

 MLSBOM: Model Supply Chain Transparency

 How to Build a Bill of Materials for Models

 by Daniel Mercer

 Copyright

 Copyright © 2026 by Daniel Mercer

 All rights reserved.

 No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.

 Table of Contents

 	Chapter 1: The Black Box Problem: Why We Need Transparency in AI

	Chapter 2: From SBOM to MLSBOM: The Evolution of Supply Chain Security

	Chapter 3: The Anatomy of a Machine Learning Model

	Chapter 4: Hidden Risks: Data Poisoning and Supply Chain Attacks

	Chapter 5: Inventorying the Basics: Libraries and Frameworks

	Chapter 6: Data Lineage: Tracking Datasets and Pre-processing Steps

	Chapter 7: Weighty Matters: Documenting Model Weights and Artifacts

	Chapter 8: Hyperparameters and Configuration: The Hidden Variables

	Chapter 9: Understanding Standards: CycloneDX and SPDX for AI

	Chapter 10: Step-by-Step Guide to Generating Your First MLSBOM

	Chapter 11: Automating Discovery: Tools for DevOps Pipelines

	Chapter 12: Procurement Checklists: How to Evaluate Vendor Models

	Chapter 13: The Security Audit: Validating Integrity and Provenance

	Chapter 14: Managing Vulnerabilities in Pre-trained Models

	Chapter 15: Regulatory Landscape: The EU AI Act and Global Compliance

	Chapter 16: Cryptographic Signing: Ensuring Model Authenticity

	Chapter 17: Handling Proprietary Data and Intellectual Property Concerns

	Chapter 18: Continuous Monitoring: Maintaining the Dynamic MLSBOM

	Chapter 19: Case Studies: Successes and Failures in AI Supply Chains

	Chapter 20: The Future of Trustworthy AI and Transparent Systems

Chapter 1: The Black Box Problem: Why We Need Transparency in AI

Modern enterprise security relies on determinism. When a Chief Information Security Officer (CISO) approves a vendor, they base that decision on rigorous risk assessments, Service Level Agreements (SLAs), and compliance certifications. For decades, we have engineered frameworks to ensure that the software powering banks, hospitals, and critical infrastructure is predictable, auditable, and secure. We operate on the premise that if code fails, a developer can trace the logic line by line to identify the error.

Artificial Intelligence (AI), particularly deep learning, disrupts this paradigm. It introduces a fundamental shift from explicit programming to training. In traditional software, a human writes logic: "If variable A is greater than variable B, execute action C." This is transparent and readable. In contrast, AI models are trained on vast datasets, adjusting billions of internal parameters until they achieve a desired output. The resulting model functions effectively, yet its internal reasoning remains opaque.

This opacity creates the "Black Box Problem." Organizations now deploy systems that make high-stakes decisions—such as credit approvals, medical diagnoses, and threat detection—without the ability to explain the provenance of those decisions. For DevOps and security teams, this is not merely a technical challenge; it is a governance failure. To secure the AI supply chain, we must dismantle this black box. We must move beyond "trust me" and establish a rigorous standard for documentation: the Machine Learning Software Bill of Materials (MLSBOM).

The Anatomy of Opacity

To secure AI, security professionals must distinguish between two types of opacity: architectural opacity and provenance opacity.

Architectural Opacity is inherent to the technology. A neural network is a matrix of weighted values. If you inspect a Large Language Model (LLM) or a computer vision system, you will not find readable code explaining how it identifies an object or summarizes text. You will find billions of floating-point numbers. While interpretability research is ongoing, tracing a specific output back to a specific set of weights remains computationally difficult.

Provenance Opacity is the more immediate threat to supply chain security. This refers to the lack of visibility regarding the model's origin, construction, and ingredients. In the modern AI ecosystem, few organizations train models from scratch due to the prohibitive computational costs. Instead, the industry relies on a decentralized supply chain of pre-trained models, open-source datasets, and third-party frameworks.

Consider a standard DevOps workflow for an AI feature:

	A development team downloads a pre-trained model (e.g., BERT, Llama) from a public repository like Hugging Face.

	They fine-tune this model using a dataset retrieved from GitHub or an internal data lake.

	They wrap the model in a Python application using libraries like PyTorch or TensorFlow.

	The application is containerized and deployed to a cloud environment.

In this workflow, the "black box" extends beyond the neural network to include the entire supply chain. Security teams must ask specific questions to validate this pipeline:

	Who trained the original base model, and what security protocols did they follow?

	What data was used for training, and was it screened for poisoning or bias?

	Are the model weights cryptographically signed to prevent tampering during transit?

	Does the model license permit commercial use in your specific context?

If you cannot answer these questions, you are importing a binary blob of mathematical complexity that executes logic you cannot read, derived from data you have never seen, created by vendors you have not vetted.

Security Implications: The Vulnerability Management Gap

In traditional software security, vulnerability management follows a well-defined cycle. When a vulnerability is discovered in a library (such as OpenSSL or Log4j), a Common Vulnerabilities and Exposures (CVE) identifier is assigned. Scanning tools check your Software Bill of Materials (SBOM), identify the vulnerable version, and alert you to patch it.

This cycle fails in the current state of AI deployment because we lack a standardized inventory for models. There is no equivalent of a CVE database for specific model weights or training data snapshots. This introduces unique attack vectors:

1. Data Poisoning

Malicious actors can manipulate the training data to introduce backdoors. For example, an attacker might flood public forums with text that associates malicious phishing phrases with "safe" labels. If an email provider scrapes this data to retrain their spam filter, the model will learn to classify specific attacks as safe. Without an MLSBOM recording the training data lineage, security teams cannot detect this corruption. The model remains mathematically sound, but its logic is compromised.

2. Serialization Attacks

AI models are often stored as serialized files, such as Python "pickle" files. These are not passive text files; they can execute arbitrary code when loaded. If a developer downloads a compromised model from a public repository, they may inadvertently grant an attacker remote code execution (RCE) capabilities on the production server. Without a transparent inventory verifying the hash values of these artifacts, engineers are essentially installing executable files from the internet without signature verification.

The Procurement and Legal Risk

For procurement and legal teams, the black box presents significant liability and compliance challenges. Regulatory bodies in the European Union and the United States are establishing frameworks where the deployer of the AI is responsible for its output. You cannot use the opacity of the model as a legal defense.

License Contamination is a critical concern. There is a surge in litigation regarding models trained on copyrighted code and content. If an enterprise deploys a code-generation assistant trained on GPL-licensed code, and that assistant reproduces that code within a proprietary application, the organization risks infecting its codebase with viral open-source obligations. An MLSBOM allows legal teams to audit the training data licenses before deployment.

From SBOM to MLSBOM

The software industry has accepted the necessity of the Software Bill of Materials (SBOM), driven by mandates such as US Executive Order 14028. We acknowledge that modern software is assembled, not written. We must now extend this logic to AI. However, a traditional SBOM is insufficient for machine learning.

A traditional SBOM tracks libraries and versions. A Machine Learning SBOM (MLSBOM) must track three distinct layers:

	
The Data: Training sets, validation sets, and data lineage.

	
The Process: Hyperparameters, training duration, hardware specifications, and training code.

	
The Artifacts: Model weights, biases, configuration files, and serialization formats.

Implementing this requires a cultural shift. Data scientists, often accustomed to rapid experimentation, must adopt the rigorous documentation standards familiar to DevOps engineers. This book serves as the bridge between these two worlds.

Defining the Scope

In the chapters that follow, we will dissect the anatomy of a machine learning model to understand exactly what requires tracking. We will explore emerging standards like CycloneDX and SPDX that are evolving to handle AI metadata. We will provide checklists for procurement officers and step-by-step guides for engineers to generate their first MLSBOM.

We will structure our analysis around the three pillars of the AI supply chain:

	
The Data Supply Chain: We will examine data lineage, the risks of "dirty" data, and methods for verifying data provenance.

	
The Artifact Supply Chain: We will discuss how to inventory weights and configuration files, ensuring integrity through hashing and signing.

	
The Software Supply Chain: We will track the deep learning frameworks (PyTorch, TensorFlow, JAX) and standard libraries (NumPy, Pandas) that support the model.

The Path Forward

Transitioning to transparent AI is inevitable. Regulatory pressure is mounting, but the primary driver should be operational security. Organizations that master the MLSBOM will build more reliable, secure systems and avoid the legal quagmires that entrap less diligent competitors.

The black box is a choice. It is a choice to remain ignorant of accepted risks. This book provides the methodology to make a different choice: to document, understand, and secure the future of intelligent systems.

In the next chapter, "From SBOM to MLSBOM: The Evolution of Supply Chain Security," we will trace the history of software transparency. We will analyze why existing tools fell short when the age of AI arrived and how we can adapt proven DevOps practices to the unique challenges of machine learning.

Chapter 2: From SBOM to MLSBOM: The Evolution of Supply Chain Security

The history of digital security is, fundamentally, a history of realizing that we do not understand the internal composition of the systems we build. For decades, software development was viewed as a craft of pure creation. A developer wrote code, compiled it, and shipped it. The provenance of that code was implicit because it originated from the mind of an employee sitting in a known office. However, as the internet matured, the methodology of creation shifted radically. We ceased writing every line of code from scratch and began assembling applications like modular structures.

Modern development involves pulling a login library from one open-source repository, a database driver from another, and a user interface framework from a third. Suddenly, software classified as "proprietary" was actually composed of eighty to ninety percent code written by strangers. This shift created the initial crisis of the software supply chain, ushering in the era of the Software Bill of Materials (SBOM). Today, we stand on the precipice of a second, more complex crisis involving Artificial Intelligence. Just as we once had to learn to inventory our open-source libraries, we must now learn to inventory the data, weights, and parameters that define machine learning. We are moving from the SBOM to the MLSBOM.

To understand the trajectory of this technology, and why the Machine Learning Software Bill of Materials (MLSBOM) is a non-negotiable requirement for modern procurement and security teams, we must first analyze the evolution of the transparency movement.

The Ingredients Label

Consider the act of purchasing a pre-packaged meal. When you pick up a box of lasagna, you expect to see a nutritional label and a detailed ingredients list. You need to verify the presence of allergens like peanuts, or specific additives like high fructose corn syrup. If that box lacked a label—or if the label simply read "Food"—you would likely return it to the shelf. It represents an unacceptable, opaque risk.

For a significant portion of computing history, enterprise software was sold as a box labeled "Food."

The concept of the SBOM emerged to rectify this opacity. An SBOM is a formal, machine-readable inventory of software components and dependencies. It lists the "ingredients" of an application: the library names, their specific versions, their license types, and their authors. The industry adopted this standard incrementally, but it took a catastrophe to render it mandatory. That catastrophe was the discovery of ubiquitous vulnerabilities like Log4j and the SolarWinds breach. In the case of Log4j, a tiny logging utility used by millions of Java applications was found to possess a critical flaw. Security teams worldwide scrambled to answer a single, simple question: "Which of our applications utilize this library?"

The answer for many Chief Information Security Officers was a terrifying "We do not know."

Without an inventory, finding the vulnerability was akin to searching for a needle in a haystack without knowing if you even owned the haystack. This reality prompted Executive Order 14028 in the United States, mandating improved cybersecurity and the strict use of SBOMs for software sold to the federal government. Transparency became the standard. However, just as the industry began to master the art of cataloging software libraries, the paradigm shifted again. Artificial Intelligence and Machine Learning entered the production environment, introducing a new form of opacity that the traditional SBOM was never designed to mitigate.

The AI Curveball: Why Code Is No Longer Enough

The traditional SBOM functions effectively for deterministic software. In traditional coding, logic is explicit. A human writes a rule: "If the user clicks this button, open this window." If you possess the source code and the list of libraries, you possess the complete picture of the application's logic. Machine Learning is fundamentally different; it is probabilistic, not deterministic.

In an AI system, the human developer does not write the rules. The developer designs the architecture—the neural structure—and then "trains" that architecture by feeding it massive volumes of data. The system learns the rules by identifying patterns within that data. The resulting logic is stored not in human-readable code, but in "weights" and "biases"—millions or billions of numerical parameters that define how the model processes information.

This architecture presents a massive blind spot for the traditional SBOM. If you execute a standard SBOM scan on a Python-based AI application, the scanner will report that you are using the TensorFlow library, the NumPy library, and the Pandas library. It will detail the versions and the licenses. A security team reviewing this report might categorize the asset as "safe" because those specific libraries are patched and current.

This is a dangerous illusion of safety. The SBOM details the container, but it reveals nothing about the contents. It does not disclose that the model was trained on a dataset containing toxic language or personally identifiable information (PII). It does not reveal that the pre-trained weights were downloaded from an unverified user on a public repository. It does not warn you that the model has a statistical tendency to hallucinate when processing financial data.

The logic of the application is no longer resident in the libraries; it is resident in the model artifacts. Therefore, securing the libraries while ignoring the model is equivalent to locking the front door of a bank while leaving the vault wide open.

Defining the MLSBOM

This visibility gap is where the Machine Learning Software Bill of Materials (MLSBOM) becomes critical. The MLSBOM is an evolutionary leap. It encompasses everything found in a traditional SBOM—because you still must track the underlying software libraries—but it expands the scope to include the unique artifacts of the AI supply chain. A robust MLSBOM provides a structured record of the "Three Pillars of AI":

1. Data Provenance

Data is the fuel of AI. If the fuel is contaminated, the engine will fail or cause damage. The MLSBOM must document the lineage of the data, including any pre-processing steps. Questions that must be answered include:

 	Was the data scraped from the public internet, or was it a curated, licensed dataset?

 	Does the dataset contain copyrighted material that exposes the organization to legal liability?

 	If a model demonstrates bias, does the audit trail allow investigators to trace the issue back to specific data sources?

2. Model Lineage and Weights

Modern AI development rarely begins from zero. Developers often utilize a pre-trained model (such as BERT or ResNet), which has already learned from vast datasets, and "fine-tune" it for a specific task. This creates a supply chain of models. Your proprietary model might be a derivative of a model developed by Google, which was itself a derivative of an academic research project. The MLSBOM tracks this genealogy. Crucially, it identifies the hash (a digital fingerprint) of the model weights to ensure that no one has tampered with the file during transit, preventing serialization attacks.

3. Parameters and Configuration

Hyperparameters are the settings utilized to control the learning process. These are the controls adjusted by the data scientist. These configurations can drastically alter model performance and safety. The MLSBOM records these settings, ensuring that a model can be reproduced and validated by independent teams.

The Stakeholders: Who Needs This and Why?

The transition to MLSBOMs is not merely a technical exercise for data scientists. It is a critical business function that impacts three distinct groups: Security, Procurement, and Legal.

For the Security Team

The security landscape for AI involves threats that do not exist in traditional software. We will discuss these in depth in later chapters, but consider the concept of a "Model Supply Chain Attack." A malicious actor could upload a popular pre-trained model to a public repository but inject a "backdoor"—a specific trigger that causes the model to misbehave only when it encounters a specific input. Without an MLSBOM that verifies the digital signature and origin of the model weights, the security team lacks the capability to detect this compromised asset. The MLSBOM provides the visibility required to scan for malicious artifacts, not just vulnerable code.

For the Procurement Team

Procurement officers act as the gatekeepers of enterprise risk. When a vendor attempts to sell an AI-powered HR tool or a financial forecasting system, the procurement team is responsible for vetting that purchase. In the past, they might have requested a SOC 2 report or a penetration test. Now, they must request an MLSBOM.

The procurement team needs to verify if the vendor's model was trained on copyrighted data that could invite a lawsuit. They need to know if the model relies on open-source weights with a "copyleft" license that prohibits commercial use. The MLSBOM acts as a truth serum for vendor claims. If a vendor claims their model is "proprietary and built in-house," but the MLSBOM reveals it is a thin wrapper around a standard open-source model, procurement possesses the leverage to renegotiate or reject the deal.

For the Legal and Compliance Team

Global regulations are tightening. The European Union AI Act and emerging standards in North America are moving toward mandatory transparency. If an AI system makes a decision that harms a human—such as denying a loan, misdiagnosing a disease, or causing an autonomous vehicle accident—regulators will demand to see the documentation. They will investigate how the model was built and what data was utilized. The MLSBOM serves as the primary document for regulatory defense. It proves due diligence, demonstrating that the organization did not deploy a black box, but rather understood and documented the system's components.

The Friction of Adoption

Transitioning from SBOM to MLSBOM is not without friction. The tooling is nascent, and the standards are still solidifying. In the traditional software world, we possess mature package managers. If you use Node.js, you utilize npm. If you use Python, you utilize pip. These tools make it relatively straightforward to generate a list of installed software.

In the AI ecosystem, the environment is more fragmented. Data scientists often work in experimental environments like Jupyter Notebooks, where version control can be unstructured. A model might be trained on a local machine, moved to a cloud server, tweaked, and then compressed for mobile deployment. Tracking the metadata through these informal pipelines requires a significant cultural shift in engineering practices.

Furthermore, there is hesitation regarding intellectual property. Some vendors fear that providing a detailed MLSBOM exposes their competitive advantage. If they reveal exactly which datasets and hyperparameters were used, could a competitor replicate their model? This is a valid concern, but it is one that the industry has resolved previously. When nutritional labels were introduced, food companies feared that revealing ingredients would expose their secret recipes. It turned out that listing "spices" or "tomato puree" was not the same as revealing the exact cooking process. Similarly, an MLSBOM can be constructed to provide transparency on safety and provenance without revealing the exact proprietary trade secrets that give a model its edge.

The New Standard of Care

The evolution from SBOM to MLSBOM represents the maturation of the AI industry. We are moving past the "Wild West" phase where results were the only metric of success, and into the engineering phase where reliability, safety, and accountability are paramount.

An organization that relies on AI without an MLSBOM is operating blindly. They are integrating decision-making engines into their business-critical processes without understanding how those engines were built, what data they consumed, or who constructed them. In a world of increasing cyber threats and regulatory scrutiny, that level of ignorance is no longer a sustainable business strategy.

The MLSBOM is not just a document; it is a process. It serves as the bridge between the experimental nature of data science and the rigorous controls of enterprise security. It forces us to ask difficult questions about our models before they enter production, rather than waiting for a disaster to reveal the answers. As we move into the next section on the anatomy of a machine learning model, we will break down the specific technical components that you will need to identify and catalog. You will learn to view the model not as a magic box, but as a complex assembly of parts, each of which must be inspected, verified, and trusted.

Chapter 3: The Anatomy of a Machine Learning Model

To the uninitiated, a machine learning model often appears as a singular, monolithic object. It is viewed as a "black box" sitting on a server, accepting data, and generating predictions. When a vendor sells an Artificial Intelligence (AI) solution to a procurement team, they are usually selling this output capability—the ability to recognize faces, predict stock prices, or summarize legal documents. However, treating a machine learning model as a single file or a simple piece of software is a dangerous oversimplification. It is the primary reason why security vulnerabilities go undetected and why intellectual property disputes arise.

To build a Model Software Bill of Materials (MLSBOM), we must first perform an autopsy. We need to dissect the organism to understand its organs, its skeleton, and the blood running through its veins. A machine learning system is not merely code; it is a complex aggregate of logic, learned parameters, configuration files, and dependencies.

