

ROS 2 for Robotics

First Edition

Learn ROS 2 Programming with Python and C++ for Robotic Applications

––––––––

Ricardo Tellero

[image:]

	[image:]

	
	[image:]

[image:]

ROS 2 for Robotics

Learn ROS 2 Programming with Python and C++ for Robotic Applications

[image:]

First Edition

Copyright © 2025 Pragma Press Publishing

All rights reserved.

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they cannot be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but Pragma Press Publishing cannot guarantee the accuracy of this information.

Acquisition Editor: Ahmad Waleed

Peer Reviews: Oliver Brooks

Technical Editor: Farhan Zafar

About the Author: Ricardo T. Tellero

Ricardo T. Tellero is an experienced roboticist and software engineer, renowned for his ability to bridge cutting-edge research with hands-on robotic applications. With years of experience in developing and deploying robotic systems for both academia and industry, he specializes in Robot Operating System 2 (ROS 2) and has contributed to various open-source robotics projects worldwide.

A former university instructor, Ricardo’s passion for education shines through in his clear and engaging teaching style. He has mentored students and professionals alike, guiding them to master key concepts in Python, C++, and advanced robotics algorithms. His work spans diverse fields—from mobile robotics to industrial automation—underscoring his commitment to making robotics accessible to everyone.

Published by Pragma Press Publishing Ltd.

www.pragmapress.com

hello@pragmapress.com

In memory of my father, Henry Thompson, whose boundless curiosity and unwavering encouragement set me on the path of discovery and invention. His love of learning remains the cornerstone of my explorations.

Heartfelt gratitude to Dr. Maria Peterson, my guiding light in robotics. Your expert mentorship and steadfast belief in my capabilities have shaped both my career and my passion for innovation.

To my spouse, Jordan, thank you for your enduring patience, devotion, and support—without which these pages would remain unwritten. And to my children, Alex and Olivia, your wonder and eagerness to explore the world remind me that learning is a lifelong adventure.

​

	[image:]

	
	[image:]

[image:]

Foreword

[image:]

In the rapidly evolving landscape of robotics, the ability to develop intelligent, autonomous systems is no longer a futuristic dream but a present-day reality. At the heart of this revolution is ROS 2, the next generation of the Robot Operating System, designed to meet the demands of modern robotics applications. This book, "ROS 2 for Robotics: Learn ROS 2 Programming with Python and C++ for Robotic Applications," is a comprehensive guide that empowers readers to navigate the complexities of ROS 2 and unlock its full potential.

ROS 2 represents a significant leap forward from its predecessor, ROS 1, with enhanced features that cater to the needs of distributed systems, improved performance, and robust security. As robotics technology continues to advance, understanding ROS 2 has become essential for anyone looking to make meaningful contributions to this field. This book not only introduces the fundamental concepts of ROS 2 but also delves into advanced topics, providing a thorough understanding that will serve as a solid foundation for further exploration.

The choice of Python and C++ as the programming languages in this book is particularly strategic. Python's simplicity and versatility make it ideal for rapid prototyping and experimentation, while C++ offers the performance and control necessary for more complex, resource-intensive applications. By mastering both languages in the context of ROS 2, readers gain a versatile skill set that is highly valuable in the robotics industry.

Structured in a logical progression, the book begins with an introduction to ROS 2, guiding readers through the setup and configuration of the development environment. It then delves into core concepts such as nodes, topics, services, and actions, before exploring advanced topics like navigation, perception, and multi-robot systems. Each chapter is designed to build upon the previous one, ensuring a smooth learning curve and a deep understanding of the material.

One of the standout features of this book is its practical approach. Through hands-on examples and projects, readers are encouraged to apply the concepts they learn, reinforcing their knowledge and developing real-world skills. The book also emphasizes the importance of community and collaboration in the robotics field, encouraging readers to engage with the ROS community and contribute to open-source projects.

Learning ROS 2 can be challenging, but this book provides a clear, concise, and comprehensive guide that demystifies the process. Whether you are a robotics enthusiast, a student, or a professional looking to expand your skill set, this book offers invaluable insights and practical guidance.

Welcome to the world of Robotics Programming.

Happy building and happy coding!

Ricardo T. Tellero

Author, Educator, and Maker Enthusiast

	[image:]

	
	[image:]

[image:]

About The Author

[image:]

Ricardo T. Tellero is an experienced roboticist and software engineer, renowned for his ability to bridge cutting-edge research with hands-on robotic applications. With years of experience in developing and deploying robotic systems for both academia and industry, he specializes in Robot Operating System 2 (ROS 2) and has contributed to various open-source robotics projects worldwide.

A former university instructor, Ricardo’s passion for education shines through in his clear and engaging teaching style. He has mentored students and professionals alike, guiding them to master key concepts in Python, C++, and advanced robotics algorithms. His work spans diverse fields—from mobile robotics to industrial automation—underscoring his commitment to making robotics accessible to everyone.

	[image:]

	
	[image:]

[image:]

Table of Content

[image:]

Foreword

About The Author

Table of Content

Chapter 1: Introduction to ROS 2

1.1 What is ROS 2?

Overview of ROS 2

Evolution from ROS 1 to ROS 2

Key Features of ROS 2

1.2 Why ROS 2 for Robotics?

Advantages of Using ROS 2

Use Cases and Applications of ROS 2

1.3 Setting Up the Development Environment

Installing ROS 2 on Different Platforms

Configuring the Workspace

Chapter 2: Core Concepts of ROS 2

2.1 Nodes, Topics, and Messages

Understanding Nodes and Their Role

Publishing and Subscribing to Topics

Message Formats and Serialization

2.2 Services and Actions

Introduction to ROS 2 Services

Understanding ROS 2 Actions

Synchronous vs. Asynchronous Operations

2.3 Parameters and Configuration

Managing Parameters in ROS 2

Parameter Server and Dynamic Reconfiguration

Chapter 3: ROS 2 Tools and Utilities

3.1 rqt: The ROS 2 Toolkit

Overview of rqt Plugins

Monitoring and Visualizing ROS 2 Data

3.2 RViz: 3D Visualization for ROS 2

Setting Up RViz for ROS 2

Visualizing Sensor Data and Robot Models

3.3 Debugging and Logging

Debugging Techniques in ROS 2

Logging Best Practices

Chapter 4: Creating Custom ROS 2 Packages

4.1 Package Structure and Best Practices

Understanding ROS 2 Package Structure

Organizing Code and Resources

4.2 Writing ROS 2 Nodes in Python

Best Practices for Python Coding in ROS 2

4.3 Writing ROS 2 Nodes in C++

Best Practices for C++ Coding in ROS 2

Chapter 5: ROS 2 Communication Patterns

5.1 Advanced Topics and Messages

Working with Multi-Topic Communication

5.2 Services and Actions in Depth

Implementing Complex Services

Using Actions for Long-Running Tasks

5.3 ROS 2 Quality of Service (QoS) Settings

Understanding QoS Profiles

Configuring QoS for Different Use Cases

Chapter 6: ROS 2 Navigation and Perception

6.1 Introduction to Navigation Stack

Overview of ROS 2 Navigation System

Setting Up Navigation for a Mobile Robot

6.2 Sensor Integration and Processing

Integrating IMU Sensors

6.2 Sensor Integration and Processing

Processing LIDAR Data

Processing IMU Data

6.3 SLAM and Localization

Implementing SLAM in ROS 2

Implementing Localization in ROS 2

Chapter 7: Simulation with Gazebo and ROS 2

7.1 Introduction to Gazebo

Overview of Gazebo Simulator

Setting Up a Simulated Environment

Install Gazebo and ROS 2 Integration

7.2 Creating a Custom Robot Model

Designing a Robot Model in URDF

Adding Sensors and Actuators to the Model

7.3 Simulating a Robot in Gazebo

Spawning the Robot in Gazebo

Controlling the Robot Using ROS 2 Nodes

Chapter 8: ROS 2 System Design and Architecture

8.1 Designing Scalable ROS 2 Systems

8.1.2 Modular Architecture and Componentization

8.2 ROS 2 Graph and Node Management

Understanding the ROS 2 Graph

Managing Nodes and Processes

8.3 ROS 2 Security and Performance

Security Considerations in ROS 2

Optimizing Performance in ROS 2 Applications

Chapter 9: ROS 2 Interprocess Communication (IPC)

9.1 ROS 2 Middleware and DDS

Overview of Data Distribution Service (DDS)

Configuring DDS for ROS 2

9.2 Working with ROS 2 Bridges

Bridging ROS 1 and ROS 2

Interoperability with Other Middleware

9.3 ROS 2 over Network

Setting Up Multi-Robot Communication

Chapter 10: ROS 2 for Multi-Robot Systems

10.1 Introduction to Multi-Robot Coordination

Challenges in Multi-Robot Systems

Architectures for Multi-Robot Coordination

10.2 Implementing Multi-Robot Communication

Coordination Algorithms and Strategies

10.3 Case Study: Multi-Robot Navigation

Simulation and Testing

Chapter 11: ROS 2 Deployment and Integration

11.1 ROS 2 on Embedded Systems

Deploying ROS 2 on Embedded Hardware

Optimizing for Resource-Constrained Devices

11.2 ROS 2 and Cloud Integration

Integrating ROS 2 with Cloud Services

Remote Monitoring and Control

11.3 ROS 2 and IoT

Interfacing ROS 2 with IoT Devices

Building IoT-Enabled Robotic Systems

Chapter 12: ROS 2 Debugging, Testing, and Optimization

12.1 Debugging Techniques in ROS 2

Using gdb and lldb for C++ Debugging

Debugging Python Nodes

12.2 Testing ROS 2 Applications

Using ROS 2 Testing Frameworks

12.3 Performance Optimization

Profiling ROS 2 Nodes

Optimizing ROS 2 Nodes

Chapter 13: Advanced ROS 2 Topics

13.1 ROS 2 and Machine Learning

Integrating Machine Learning Models in ROS 2

Using ROS 2 for Robotics AI Applications

13.2 ROS 2 and Computer Vision

Implementing Computer Vision in ROS 2

Using OpenCV and TensorFlow with ROS 2

13.3 ROS 2 and Human-Robot Interaction

Designing Intuitive HRI Interfaces

Implementing Speech and Gesture Recognition

Chapter 14: Future Directions and Advance Applications

14.1 ROS 2 in Industry and Research

Current Trends and Applications in Industry

ROS 2 in Academic Research

14.2 ROS 2 and the Metaverse

Exploring ROS 2 in Virtual and Augmented Reality

Simulating Robots in Metaverse Environments

Index

	[image:]

	
	[image:]

[image:]

Preface

[image:]

Welcome to "ROS 2 for Robotics: Learn ROS 2 Programming with Python and C++ for Robotic Applications." This book is designed to be your comprehensive guide to mastering ROS 2, a powerful framework for developing advanced robotic applications. Whether you're a student, engineer, robotics enthusiast, or professional, this book offers valuable insights and practical skills to help you excel in the field of robotics.

Who This Book is For:

	
Students: Ideal for those new to robotics who want to gain a solid foundation in ROS 2 programming.

	
Engineers: Perfect for professionals looking to enhance their skills in ROS 2 and apply them to real-world projects.

	
Robotics Enthusiasts: A great resource for hobbyists eager to explore and build complex robotic systems.

	
Professionals: Suitable for those in the industry seeking to deepen their understanding of ROS 2 and its applications.

What This Book Covers:

	
Introduction to ROS 2: Learn the basics of ROS 2 and its evolution from ROS 1.

	
Setting Up the Environment: Step-by-step guide to installing ROS 2 on various platforms.

	
Core Concepts: Understand nodes, topics, services, and actions in ROS 2.

	
Creating Custom Packages: Develop your own ROS 2 packages using Python and C++.

	
Communication Patterns: Explore how to implement and manage communication in ROS 2.

	
Navigation and Perception: Dive into navigation stacks and sensor integration.

	
Multi-Robot Coordination: Learn to work with multiple robots and coordination strategies.

	
Simulation and Debugging: Use tools like Gazebo for simulation and debugging techniques.

	
Integration with Machine Learning: Discover how to combine ROS 2 with machine learning for intelligent robotics.

Throughout the book, you'll engage with hands-on projects and practical examples, ensuring that you not only understand the theory but also how to apply it in real-world scenarios. Whether you're just starting out or looking to advance your skills, this book provides the knowledge and tools you need to succeed in the exciting world of robotics.

The world of technology is evolving rapidly, and at its core are systems that blend hardware, software, and creativity. This book, "Arduino Programming with Python: Learn Python Programming to Build Interactive Electronics Projects from Scratch", aims to bridge the worlds of physical electronics and software development, providing a unified path for readers to learn, create, and innovate.

Why This Book is Unique

In the world of ROS 2 programming, this book stands out for several compelling reasons:

	
Bilingual Approach: Unlike other books that focus on a single programming language, this book uniquely combines Python and C++, providing a comprehensive understanding of ROS 2's language versatility. This dual-language approach caters to a broader audience, whether they prefer Python's simplicity or C++'s performance.

	
Practical, Hands-On Learning: The book is designed with a strong emphasis on practical application. It offers step-by-step tutorials and real-world projects, allowing readers to learn by doing. This approach ensures that you not only grasp the theoretical concepts but also gain the skills to implement them in actual robotic systems.

	
Integration with Emerging Technologies: This book goes beyond the basics by exploring the integration of ROS 2 with cutting-edge technologies such as machine learning and IoT. These chapters provide a unique insight into how ROS 2 can be leveraged in intelligent robotics, a topic not commonly covered in other resources.

	
Structured Learning Path: The book is meticulously structured to guide readers from foundational concepts to advanced topics in a logical and progressive manner. This ensures that even those new to ROS 2 can follow along and build a solid understanding without feeling overwhelmed.

	
Comprehensive Coverage: It not only covers the essential aspects of ROS 2 but also delves into best practices, debugging techniques, and performance optimization. These insights are invaluable for both beginners and experienced developers looking to refine their skills.

	
Inclusive for All Levels: Whether you're a novice or an experienced developer, this book offers something for everyone. It provides a gentle learning curve for newcomers while offering deep dives into complex topics that will challenge and inform experts.

How to Use This Book

To maximize your learning experience with this book, consider the following approach:

	
Start with the Basics: If you're new to ROS or robotics, begin with the introductory chapters to build a strong foundation. These sections will familiarize you with the core concepts and setup processes essential for understanding the more advanced topics that follow.

	
Dive into Advanced Topics: For those with prior experience, feel free to skip the introductory sections and explore chapters on multi-robot systems, simulation, and integration with machine learning. Each chapter is designed to be largely self-contained, allowing you to focus on areas of particular interest.

	
Engage in Active Learning: Take advantage of the hands-on projects and exercises included in each chapter. These activities are designed to reinforce your learning and provide practical experience in ROS 2 programming.

	
Utilize Online Resources: Supplement your learning with the companion website, which offers additional materials, code examples, and updates. These resources will enhance your understanding and keep you current with the latest developments in ROS 2.

	
Join the Community: Consider participating in online forums or communities dedicated to ROS 2. These platforms are excellent for seeking help, sharing insights, and staying connected with other learners and professionals in the field.

By following this roadmap, you'll be able to navigate the book effectively and make the most of its unique offerings, whether you're a beginner or an experienced developer.

	[image:]

	
	[image:]

[image:]

Chapter 1

Introduction to ROS 2

[image:]

Summary: This chapter introduces the ROS 2 platform, its evolution from ROS 1, and its key features. It explains the purpose of ROS 2 in modern robotics, its advantages over ROS 1, and how it addresses challenges like real-time performance, scalability, and cross-platform compatibility. The chapter also covers setting up the ROS 2 development environment on various platforms, including Ubuntu, Windows, and macOS, and provides an overview of the ROS 2 workspace structure. By the end of this chapter, you'll have a foundational understanding of ROS 2 and be ready to start developing robotics applications.

Key Takeaways:

	Understand the purpose and evolution of ROS 2.

	Learn the key differences between ROS 1 and ROS 2, including improved performance and scalability.

	Explore the core features of ROS 2, such as Quality of Service (QoS) settings and lifecycle management.

	Set up the ROS 2 development environment on your preferred platform.

	Familiarize yourself with the ROS 2 workspace structure and basic tools.

	[image:]

	
	[image:]

[image:]

1.1 What is ROS 2?

[image:]

Welcome to the world of ROS 2, the next-generation framework for robotics development! If you're new to robotics or transitioning from ROS 1, you might be wondering: What exactly is ROS 2, and why is it such a big deal? Let’s break it down.

[image: A minimalistic logotype consisting of nine dots arranged in the three-by-three grid and "ROS" to the right. All elements of the dark shade of blue.]

	[image:]

	
	[image:]

[image:]

Overview of ROS 2

[image:]

ROS 2, or Robot Operating System 2, is an open-source middleware framework designed to help developers build robotic systems. It’s important to clarify that ROS 2 is not an operating system in the traditional sense (like Windows or Linux). Instead, it’s a collection of tools, libraries, and conventions that simplify the process of creating complex and robust robot behavior.

Think of ROS 2 as a universal translator for robots. It allows different components of a robotic system—such as sensors, actuators, and algorithms—to communicate with each other seamlessly. For example, if you have a robot with a camera, a motor controller, and a navigation system, ROS 2 ensures that the camera can send image data to the navigation system, which then sends commands to the motor controller—all without you having to write low-level communication code from scratch.

ROS 2 is designed to be modular, meaning you can pick and choose the components you need for your specific application. Whether you’re building a small robot for education, an industrial automation system, or even a self-driving car, ROS 2 provides the infrastructure to make your life easier.

But why is ROS 2 so important? Robotics is inherently interdisciplinary, combining hardware, software, and domain-specific knowledge. Without a framework like ROS 2, developers would spend a significant amount of time reinventing the wheel—writing custom code for communication, sensor integration, and control systems. ROS 2 abstracts these complexities, allowing you to focus on the unique aspects of your robot.

	[image:]

	
	[image:]

[image:]

Evolution from ROS 1 to ROS 2

[image:]

To truly appreciate ROS 2, it’s helpful to understand its roots. ROS 2 is the successor to ROS 1, which was first released in 2007. ROS 1 was a game-changer in the robotics community, providing a standardized way to develop robot software. It enabled researchers and developers to share code, collaborate on projects, and build on each other’s work. However, as robotics technology advanced, the limitations of ROS 1 became apparent.

Here are some of the key challenges that ROS 1 faced:

	
Real-Time Performance: ROS 1 was not designed for real-time systems, which are critical for applications like industrial automation or autonomous vehicles. Real-time systems require predictable and precise timing, something ROS 1 struggled with.

	
Platform Dependency: ROS 1 was tightly coupled with Ubuntu, a specific Linux distribution. This made it difficult to use ROS 1 on other operating systems or embedded platforms.

	
Security: ROS 1 lacked built-in security features, making it vulnerable to cyberattacks. This was a significant concern for robots operating in networked environments.

	
Scalability: ROS 1 was not well-suited for large-scale or distributed systems, such as multi-robot setups or cloud-based robotics.

ROS 2 was developed to address these limitations. It was built from the ground up with modern robotics needs in mind. One of the most significant changes in ROS 2 is the adoption of the Data Distribution Service (DDS) as its underlying communication middleware. DDS is a industry-standard protocol that provides real-time capabilities, scalability, and security—features that were missing in ROS 1.

Another major improvement is ROS 2’s platform-agnostic design. Unlike ROS 1, which was tied to Ubuntu, ROS 2 can run on a variety of operating systems, including Windows, macOS, and real-time operating systems (RTOS). This makes ROS 2 more versatile and accessible to a broader range of developers.

In summary, ROS 2 represents a significant evolution from ROS 1. It retains the best aspects of its predecessor—such as its modularity and community-driven development—while addressing its shortcomings. If ROS 1 was the foundation of modern robotics, ROS 2 is the framework that will carry us into the future.

[image:]

Source: ros.org

	[image:]

	
	[image:]

[image:]

Key Features of ROS 2

[image:]

Now that we’ve covered the basics, let’s dive into the key features that make ROS 2 a powerful tool for robotics development. These features are designed to address the challenges of modern robotics and provide developers with the tools they need to build sophisticated systems.

[image:]

Real-Time Capabilities

One of the most significant advancements in ROS 2 is its support for real-time systems. Real-time performance is essential for applications where timing is critical, such as controlling a robotic arm or processing sensor data for an autonomous vehicle. ROS 2 achieves this through its use of DDS, which provides deterministic communication and low latency.

For example, imagine you’re building a drone that needs to stabilize itself in mid-air. The control system must process sensor data and send commands to the motors within milliseconds. ROS 2’s real-time capabilities ensure that these tasks are executed predictably and reliably.

Improved Security

Security is a growing concern in robotics, especially as robots become more connected to networks and the internet. ROS 2 includes built-in security features, such as encryption and authentication, to protect against cyberattacks. This is particularly important for robots operating in sensitive environments, such as hospitals or factories.

For instance, if you’re developing a robot that interacts with patients in a healthcare setting, you need to ensure that the robot’s communication is secure and that it can’t be hacked. ROS 2’s security features provide peace of mind in these scenarios.

Support for Distributed Systems

ROS 2 is designed to work seamlessly in distributed environments, where multiple robots or components need to communicate with each other. This is achieved through DDS, which enables efficient and scalable communication across networks.

Consider a warehouse where multiple robots are working together to move goods. ROS 2 allows these robots to share information and coordinate their actions, ensuring that they don’t collide and that tasks are completed efficiently.

Platform-Agnostic Design

Unlike ROS 1, which was tied to Ubuntu, ROS 2 is platform-agnostic. This means it can run on a variety of operating systems, including Windows, macOS, and real-time operating systems. It also supports a wide range of hardware, from embedded devices to powerful workstations.

This flexibility is a game-changer for developers. For example, if you’re building a robot that uses an embedded microcontroller, you can use ROS 2 to develop and test your software on a desktop computer before deploying it to the microcontroller.

Modern Integration

ROS 2 is designed to integrate with modern tools and technologies, such as containerization (e.g., Docker) and cloud computing. This makes it easier to develop, deploy, and scale robotic applications.

For instance, you can use ROS 2 to develop a robot that interacts with cloud-based AI services. The robot can send sensor data to the cloud for processing and receive commands in real-time, enabling advanced capabilities like object recognition or natural language processing.

Community and Ecosystem

One of the greatest strengths of ROS 2 is its vibrant community. Thousands of developers, researchers, and companies contribute to the ROS ecosystem, creating a wealth of resources, tutorials, and pre-built packages. Whether you’re a beginner or an expert, you’ll find support and inspiration within the ROS community.

For example, if you’re working on a robot that needs to navigate autonomously, you can leverage existing ROS 2 packages for SLAM (Simultaneous Localization and Mapping) or path planning, saving you time and effort.

Why ROS 2 Matters

ROS 2 is more than just a tool—it’s a paradigm shift in robotics development. By addressing the limitations of ROS 1 and introducing new features, ROS 2 empowers developers to build robots that are more capable, reliable, and secure. Whether you’re working on a small hobby project or a large-scale industrial application, ROS 2 provides the foundation you need to succeed.

In the next chapters, we’ll explore these features in greater detail and guide you through the process of building your own robotic systems with ROS 2. By the end of this book, you’ll have the knowledge and confidence to tackle even the most challenging robotics projects. Let’s get started!

[image:]

Additional Insights and Practical Examples

To further illustrate the power and versatility of ROS 2, let’s delve into some practical examples and additional insights that highlight its capabilities.

Example 1: Autonomous Mobile Robots

Consider an autonomous mobile robot (AMR) designed for warehouse logistics. Such a robot needs to navigate complex environments, avoid obstacles, and transport goods efficiently. ROS 2 provides the necessary tools to achieve this:

	
Navigation Stack: ROS 2’s navigation stack includes algorithms for mapping, localization, and path planning. Using these, the robot can create a map of its environment, determine its position within that map, and plan optimal routes to its destination.

	
Sensor Integration: The robot can integrate data from various sensors, such as LIDAR, cameras, and ultrasonic sensors, to perceive its surroundings accurately.

	
Real-Time Control: ROS 2’s real-time capabilities ensure that the robot can make quick decisions and adjustments, essential for avoiding dynamic obstacles like moving forklifts.

Example 2: Industrial Automation

In an industrial setting, robots are often used for tasks like assembly, welding, and painting. ROS 2 can enhance these applications by providing:

	
Precision Control: ROS 2’s real-time performance ensures that industrial robots can execute precise movements, crucial for tasks like welding or assembling small components.

	
Interoperability: ROS 2’s support for multiple platforms and communication protocols allows it to integrate seamlessly with existing industrial automation systems.

	
Safety: With built-in security features, ROS 2 ensures that industrial robots operate safely, even in networked environments where they might be vulnerable to cyberattacks.

Example 3: Service Robots

Service robots, such as those used in healthcare or hospitality, benefit greatly from ROS 2’s capabilities:

	
Human-Robot Interaction: ROS 2 can integrate with AI and machine learning models to enable natural language processing and gesture recognition, allowing service robots to interact with humans more effectively.

	
Mobility and Navigation: Using ROS 2’s navigation stack, service robots can move autonomously in dynamic environments, such as hospitals or hotels, while avoiding obstacles and people.

	
Data Security: In healthcare settings, where data privacy is paramount, ROS 2’s security features ensure that sensitive information is protected.

The Broader Impact of ROS 2

Beyond individual applications, ROS 2 has a broader impact on the robotics industry and research community. Here are some ways ROS 2 is shaping the future of robotics:

	
Accelerating Innovation: By providing a standardized framework, ROS 2 accelerates innovation by allowing developers to build on existing work rather than starting from scratch. This fosters collaboration and knowledge sharing within the robotics community.

	
Lowering Barriers to Entry: ROS 2’s open-source nature and extensive documentation make it accessible to a wide range of users, from hobbyists to professional developers. This democratizes robotics development, enabling more people to contribute to the field.

	
Enabling Interdisciplinary Research: Robotics is inherently interdisciplinary, combining fields like computer science, mechanical engineering, and artificial intelligence. ROS 2 provides a common platform that facilitates collaboration across these disciplines, leading to more holistic and innovative solutions.

	
Driving Industry Adoption: As ROS 2 addresses the limitations of ROS 1, it is increasingly being adopted by industry leaders. Companies like Amazon, Bosch, and Toyota are leveraging ROS 2 for their robotics projects, driving its adoption and further development.

	[image:]

	
	[image:]

[image:]

1.2 Why ROS 2 for Robotics?

[image:]

If you’re diving into robotics, you’ve likely heard about ROS 2 and its growing popularity. But why is ROS 2 such a game-changer for robotics development? What makes it stand out from other frameworks, and why should you choose it for your projects? In this section, we’ll explore the advantages of using ROS 2 and delve into its use cases and applications to give you a clear understanding of why ROS 2 is the go-to framework for modern robotics.

[image:]

	[image:]

	
	[image:]

[image:]

Advantages of Using ROS 2

[image:]

ROS 2 is not just another robotics framework—it’s a comprehensive ecosystem designed to address the challenges of modern robotics development. Here are the key advantages that make ROS 2 a standout choice:

1. Modularity and Reusability

One of the most significant advantages of ROS 2 is its modular design. ROS 2 is built around the concept of nodes, which are independent processes that perform specific tasks. These nodes can communicate with each other through topics, services, or actions, allowing you to break down complex robotic systems into smaller, manageable components.

For example, if you’re building a robot with a camera, a motor controller, and a navigation system, you can create separate nodes for each component. The camera node captures images, the navigation node processes the images to plan a path, and the motor controller node executes the movement commands. This modular approach makes it easier to develop, test, and debug individual components without affecting the entire system.

Moreover, ROS 2’s modularity promotes code reusability. Many common robotics tasks—such as sensor integration, motion planning, and control—have already been implemented in ROS 2 packages. Instead of writing these from scratch, you can leverage existing packages and focus on the unique aspects of your project.

2. Real-Time Capabilities

Real-time performance is critical for many robotics applications, such as industrial automation, autonomous vehicles, and drones. ROS 2 is designed with real-time systems in mind, thanks to its use of the Data Distribution Service (DDS) as its underlying communication middleware.

DDS provides deterministic communication, meaning that messages are delivered predictably and with low latency. This is essential for tasks that require precise timing, such as controlling a robotic arm or stabilizing a drone in mid-air. With ROS 2, you can build systems that respond to sensor data and execute commands within milliseconds, ensuring reliable and accurate performance.

3. Cross-Platform Compatibility

Unlike ROS 1, which was tightly coupled with Ubuntu, ROS 2 is platform-agnostic. It can run on a variety of operating systems, including Windows, macOS, and real-time operating systems (RTOS). This flexibility allows you to develop and deploy ROS 2 applications on a wide range of hardware, from embedded devices to powerful workstations.

For example, if you’re building a robot with an embedded microcontroller, you can develop and test your software on a desktop computer before deploying it to the microcontroller. This cross-platform compatibility makes ROS 2 accessible to a broader range of developers and enables seamless integration with existing systems.

4. Enhanced Security

As robots become more connected to networks and the internet, security is a growing concern. ROS 2 includes built-in security features, such as encryption and authentication, to protect against cyberattacks. These features are particularly important for robots operating in sensitive environments, such as hospitals, factories, or public spaces.

For instance, if you’re developing a robot that interacts with patients in a healthcare setting, you need to ensure that the robot’s communication is secure and that it can’t be hacked. ROS 2’s security features provide peace of mind in these scenarios, making it a reliable choice for safety-critical applications.

5. Scalability and Distributed Systems

ROS 2 is designed to work seamlessly in distributed environments, where multiple robots or components need to communicate with each other. This is achieved through DDS, which enables efficient and scalable communication across networks.

Consider a warehouse where multiple robots are working together to move goods. ROS 2 allows these robots to share information and coordinate their actions, ensuring that they don’t collide and that tasks are completed efficiently. This scalability makes ROS 2 suitable for large-scale applications, such as swarm robotics, multi-robot systems, and cloud-based robotics.

6. Integration with Modern Tools and Technologies

ROS 2 is designed to integrate with modern tools and technologies, such as containerization (e.g., Docker) and cloud computing. This makes it easier to develop, deploy, and scale robotic applications.

For example, you can use ROS 2 to develop a robot that interacts with cloud-based AI services. The robot can send sensor data to the cloud for processing and receive commands in real-time, enabling advanced capabilities like object recognition or natural language processing. This integration with modern technologies makes ROS 2 a future-proof choice for robotics development.

7. Vibrant Community and Ecosystem

One of the greatest strengths of ROS 2 is its vibrant community. Thousands of developers, researchers, and companies contribute to the ROS ecosystem, creating a wealth of resources, tutorials, and pre-built packages. Whether you’re a beginner or an expert, you’ll find support and inspiration within the ROS community.

For example, if you’re working on a robot that needs to navigate autonomously, you can leverage existing ROS 2 packages for SLAM (Simultaneous Localization and Mapping) or path planning, saving you time and effort. The community-driven nature of ROS 2 ensures that it continues to evolve and improve, making it a reliable choice for long-term projects.

	[image:]

	
	[image:]

[image:]

Use Cases and Applications of ROS 2

OEBPS/d2d_images/chapter_title_above.png

OEBPS/d2d_images/chapter_title_corner_decoration_left.png

OEBPS/d2d_images/cover.jpg
000
pogmaill B ROS
00O

ROS 2 for Robotics

Learn ROS 2 Programming with Python

and C++ for Robotic Applications

This book is designed to be your comprehensive guide
to mastering ROS 2, a powerful framework for
developing advanced robotic applications.

First Edition ¢ 4

Rfcardo T. Tellero l

T

OEBPS/d2d_images/chapter_title_corner_decoration_right.png

OEBPS/d2d_images/chapter_title_below.png

OEBPS/d2d_images/image002.png
RS = i + 4% + #7 + 43

plumbing tools capabilities community

OEBPS/d2d_images/image005.png

OEBPS/d2d_images/image006.png
pragma press

OEBPS/d2d_images/image009.png
:::ROS

OEBPS/d2d_images/image007.png
Plumbing Tools Capabilities Ecosystem

OEBPS/d2d_images/image008.png
ROS 2.0 Architecture Overview

s (==)
(oo) (e) [mupay)
= o8 clems)
[eosusseen)
S e mm R

o0

Ros
agpostc

