programming (OOP).

In the next chapters, you’ll learn how to use Java to model real-world objects using classes and objects, and how to build larger, smarter, and more organized applications. But don’t worry—you’ll still use everything you’ve learned so far!

0.2A Preview of What’s Ahead

This volume begins with a deeper look at something called reference data types. These are different from the primitive data types you’ve already worked with. Reference data types do not store actual values like numbers or characters. Instead, they store references—or memory addresses—that point (references) to objects. You will learn how to create and use objects, which are the heart of object-oriented programming.

Once you understand objects, you'll move on to some of the most powerful concepts in Java: encapsulation, inheritance, and polymorphism. These are the core principles of object-oriented programming (OOP). Encapsulation means wrapping code and data together and hiding the details from other parts of the program. Inheritance allows one class to inherit traits from another class. Polymorphism lets different objects respond to the same method call in different ways.

You will also learn about constructors—special methods used to set up new objects—as well as the difference between instance methods and static methods. An instance method belongs to a specific object, while a static method belongs to the class itself and doesn’t require an object to be used.

Later in this volume, you’ll explore abstract classes and interfaces, which allow you to create flexible and reusable code. You will also be introduced to functional programming concepts in Java, including lambda expressions and functional interfaces. These allow you to write shorter and cleaner code.

In addition to learning about code, you’ll also discover how Java programs are packaged and shared. You’ll learn how to create and use JAR (Java Archive) files, how to read Java API documentation, and how to handle exceptions—errors that can happen while your program is running.

By the end of Volume 2, you’ll be writing larger, more organized, and more professional programs. You’ll have the tools to think like a software developer and build applications that are not only functional but also easy to maintain and understand.

0.3Why Object-Oriented Programming?

As your programs grow in size and complexity, you’ll find that organizing your code becomes more and more important. This is where Object-Oriented Programming, or OOP for short, becomes incredibly useful. OOP is a programming style that focuses on using 'objects' to represent real-world things.

Instead of writing one long block of code that does everything, you use objects to break your program into smaller, manageable parts. Each object has its own properties (also called fields) and behaviors (also called methods). This helps make your program easier to understand, easier to fix when something goes wrong, and easier to expand when you want to add new features.

For example, imagine you’re writing a program to store information about students. In a basic program, you might use separate arrays like this:

String[] studentNames = {"Matthew","Mark","Luke"};
int[] studentAges = {17, 16, 18};
double[] studentGrades = {89.5, 92.0, 85.75};

But what if you have 30 students? Using separate arrays like this can become confusing and hard to manage, especially when your data grows. What if you accidentally mix up the names and grades? It’s easy to make mistakes when things aren’t grouped together.

Instead, using OOP, you can create a Student class that keeps all the information in one place:

 1  // Filename: Student.java

2  public class Student {

3    String name;

4    int age;

5    double grade;

6

7    public void printDetails() {

8          System.out.println(name + " is " + age +

 9          " years old and has a grade of " + grade);

10    }

11  }

Now, instead of keeping student data in separate arrays, you can create objects from the Student class. Each object keeps its own data and knows how to display its own details:

Student student1 = new Student();
student1.name = "Matthew";
student1.age = 17;
student1.grade = 89.5;
student1.printDetails();

This style of programming not only makes your code easier to read and understand but also helps prevent errors. OOP encourages you to think in terms of real-world objects, which makes programming more intuitive and more fun. As you move forward in this volume, you’ll learn how to design and build your own classes, create objects, and use the power of OOP to build better applications.

[image:] Chapter Summary

What You Have Learned in Volume 1:

●How to download, install, and configure the Java Development Kit (JDK) for various operating systems.

●The key features and architecture of Java, including JDK vs. JRE, and Java's built-in security mechanisms.

●How to write and debug your first Java program using System.out.println() and JShell.

●Understanding of Java syntax, including keywords, identifiers, comments, and primitive data types.

●Usage of the Scanner class for user input and the Math class for mathematical operations.

●Application of Java operators and the correct order of precedence.

●Mastery of control structures: if, switch, while, do-while, for, as well as break and continue.

●Proficiency in working with strings using String, StringBuffer, and StringBuilder classes.

●How to create, manipulate, and iterate through one-dimensional and two-dimensional arrays.

Why Volume 2 Matters:

●Introduces Object-Oriented Programming, the core of professional Java development.

●Teaches you how to create user-defined classes and objects, enhancing modularity and reusability.

●Explains critical OOP concepts like encapsulation, inheritance, and polymorphism.

●Learn about exception handling techniques, the Collection Framework, IO Concepts, and building GUI apps that will lead to the deployment of an executable JAR file.

●Helps you write cleaner, more organized, and maintainable code.

●Builds on your fundamental knowledge to help you think like a software engineer, not just a programmer.

[image:] Multiple Choice Questions

1.Which of the following is a reference data type?

a.int

b.double

c.String

d.boolean

2.What is the main characteristic of object-oriented programming?

a.Strict memory allocation

b.Organized around classes and objects

c.Based on machine instructions

d.Only uses primitive types

3.What does encapsulation refer to in OOP?

a.Repeating code blocks

b.Hiding implementation details

c.Printing variables

d.Avoiding object creation

4.Which method is the starting point of any Java program?

a.start()

b.runApp()

c.main()

d.System.out()

5.The Scanner class is used for:

a.Printing to screen

b.Reading user input

c.Drawing graphics

d.Performing mathematical functions

6.In Java, what does the new keyword do?

a.Prints variables

b.Declares a variable

c.Creates a new object

d.Deletes an object

7.What does String[] args in the main method represent?

a.A list of file names

b.A graphical user interface

c.Command-line arguments

d.Random values

8.What will be the output of System.out.println(5 + "10")?

a.15

b.510

c.10

d.Compilation error

9.Which of the following is NOT a Java primitive data type?

a.float

b.boolean

c.char

d.String

10.What is the default value of a reference variable if not initialized?

a.0

b.false

c.null

d.undefined

Multiple Choice Answer Key

	
1 – c
	
2 – b
	
3 – b
	
4 – c
	
5 – b

	
6 – c
	
7 – c
	
8 – b
	
9 – d
	
10 – c

[image:] Further Reflection

1.What were the most important Java programming concepts you learned in Volume 1, and how do you think they will help you in more advanced topics like object-oriented programming?

2.In your own words, what is the difference between a primitive data type and a reference data type? Can you give an example of each?

3.Why is it important to organize code into objects and classes instead of just using variables and methods in a single class?

4.What part of the upcoming topics in Volume 2 are you most interested in (e.g., inheritance, polymorphism, interfaces)? Why does it interest you?

5.How does thinking about real-world objects (like students, cars, or books) help you understand how object-oriented programming works in Java?

CHAPTER 1

The Reference Data Types

[image:]Key Learning Objectives

●The reference data types

●Assigning references to variables

●Pass by value

●The this reference

●Local variables

In this section, we will delve into the reference data types in Java, which include objects and arrays, allowing variables to reference memory locations rather than storing the actual data. We’ll discuss how assigning references to variables works, where variables hold references to objects, enabling multiple variables to point to the same object. Next, we will explain Java’s "pass by value" mechanism, where method arguments are passed as copies, meaning changes inside the method do not affect the original variables. Finally, we’ll explore the "this reference", a keyword used within an instance method or constructor to refer to the current object, helping to resolve naming conflicts and to invoke other constructors or methods.

1.1The Reference Data Types

Beyond all primitive data types are reference data types. A reference variable contains the address of the object and not the object itself. The object’s address is assigned by the Java Virtual Machine (JVM) during the object instantiation stage, commonly known as the creation stage. Hard-coding the object’s address in your source code is not possible.

Common examples of reference variables are Strings, Arrays, and Objects lik e Person or Button.

Example:

1  // Person.java

2  public class Person {

3    public String name = "~noname";

4    public int age = 0;

5  

6    public Person(String name, int age)    {

7        this.name = name;

8        this.age = age;  

9    }

10

11    public String toString()  {

12        return name + " at age " + age;

13    }

14  }

1  // TestPerson.java

2  public class TestPerson {

3    public static void main(String[] args) {

4        Person p1 = new Person("Lawrence", 20);

5    }

6  }

Allow me to explain step-by-step what happened in line 4 of the above code snippet.

Figure 1.1p1 initially set to null

[image: image]

Person p1 created a space in the memory. The reference value will be assigned later. The variable p1 is called a reference variable because it will later hold a value that is a reference to an object of type Person.

Figure 1.2p1 initially set to null with initial values of name and age

[image: image]

After the space in the heap memory has been reserved for the object, the action now takes place in the stack memory. In Java, stack memory is where local variables and method call information are stored. It operates in a last-in, first-out manner, meaning data is added and removed as methods execute. Heap memory, on the other hand, is used for dynamic memory allocation, where objects and reference data types are created. Based on your class declaration, you have two instance variables: the variable String name and the variable int age. These variables will also occupy spaces in the stack memory and will be assigned their default values. Table 1.1 shows the default values of each data type.

Table 1.1 Set of default values for variables

	Variable
	Value

	byte
	0

	short
	0

	int
	0

	long
	0L

	float
	0.0F

	double
	0.0D

	char
	‘\u0000’

	boolean
	false

	All reference types
	null

As you can see, since the variable name was declared as a String, its initial value will be set to null. As for your variable age, it was declared as an int, therefore, an initial value of 0 will be assigned to it by the Virtual Machine.

Figure 1.3 Stack and heap representation of a Java object (Person p1)

[image: image]

After the initial values are given by the Virtual Machine, the next set of values assigned will be based on the declared values in the class. In the class Person, the String name will now be assigned a value of “noname”, and the int age variable will be set to 0. These values will now be used to overwrite the values that were set by the Virtual Machine.

Figure 1.4 Setting of values for name and age

[image: image]

After the class values have overwritten the values set by the Virtual Machine, the next step is to execute the constructor. Executing the constructor means assigning the values of the constructor’s parameters to the class’s instance variables.

Figure 1.5 Values assigned to the variables after the object is created

[image: image]

After all parameters of the constructors have been set, all the values of the instance variables, we can safely say that the object has already been created. The last step is to assign the object to its reference variable by assigning its address to it.

1.2Assigning References to Variables

In lines 1 and 2, both x and y are primitive values. It means that their actual values on the stack memory are 10. While in line 3, you’ve created a new Person object having "Lawrence" as the value of its name and 20 for its age. Since p1 is a reference variable, the actual value of p1 is the address where the object resides.

Figure 1.6 Assigning Values for x, y, p1 and p2

[image: image]

While in line 4, when you say Person p2 = p1, what you’re actually doing is assigning the value of p1 to p2, which are actually the memory addresses. This means that there are two variables pointing to the same object but having different variable names.

5   p2 = new Person("Walter", 30);

In line 5, we have created a new object passing a name "Walter" with age value of 30 and have assigned it to p2. You will see in the diagram below that p2 will now have a new memory address. A new memory address means a new object.

Figure 1.7 Values of p1 and p2 after line 5

[image: image]

Understanding the difference between primitive variables and reference variables is crucial in Java. Primitive variables store actual values directly in the stack, while reference variables store memory addresses that point to objects in the heap. When you assign one reference variable to another, you’re copying the address, not the object itself, meaning both variables point to the same object. However, creating a new object and assigning it to a reference variable results in a new memory address, effectively changing the object that the variable refers to. This distinction is key to mastering object manipulation and memory behavior in Java.

In a single Virtual Machine, everything in Java is Passed by Value.

In a single Virtual Machine, we can pass values to a method, and those values are called arguments. Arguments can be the actual value of a variable, or they can be the address of an object. Here’s a sample code that will demonstrate the "Pass by Value" rule.

   1  public class PassTest {

   2

   3    // Methods to change the current values

   4    public static void changeInt(int value) {

   5        value = 55;

   6    }

   7

   8    public static void changeObjectRef(Person ref) {

   9        ref = new Person("Walter", 30);

  10    }

  11  

  12    public static void changeObjectAttr(Person ref) {

  13        ref.setAge(30);

  14    }

  15

  16    public static void main(String[] args) {

  17        Person per;

  18        int val;

  19

  20        // Assign the int

  21        val = 11;

  22        // Try to change it

  23        changeInt(val);

  24        // What is the current value?

  25        System.out.println("Int value is: " + val);

  26

  27        // Assign the person

  28        per = new Person("Lawrence", 20);

  29        // Try to change it

  30        changeObjectRef(per);

  31        // What is the current value?

  32        System.out.println("Person: " + per);

  33

  34        // Now change the day attribute

  35        // through the object reference

  36        changeObjectAttr(per);

  37        // What is the current value?

  38        System.out.println("Person: " + per);

  39    }

  40  }

If this code is executed, we will always start in the main method. In lines 17 and 18, we declared two variables, a primitive variable val and a reference variable per. If we recall, reference variables contain references to an object, which means they contain the memory address where the object resides. As for primitive types, they contain the actual values of that primitive variable.

In line 21, we initialized val to 11 and passed the value of val to the method changeInt(int). Since Java uses pass-by-value, the actual value that you’re passing to the changeInt(int) method is 11 (the actual value). Regardless of what happened inside the method changeInt(int), the actual value of val will still be used.

Figure 1.8 Passing the value of val to changeInt() method

[image: image]

So when you print the output in line 25, the printed output will be:

Int value is: 11

In line 28, we’ve created a new Person object; thus, the variable per will have an address as its value. But in line 30, we passed the value of per (that actually contains a memory address) to the method changeObjectRef(Person ref) that accepted a Person object.

Now, in the method changeObjectRef(Person ref) in line 9, we instantiated a new Person object, thus letting the argument ref point to a new object, thus having a new memory address value to it. In the process, we disregarded its original value that came from the main method, which points to the object "Lawrence" 20. But that object will not be garbage collected just yet because the variable per from the main method still has a reference to it. Since the active method is changeObjectRef(Person ref), the variable per of the main method is dormant at the background. Once line 10 is reached, the changeObjectRef(Person ref) method ends, and along with that, all local variables are deleted from memory, including the variable ref. And since variable ref is the only variable that is handling the object "Walter" 30, that object will also be deleted through garbage collection.

Figure 1.9 Variable ref assigned to a new object in the changeObjectRef() method

[image: image]

So, when you execute line 32, you will have the output:

Person: Lawrence at age 20

Lastly, in line 36, you passed the per object to the method changeObjectAttr(Person ref), thus passing again the memory address value of per to the said method. Inside the method changeObjectAttr(Person ref) in line 13, you used the variable ref to call a member method setAge(int) to change the age of the Person object that was passed to the changeObjectAttr(Person ref)method. While variable ref is inside the method changeObjectAttr(Person ref), it actually has access to the object "Lawrence" 20 that was created in the main method because ref contains the object’s memory address.

Figure 1.10 The variable ref accepts the reference address from the method main()

[image: image]

Thus, after the method changeObjectAttr(Person ref) executes, the output of line 38 will be:

Person: Lawrence at age 30

1.3The this Reference

The keyword this can be used to:

1.Resolve ambiguity between instance variables and parameters.

2.Pass the current object as a parameter to a method.

3.Pass the current object as a parameter to a constructor.

4.Call another constructor within the same class by using this() at the first line of the body of another constructor. Consider the given sample code:  	

1  public class Person {

2  

3    private String name = "noname";

4    private int age = 0;

5

6    public Person(String name, int age) {

7    

8        this.name = name;

9        this.age = age;  

10    }

11    public Person(Person per) {

12    

13        this.name = per.name;

14        this.age = per.age;  

15    }

16    public void setName(String name) {

17    

18        this.name = name;  

19    }

20    public void setAge(int age) {

21    

22        this.age = age;

23    }

24    public String getName() {

25    

26        return name;  

27    }

28    public int getAge() {

29    

30        return age;  

31    }

32    public Person addAge(int moreAge) {

33    

34        Person newPerson = new Person(this);

35        newPerson.age = newPerson.age + moreAge;

36        return newPerson;

37    }

38    public String toString() {

39    

40        return name + " at age " + age;

41    }

42  }

1  public class TestPerson {

2  

3    public static void main(String args) {

4    

5        Person p1 = new Person("Lawrence", 20);

6        Person olderPerson = p1.addAge(10);

7        System.out.println(olderPerson);

8    }

9  }

In class Person, we have two constructors, and inside the body of the first constructor that has the signature public Person(String name, int age), we saw that the parameters String name and int age are identical to our instance variables (attributes); thus we used the keyword this to resolve the ambiguity inside the constructor’s body.

8    this.name = name;

9    this.age = age;

Variable name and age in lines 8 and 9 refer to the local variables name and age declared in the constructor’s argument list in line 6. While in the same lines 8 and 9, this.name and this.age refers to the instance variables declared in lines 3 and 4.

Another use of the keyword this is to pass the current object to the method or to the constructor. The current method refers to the method in which the current operation is taking place. If the this keyword is used for the current constructor, it follows the same rule. If the keyword this is used for a constructor, it refers to the constructor where the operation is currently taking place. And while inside the said method or constructor, the keyword this refers to the object that was used to call the said method or constructor.

Consider the method public Person addAge(int moreAge){}, inside the said method, in line 34, you have a constructor call:

34    Person newPerson = new Person(this);

In this line, the keyword this was passed to the second constructor in line 11.

11    public Person(Person per) {

12    

13        this.name = per.name;

14        this.age = per.age;  

15    }

In line 11, the argument Person per will accept the current object that was passed to the said constructor.

By the end of the execution of the program code, you should have been able to identify the flow of the Person object from the main method, to the Person constructor, back to the main method for printing.

1.4Local Variables

Local variables in Java are variables declared inside a method, a constructor, or a block and are only accessible within that specific scope. These variables are created when the method, constructor, or block is executed and are destroyed once the execution is complete. Since local variables are confined to their scope, they are not accessible outside of the method or block where they are defined. Local variables need to be initialized first before use; they are not automatically initialized.

OEBPS/Images/note.jpg

OEBPS/Images/fig1-5.jpg
Person pl = new Person("Lawrence",

pl——>

name ——-
age ——>

0x1234567

“Lawrence”

20

<503

OEBPS/Images/fig1-4.jpg
Person pl = new Person("Lawrence",

pl——

name ——3
age —>

null

“Lawrence”

20

Eact &

OEBPS/Fonts/Raleway-Bold.ttf

OEBPS/Images/fig1-7.jpg
pl

0x1234567

“Lawrence”

0%2345678

“Walter”

Stack

Heap

OEBPS/Fonts/Raleway-Black.ttf

OEBPS/Images/fig1-6.jpg
1 int x =
2 int y =%
3 Dperson pl = new Person("Lawrence",
4 person p2 = pl;
x 10 “Lawrence” 20
: 4t
pl 0x1
p2 0x1

Heap

OEBPS/Images/fig1-1.jpg
Bersan pi — naw Terson |- Lawrance e

pl——

null

20);

OEBPS/Fonts/Swis721_Cn_BT_Bold.ttf

OEBPS/Images/fig1-10.jpg
main ()

per 0X1234 [=—t>| “Lawrence”
changeObjectAttr(per)
ref 0X1234 =T

stack Heap

OEBPS/Images/fig1-3.jpg
name ——3-

age ——>

¥ TREEODn) Lawrence S

null

“noname”

0

<U)q

OEBPS/Images/fig1-2.jpg
PRCson pt = haw Tacsonl Lasrance “r

pl——>

name ——3
age —>

null

null

0

<U)q

OEBPS/Images/qrcode.png

OEBPS/Images/fig1-9.jpg
main ()

changeObjectRef(per)

ref 0)9,2{
0x4567 “Walter” [30 |
Stack Heap

OEBPS/Images/fig1-8.jpg
main ()

val il
changelnt(val)
value U 55
Stack Heap

OEBPS/Images/author.jpg

OEBPS/Images/bulb.jpg

OEBPS/Images/Quiz_Icon.jpg

OEBPS/Images/title-page.jpg
VIBRANT
SELF-LEARNING MANAGEMENT SERIES PUBLISHERS

JAVA

ESSENTIALS

VOLUME 2: OBJECT-ORIENTED PROGRAMMING
AND BEYOND

Master object-oriented Java programming
for professional application development

LAWRENCE G. DECAMORA lll, PH.D.

OEBPS/Images/klo.jpg

OEBPS/Images/cover-front1.jpg
S

VIBRANT
SELF-LEARNING MANAGEMENT SERIES EUBLISHERS

JAVA

ESSENTIALS

VOLUME 2: OBJECT-ORIENTED PROGRAMMING
AND BEYOND

Master object-oriented Java programming
for professional application development

LAWRENCE G. DECAMORA I, PH.D.

