

Raspberry Pi Pico C Programming

C Programming, Hardware Interfaces, RP2040

By

Sarful Hassan

Preface

This book is designed to help learners move from the basics of C programming into practical hardware applications using the Raspberry Pi Pico. It blends theory with hands-on coding, ensuring that readers not only understand the concepts but also see them in action on real hardware.

Who This Book Is For

This book is written for:

	Beginners with little or no experience in C programming.

	Students and hobbyists exploring embedded systems with the Raspberry Pi Pico.

	Makers who want to build practical projects using GPIO, timers, and communication protocols.

	Engineers or professionals seeking a quick reference for the RP2040 and Pico SDK.

No prior experience with microcontrollers is required—just curiosity and willingness to experiment.

How This Book Is Organized

	Part I introduces the Raspberry Pi Pico and guides you through setup.

	Part II covers C programming foundations including data types, variables, and operators.

	Part III explores control flow, timing, math, and functions.

	Part IV dives into arrays, pointers, and hardware-specific programming.

	Part V focuses on GPIO, analog I/O, and communication protocols.

	Part VI addresses error handling and Pico SDK libraries.

Each chapter includes explanations, code examples, and small projects to reinforce learning.

What Was Left Out

To keep this book focused and accessible, advanced topics such as real-time operating systems, deep optimization techniques, and assembly-level programming were not included. These areas are valuable, but they are best explored once you are comfortable with the fundamentals covered here.

Release Notes

First Edition – 2025

This edition includes the complete beginner-to-intermediate coverage of Raspberry Pi Pico C programming, structured with practical examples, hands-on exercises, and detailed explanations.

Notes on the First Edition

As this is the first edition, improvements are expected in future releases. Your feedback is invaluable for refining the material and ensuring it serves the needs of learners and makers alike.

How to Contact Us

We value your feedback, questions, and suggestions. Feel free to reach out to us:

Email: mechatronicslab.net@gmail.com

Acknowledgments for the First Edition

I would like to thank my teachers, colleagues, and fellow makers whose guidance and encouragement made this work possible. Special thanks to the Raspberry Pi community for their continuous innovation and resources that inspired this book.

Copyright

© 2025 mechatronicslab.net. All rights reserved.

Disclaimer

Every effort has been made to ensure accuracy and clarity in this book. However, programming examples, hardware projects, and techniques are provided “as is” without any guarantee. The author and publisher disclaim liability for errors, damages, or misuse of the information presented here.

	[image:]

	
	[image:]

[image:]

Part I: Getting Started

[image:]

	[image:]

	
	[image:]

[image:]

Chapter -1 Introduction to Raspberry Pi Pico & RP2040

[image:]

The Raspberry Pi Pico is a compact and affordable microcontroller board developed by the Raspberry Pi Foundation. Unlike the Raspberry Pi computers that run full operating systems, the Pico is designed for low-level hardware control and embedded projects. At the heart of the Pico lies the RP2040 microcontroller chip, which was designed in-house by Raspberry Pi.

The RP2040 Microcontroller

The RP2040 is a dual-core Arm Cortex-M0+ processor running at up to 133 MHz. It is built to deliver efficiency and flexibility for both beginners and advanced users. Key features include:

	
Dual-core CPU: Two Cortex-M0+ cores for parallel processing.

	
264KB SRAM: Plenty of on-chip memory for embedded tasks.

	
2MB Flash storage: For storing code and data.

	
PIO (Programmable I/O): Flexible interface for creating custom protocols and controlling peripherals.

	
Rich peripheral set: UART, SPI, I²C, PWM, ADC, and timers.

	
Low power consumption: Ideal for battery-powered or portable projects.

Why Use Raspberry Pi Pico?

The Pico provides a balance of affordability, performance, and ease of use. Some reasons why it is popular:

	
Low cost: Easy entry point for students and hobbyists.

	
Breadboard-friendly: Small form factor with 40 pins.

	
Flexible programming: Supports both C/C++ (Pico SDK) and MicroPython.

	
Community support: Backed by Raspberry Pi’s large and active community.

Typical Applications

The Raspberry Pi Pico and RP2040 are well-suited for:

	Learning microcontroller programming.

	DIY electronics and IoT projects.

	Robotics and motor control.

	Sensor data logging.

	Communication protocols (UART, SPI, I²C).

	Custom embedded devices.

Powering the Pico

The Pico can be powered via:

	
Micro-USB port (5V input).

	
VSYS pin (1.8V to 5.5V range).

	
3.3V output regulator (provides stable 3.3V for peripherals).

Getting Started

	Connect the Pico to your computer using a micro-USB cable.

	Hold the BOOTSEL button and plug in the Pico to enter USB mass storage mode.

	Drag and drop your program file (.uf2) onto the Pico drive.

	The Pico will automatically reboot and run your program.

	[image:]

	
	[image:]

[image:]

Chapter -2 Hardware Overview & Pinout

[image:]

The Raspberry Pi Pico is designed with a 40-pin dual in-line package (DIP) layout, making it breadboard-friendly and easy to connect with jumper wires. Each pin has specific functionality, and many can serve multiple purposes depending on the program.

Key Features of the Hardware Layout

	
RP2040 Microcontroller: The central chip with dual-core ARM Cortex-M0+.

	
Micro-USB Connector: Used for power and programming.

	
Bootsel Button: Allows the Pico to enter USB storage mode for firmware upload.

	
Onboard LED: Connected to GPIO 25, useful for basic testing.

	
3.3V Regulator: Provides stable output for sensors and peripherals.

	
Debug Pins: SWD (Serial Wire Debug) pins for low-level debugging.

Pinout Categories

	
Power Pins: 3.3V, VSYS (1.8–5.5V), GND.

	
GPIO Pins: 26 multi-function pins (GPIO0–GPIO29, with some reserved).

	
Communication:
	
UART (multiple options)

	
SPI (up to 2 controllers)

	
I²C (up to 2 controllers)

	
Analog Inputs: 3 ADC pins (GPIO26, GPIO27, GPIO28).

	
PWM Outputs: Almost all GPIOs support PWM.

Pinout Table

	Pin No.

	Label

	Function(s)

	1

	GP0

	UART0 TX / I²C0 SDA / SPI0 RX

	2

	GP1

	UART0 RX / I²C0 SCL / SPI0 CSn

	3

	GND

	Ground

	4

	GP2

	UART1 TX / I²C1 SDA / SPI0 SCK

	5

	GP3

	UART1 RX / I²C1 SCL / SPI0 TX

	6

	GND

	Ground

	7

	GP4

	UART1 TX / I²C0 SDA / SPI0 RX

	8

	GP5

	UART1 RX / I²C0 SCL / SPI0 CSn

	9

	GND

	Ground

	10

	GP6

	SPI0 SCK / PWM

	11

	GP7

	SPI0 TX / PWM

	12

	GND

	Ground

	13

	GP8

	UART1 TX / I²C0 SDA

	14

	GP9

	UART1 RX / I²C0 SCL

	15

	GND

	Ground

	16

	GP10

	SPI1 SCK / PWM

	17

	GP11

	SPI1 TX / PWM

	18

	GND

	Ground

	19

	GP12

	UART0 TX / I²C0 SDA

	20

	GP13

	UART0 RX / I²C0 SCL

	21

	GND

	Ground

	22

	GP14

	SPI1 RX / PWM

	23

	GP15

	SPI1 CSn / PWM

	24

	GND

	Ground

	25

	GP16

	UART0 TX / I²C0 SDA

	26

	GP17

	UART0 RX / I²C0 SCL

	27

	GND

	Ground

	28

	GP18

	SPI0 RX / PWM

	29

	GP19

	SPI0 CSn / PWM

	30

	GND

	Ground

	31

	GP20

	UART1 TX / I²C1 SDA

	32

	GP21

	UART1 RX / I²C1 SCL

	33

	GND

	Ground

	34

	GP22

	PWM / General purpose

	35

	GND

	Ground

	36

	GP26

	ADC0

	37

	GP27

	ADC1

	38

	GP28

	ADC2

	39

	3V3

	3.3V Power Output

	40

	VSYS

	System Power (1.8–5.5V)

Pinout Diagram

[image:]

Tips for Beginners

	Always double-check pin orientation before wiring.

	
Use the 3.3V pin for sensors instead of 5V unless they are 5V-tolerant.

	For breadboard projects, keep ground connections consistent to avoid errors.

	[image:]

	
	[image:]

[image:]

Chapter -3 Development Environment Setup for Raspberry Pi Pico (C Programming)

[image:]

Step 1: Install the Required Tools

You need three main components:

	
CMake – to configure and build projects

	
GNU Arm Toolchain – compiler for the ARM Cortex-M0+ chip

	
Pico SDK – official framework for Pico development

Windows Installation

	Install Visual Studio Code

	Download and install CMake from cmake.org/download

	Install Build Tools for Visual Studio 2022 and select Desktop development with C++

	Download and extract the Arm GNU Toolchain (arm-none-eabi)

[image:]

Linux (Ubuntu/Debian) Installation

sudo apt update

sudo apt install cmake gcc-arm-none-eabi build-essential git -y

macOS Installation

brew install cmake arm-none-eabi-gcc

Step 2: Download the Pico SDK

	Create a working directory

mkdir ~/pico

cd ~/pico

	Clone the SDK repository

git clone -b master https://github.com/raspberrypi/pico-sdk.git

cd pico-sdk

git submodule update—init

Step 3: Set Environment Variables

Linux/macOS

export PICO_SDK_PATH=~/pico/pico-sdk

source ~/.bashrc

Windows

	Open System Properties → Environment Variables

	Add new variable
	
Name: PICO_SDK_PATH

	
Value: C:\Users\<YourName>\pico\pico-sdk

[image: Generated image]

Step 4: Test with Example Project

	Download official Pico examples

cd ~/pico

git clone -b master https://github.com/raspberrypi/pico-examples.git

	Build the blink project

cd pico-examples/blink

mkdir build

cd build

cmake ..

make

[image: Generated image]

Step 5: Upload Program to Pico

	Hold down BOOTSEL button

	Plug Pico into computer via USB

	Release BOOTSEL → Pico appears as USB drive RPI-RP2

	Copy blink.uf2 into the drive

	Pico reboots and onboard LED starts blinking

Common Mistakes to Avoid

	Forgetting PICO_SDK_PATH

	Using a charge-only USB cable

	Skipping cmake .. before make

	Not holding BOOTSEL before plugging in

Best Practices

	Keep all projects inside ~/pico

	Use VS Code with CMake Tools extension

	Update SDK regularly

cd ~/pico/pico-sdk

git pull origin master

git submodule update—init

	[image:]

	
	[image:]

[image:]

Part II: Core Programming Foundations

[image:]

	[image:]

	
	[image:]

[image:]

Chapter -4 Data Types

[image:]

4.1 Integer (Signed) Data Type for Raspberry Pi Pico

Let’s Begin with Integers

You’ve done really well to get here! Now it’s time to learn about integers. This will feel simple and familiar because integers are just the whole numbers you already use in everyday life. If you’ve ever counted pencils in a box, you already understand integers.

What Are Integers and Why Use Them?

An integer is a whole number with no decimal point. Examples are -12, 0, and 45. The word signed means the number can be both positive and negative. A thermometer is a perfect example: it shows below zero, exactly zero, and above zero.

Use Cases in Real Projects

Integers are everywhere in Pico projects. They can count how many times a button is pressed, store the number of LED blinks, or hold a sensor value like temperature. They are like little scorekeepers inside your program.

Basic Rules for Integers

	
Use the keyword int to declare a signed integer

	Store whole numbers only (no decimals)

	By default, integers in C are signed

	On the Pico, an integer usually takes 4 bytes

	
Range: about -2,147,483,648 to 2,147,483,647

Syntax for Integers

int counter = 5;

Syntax Explanation

The keyword int tells the Pico you want a whole number. The name counter is a label for the number. The = sign means “store this value inside,” and 5 is the actual number being stored. Think of it as writing “counter” on a jar and placing five marbles inside.

Common Mistakes to Avoid

Don’t try to store decimals like 3.5 in an integer. Integers only hold whole numbers. Avoid storing numbers that are too large or too small, because the value will overflow and give strange results. Be careful with spelling — if you mistype the variable name, your program won’t compile.

Best Practices for Integers

Choose clear names like count or speed so your code makes sense. Keep numbers within the valid range to avoid errors. Add short comments in your code to remind yourself what each integer is for.

Safety Notes

The Raspberry Pi Pico GPIO pins work with 3.3 volts only. If you connect more than that, you risk damaging your board. Always double-check before powering up.

Try It Yourself Project: Using Integers to Blink an LED

Project Overview

We’ll use an integer variable to count how many times an LED blinks.

Things You’ll Need (Hardware)

	Raspberry Pi Pico

	Breadboard

	1 LED

	1 Resistor (330Ω)

	Jumper wires

Tools & Software

	Raspberry Pi Pico SDK

	CMake

	VS Code

Power Source Clarification

You can power the Pico safely with the USB cable from your computer.

Circuit Connection With Explanation

Place the LED on the breadboard. Connect the long leg (anode) to GPIO pin 15 through the resistor. Connect the short leg (cathode) to GND.

[image:]

Fig: 4.1 Connections are illustrated in Circuit Diagram

Coding Time

Save the program as blink_integer.c.

#include "pico/stdlib.h"

int main()

{

stdio_init_all(); // Start the Pico

const uint LED_PIN = 15; // Using GPIO pin 15

gpio_init(LED_PIN); // Prepare the pin

gpio_set_dir(LED_PIN, GPIO_OUT); // Set as output

int counter = 0; // Integer to count blinks

while (true)

{

gpio_put(LED_PIN, 1); // LED ON

sleep_ms(500); // Wait 0.5 second

gpio_put(LED_PIN, 0); // LED OFF

sleep_ms(500); // Wait 0.5 second

counter = counter + 1; // Increase the blink counter

}

}

Build & Upload the Program

	Save the file as blink_integer.c

	Use the Pico SDK with CMake to build it

	After building, a .uf2 file will be created

	Hold the BOOTSEL button while plugging in your Pico

	Drag and drop the .uf2 file onto the Pico drive

	The Pico will reboot and start running the program

What You’ll See (Output)

The LED will blink every half second. In the background, the integer counter keeps track of how many times the LED has blinked.

Troubleshooting Tips

	LED not blinking? Check the wiring and resistor

	
Program not running? Make sure the .uf2 file uploaded

	
Blink speed wrong? Adjust the value inside sleep_ms

Try Something New

	Change the delay to make the LED blink faster or slower

	Use another GPIO pin instead of pin 15

	
Print the counter value to the terminal with printf

Mini Quiz

	What is an integer?

	What does signed mean for an integer?

	Can integers store decimals?

	Which keyword is used to declare an integer?

	What happens if a number is too large for an integer?

Answers

	A whole number without decimals

	It can be positive or negative

	No, only whole numbers are allowed

	The keyword int

	It causes overflow and gives unexpected results

4.2 Short Integer Data Type for Raspberry Pi Pico

Let’s Begin with Short Integers

Now that you know about integers, let’s look at a smaller version called short integer. Just like its name suggests, a short integer takes up less memory space than a normal integer. You’ll still use it to store whole numbers, but in a tighter range.

What Are Short Integers and Why Use Them?

A short integer is a whole number data type that uses less memory than a regular int. On the Raspberry Pi Pico, a short usually takes 2 bytes instead of 4. The range is smaller: about -32,768 to 32,767. This is useful when you know your values will stay small and you want to save memory.

Use Cases in Real Projects

Short integers are handy in projects where you don’t need large numbers. You might use them for things like storing button states, keeping track of LED brightness levels, or simple loop counters that never grow too big.

Basic Rules for Short Integers

	
Use the keyword short or short int to declare one

	Stores only whole numbers (no decimals)

	
Uses less memory than a normal int

	
Range: about -32,768 to 32,767

	Best when values are small and predictable

Syntax for Short Integers

short value = 120;

Syntax Explanation

The word short tells the Pico to use a smaller storage box. The name value is the label for that box. The = sign puts the number inside, and 120 is the stored number. Think of it as a smaller jar that can only hold a limited number of marbles.

Common Mistakes to Avoid

	Trying to store numbers outside the short’s range

	Using decimals, which are not allowed

	
Forgetting that short may behave differently on other systems

Best Practices for Short Integers

	Use short integers only when you are sure values will stay small

	
Prefer normal int for general-purpose programming

	
Add comments to explain why you chose short

Safety Notes

Always check ranges when using short integers. If your values might grow larger than 32,767, use int instead.

Try It Yourself Project: Using Short Integers in a Counter

Project Overview

We’ll use a short integer to count button presses and print the result.

Things You’ll Need (Hardware)

	Raspberry Pi Pico

	Breadboard

	1 Push button

	1 Resistor (10kΩ)

	Jumper wires

Tools & Software

	Raspberry Pi Pico SDK

	CMake

	VS Code

Power Source Clarification

Power the Pico safely using the USB cable from your computer.

Circuit Connection With Explanation

Place the button on the breadboard. Connect one side to GPIO pin 14 and the other side to GND through the resistor.

[image:]

Fig: 4.2 Connections are illustrated in Circuit Diagram

Coding Time

Save the program as short_counter.c.

#include "pico/stdlib.h"

int main()

{

stdio_init_all();

const uint BUTTON_PIN = 14;

gpio_init(BUTTON_PIN);

gpio_set_dir(BUTTON_PIN, GPIO_IN);

gpio_pull_up(BUTTON_PIN);

short count = 0; // short integer for button press counter

while (true)

{

if (gpio_get(BUTTON_PIN) == 0) // button pressed

{

count = count + 1;

printf("Button pressed %d times\n", count);

sleep_ms(500); // debounce delay

}

}

}

Build & Upload the Program

	Save the file as short_counter.c

	Use the Pico SDK with CMake to build it

	After building, a .uf2 file will be created

	Hold the BOOTSEL button and plug in the Pico

	Drag and drop the .uf2 file onto the Pico drive

	The Pico will restart and run the program

What You’ll See (Output)

Each time you press the button, the short integer count increases by one. You’ll see the updated count printed on the terminal.

Troubleshooting Tips

	Counter not working? Check the button wiring

	No output? Confirm the USB serial terminal is open

	Double counts? Increase the debounce delay

Try Something New

	Change the debounce delay for faster response

	Reset the counter when it reaches 20

	Use another GPIO pin for the button

Mini Quiz

	How many bytes does a short integer use on the Pico?

	What is the range of a signed short integer?

	Which keyword declares a short integer?

	Can a short integer store decimals?

	Why might you choose short instead of int?

Answers

	2 bytes

	
-32,768 to 32,767

	The keyword short or short int

	No, only whole numbers

	To save memory when values are small

4.3 Long Integer Data Type for Raspberry Pi Pico

Let’s Begin with Long Integers

You’ve already learned about normal integers and short integers. Now let’s look at another type: the long integer. A long integer is simply a bigger box for storing numbers. If you think of a normal integer as a jar, a long integer is a big container that can hold much larger values.

What Are Long Integers and Why Use Them?

A long integer is used when the numbers you need are too big for a regular int. On the Raspberry Pi Pico, a long usually takes 4 bytes, the same as a normal int, but it can sometimes hold a bigger range depending on the system. If you use long long, it will take 8 bytes, which is perfect for very large values.

Use Cases in Real Projects

You might use a long integer to store large sensor readings, timer values, or counters that could grow into the millions. For example, if your Pico is running for hours and counting milliseconds, a normal int might not be enough.

Basic Rules for Long Integers

	
Use the keyword long or long int

	Stores whole numbers (no decimals)

	On the Pico, a long usually uses 4 bytes

	long long uses 8 bytes for very large numbers

	Best for storing values that may not fit in a normal int

Syntax for Long Integers

long distance = 123456L;

long long bigNumber = 123456789LL;

Syntax Explanation

The keyword long tells the Pico you want a bigger box for numbers. Adding long long makes the box even larger. The variable name, like distance, is the label. The number after = is the value stored inside. The letters L or LL at the end remind the compiler that the number is long.

Common Mistakes to Avoid

	
Forgetting to use L or LL for very large numbers

	Assuming long always means 8 bytes (on Pico it’s usually 4)

	Trying to store decimals, which are not allowed

Best Practices for Long Integers

	Use long only when you expect big values

	Prefer normal int for everyday counting

	Add comments to explain why you chose long instead of int

Safety Notes

Long integers only protect you from overflow if you really need larger numbers. Using them without reason just wastes memory. Always check whether int is enough before switching to long.

Try It Yourself Project: Using Long Integers for a Timer

Project Overview

We’ll use a long integer to count milliseconds and print the value.

Things You’ll Need (Hardware)

	Raspberry Pi Pico

	USB cable

	Computer with terminal access

Tools & Software

	Raspberry Pi Pico SDK

	CMake

	VS Code

Power Source Clarification

Power your Pico through the USB connection to your computer.

Coding Time

Save the program as long_timer.c.

#include "pico/stdlib.h"

int main()

{

stdio_init_all();

long milliseconds = 0;

while (true)

{

sleep_ms(1000); // wait 1 second

milliseconds = milliseconds + 1000;

printf("Time passed: %ld ms\n", milliseconds);

}

}

Build & Upload the Program

	Save the file as long_timer.c

	Build it with the Pico SDK and CMake

	A .uf2 file will be created

	Hold BOOTSEL and plug in the Pico

	Drag and drop the .uf2 file onto the Pico drive

	The Pico will restart and run the program

What You’ll See (Output)

Every second, the program will add 1000 to the milliseconds variable. You’ll see the timer value printed on the screen, growing bigger with each second.

Troubleshooting Tips

	No output? Check the USB serial terminal

	
Numbers look strange? Use %ld for printing long values

	
Program too fast? Increase the sleep_ms delay

Try Something New

	Change the delay to 500 ms and see the timer update faster

	
Use long long and count even larger values

	Print seconds instead of milliseconds by dividing the value

Mini Quiz

	Why would you use a long integer instead of int?

	How many bytes does long usually use on the Pico?

	Which format specifier do you use to print a long?

	Can long store decimal numbers?

	What keyword do you use for very large numbers?

Answers

	To store bigger numbers than int can handle

	Usually 4 bytes

	%ld

	No, only whole numbers

	long long

4.4 Unsigned Integer Data Type for Raspberry Pi Pico

Let’s Begin with Unsigned Integers

Sometimes you know your numbers will never be negative. In that case, you can use an unsigned integer. This is a whole number type that only stores zero and positive values.

What Are Unsigned Integers and Why Use Them?

Unsigned means “no sign.” It cannot be negative. The smallest value is 0, and the largest is about 4,294,967,295 on the Pico. You use it when you want the full range for positive numbers.

Use Cases in Real Projects

Unsigned integers are useful for counting things that can never go below zero. For example, LED blinks, loop counters, and positive-only sensor values.

Basic Rules for Unsigned Integers

	
Use the keyword unsigned int

	Only stores whole numbers, never negative

	Usually 4 bytes on the Pico

	Range is from 0 to 4,294,967,295

	Safer for values that cannot be negative

Syntax for Unsigned Integers

unsigned int counter = 10;

Syntax Explanation

The keyword unsigned int tells the Pico to store only positive numbers. The variable name is the label for your value. The = sign places the number inside.

Common Mistakes to Avoid

	Trying to store negative numbers in unsigned integers

	Forgetting the range limit and causing overflow

	Using unsigned when negative values are possible

Best Practices for Unsigned Integers

	Use unsigned when you are sure values will not be negative

	
Keep variable names meaningful, like count or length

	Add comments to remind yourself why you used unsigned

Safety Notes

If you subtract larger numbers from smaller ones, unsigned can wrap around. Always check calculations to avoid unexpected results.

Try It Yourself Project: Using Unsigned Integers to Count LED Blinks

Project Overview

We will use an unsigned integer to count LED blinks.

Things You’ll Need (Hardware)

	Raspberry Pi Pico

	Breadboard

	1 LED

	1 Resistor (330Ω)

	Jumper wires

Tools & Software

	Raspberry Pi Pico SDK

	CMake

	VS Code

Power Source Clarification

Power your Pico through the USB cable from your computer.

Circuit Connection With Explanation

Place the LED on the breadboard. Connect the long leg to GPIO pin 15 through the resistor. Connect the short leg to GND.

[Connections are illustrated in Circuit Diagram 4.1 Please refer to it for proper wiring and layout.]

Coding Time

Save the program as unsigned_counter.c.

#include "pico/stdlib.h"

int main()

{

stdio_init_all();

const uint LED_PIN = 15;

gpio_init(LED_PIN);

gpio_set_dir(LED_PIN, GPIO_OUT);

unsigned int counter = 0;

while (true)

{

gpio_put(LED_PIN, 1);

sleep_ms(500);

gpio_put(LED_PIN, 0);

sleep_ms(500);

counter = counter + 1;

printf("Blink count: %u\n", counter);

}

}

Build & Upload the Program

	Save the file as unsigned_counter.c

	Build the program with Pico SDK and CMake

	A .uf2 file will be created

	Hold BOOTSEL and plug in the Pico

	Drag and drop the .uf2 file onto the Pico drive

	The Pico will restart and run the program

What You’ll See (Output)

The LED will blink every half second. The unsigned integer variable will count the blinks.

Troubleshooting Tips

	LED not blinking? Check wiring and resistor

	No output? Confirm the serial terminal is open

	
Strange numbers? Use %u to print unsigned integers

Try Something New

	Change the delay to make the LED blink faster or slower

	Stop the program after 20 blinks using an if condition

	Use a second LED and blink it after every 10 counts

Mini Quiz

	What does unsigned mean?

	Can an unsigned integer store negative numbers?

	How many bytes does unsigned int use on the Pico?

	Which format specifier is used to print unsigned values?

	When should you use unsigned instead of int?

Answers

	No negative values allowed

	No, only zero and positive numbers

	4 bytes

	%u

	When values cannot be negative

4.5 Unsigned Short Data Type for Raspberry Pi Pico

Let’s Begin with Unsigned Short

An unsigned short is like a smaller box that stores only positive numbers. It is perfect when you know your values will stay small and never be negative. On the Raspberry Pi Pico, an unsigned short usually takes 2 bytes.

What Are Unsigned Shorts and Why Use Them?

Unsigned means the variable cannot go below zero. A short means it uses less memory. Together, unsigned short gives you numbers from 0 up to about 65,535. This is useful when you want to save memory but still need a safe range.

Use Cases in Real Projects

Unsigned shorts are great for counting button presses, storing sensor readings like light levels, or loop counters where values will never be negative.

Basic Rules for Unsigned Shorts

	
Use the keyword unsigned short

	Stores whole numbers only, no decimals

	Range: 0 to 65,535

	Uses 2 bytes of memory on the Pico

	Safer for small values that cannot be negative

Syntax for Unsigned Shorts

unsigned short count = 100;

Syntax Explanation

The keyword unsigned short tells the Pico to store only positive values in a small box. The variable name is the label, and the number after = is what goes inside.

Common Mistakes to Avoid

	Trying to store negative numbers

	Forgetting the smaller range and causing overflow

	Using unsigned short when values might be larger than 65,535

Best Practices for Unsigned Shorts

	Use unsigned short only when you are sure values will be small

	
Use clear variable names like count or level

	Add comments to explain why you chose unsigned short

Safety Notes

Be careful with calculations that subtract larger numbers from smaller ones. The result can wrap around and give confusing results.

Try It Yourself Project: Using Unsigned Short to Count Button Presses

Project Overview

We will use an unsigned short to count button presses and show the result.

Things You’ll Need (Hardware)

	Raspberry Pi Pico

	Breadboard

	1 Push button

	1 Resistor (10kΩ)

	Jumper wires

Tools & Software

	Raspberry Pi Pico SDK

	CMake

	VS Code

Power Source Clarification

Power your Pico through the USB cable from your computer.

Circuit Connection With Explanation

Place the button on the breadboard. Connect one side to GPIO pin 14. Connect the other side to GND through the resistor.

[Connections are illustrated in Circuit Diagram 4.2 Please refer to it for proper wiring and layout.]

Coding Time

Save the program as unsigned_short_counter.c.

#include "pico/stdlib.h"

int main()

{

stdio_init_all();

const uint BUTTON_PIN = 14;

gpio_init(BUTTON_PIN);

gpio_set_dir(BUTTON_PIN, GPIO_IN);

gpio_pull_up(BUTTON_PIN);

unsigned short count = 0;

while (true)

{

if (gpio_get(BUTTON_PIN) == 0)

{

count = count + 1;

printf("Button pressed %hu times\n", count);

sleep_ms(500);

}

}

}

Build & Upload the Program

	Save the file as unsigned_short_counter.c

	Build it with Pico SDK and CMake

	A .uf2 file will be created

	Hold BOOTSEL and plug in the Pico

	Drag and drop the .uf2 file onto the Pico drive

	The Pico will restart and run the program

What You’ll See (Output)

Each time you press the button, the counter will go up by one. The result will be printed in the terminal.

Troubleshooting Tips

	Counter not working? Check the button wiring

	No output? Confirm the serial terminal is open

	Multiple counts per press? Increase the delay to fix bouncing

Try Something New

	Reset the counter after 100 presses

	Change the GPIO pin for the button

	Use the counter to blink an LED after every 10 presses

Mini Quiz

	How many bytes does an unsigned short use?

	What is the range of unsigned short?

	Can it store negative numbers?

	What format specifier should you use with printf?

	When should you use unsigned short instead of int?

Answers

	2 bytes

	0 to 65,535

	No, only positive numbers and zero

	%hu

	When you need small, non-negative values and want to save memory

4.6 Unsigned Long Data Type for Raspberry Pi Pico

Let’s Begin with Unsigned Long

Sometimes numbers grow so large that a normal integer cannot hold them. In that case, you can use an unsigned long. This data type is perfect when you need very large positive numbers.

What Are Unsigned Longs and Why Use Them?

Unsigned means no negative values are allowed. Long means the box is bigger than normal. On the Raspberry Pi Pico, an unsigned long usually takes 4 bytes. That gives a range from 0 up to about 4,294,967,295. Think of it as a giant storage jar that can hold millions of marbles.

Use Cases in Real Projects

Unsigned longs are useful for counters that grow into the millions, timers that run for hours, or sensor readings that need very large positive values. For example, counting milliseconds for a long-running project works best with unsigned long.

Basic Rules for Unsigned Long

	
Use the keyword unsigned long to declare one

	Stores only positive whole numbers

	On the Pico, it usually uses 4 bytes

	Range: 0 to 4,294,967,295

	Larger than unsigned int but smaller than unsigned long long

Syntax for Unsigned Long

unsigned long timer = 1000UL;

Syntax Explanation

The keyword unsigned long tells the Pico to use a large positive-only box. The variable name timer is the label for the number. The equal sign = means store the value inside. The letters UL remind the compiler that this is an unsigned long number.

Common Mistakes to Avoid

Beginners sometimes try to store negative values in unsigned long. That will not work because it only accepts positive numbers. Another mistake is forgetting to use %lu when printing with printf, which causes wrong output.

Best Practices for Unsigned Long

Use unsigned long only when you expect very large values. For normal counting, unsigned int is often enough. Always add comments in your code to explain why you needed an unsigned long.

Safety Notes

Unsigned longs avoid negative values, but they can still overflow. If your value grows beyond the maximum, it will wrap around to zero.

Try It Yourself Project: Using Unsigned Long for a Timer

Project Overview

We will use an unsigned long to measure how long your Pico has been running.

Things You’ll Need (Hardware)

	Raspberry Pi Pico

	USB cable

	Computer with serial terminal

Tools & Software

	Raspberry Pi Pico SDK

	CMake

	VS Code

Power Source Clarification

Use the USB cable from your computer to safely power your Pico.

Circuit Connection With Explanation

No extra circuit is needed. The Pico will print the time directly to your computer.

Coding Time

Save the program as unsigned_long_timer.c.

#include "pico/stdlib.h"

int main()

{

stdio_init_all();

unsigned long timer = 0;

while (true)

{

sleep_ms(1000); // wait 1 second

timer = timer + 1000; // add 1000 milliseconds

printf("Time passed: %lu ms\n", timer);

}

}

Build & Upload the Program

	Save the file as unsigned_long_timer.c

	Build it with Pico SDK and CMake

	A .uf2 file will be created

	Hold the BOOTSEL button and plug in the Pico

	Drag and drop the .uf2 file onto the Pico drive

	The Pico will restart and run the program

What You’ll See (Output)

Your terminal will show the number of milliseconds since the program started. The number will grow by 1000 every second.

Troubleshooting Tips

	No output? Check that the serial terminal is open

	
Wrong numbers? Use %lu in printf for unsigned long

	Running too fast? Increase the value inside sleep_ms

Try Something New

	Print seconds instead of milliseconds by dividing timer by 1000

	Change the delay to 500 ms and watch the numbers grow faster

	Use the timer value to blink an LED after every 10 seconds

4.7 Character Data Type for Raspberry Pi Pico

Let’s Begin with Characters

Characters may sound a little different from numbers, but they are very simple. A character is just a single symbol like a letter, digit, or punctuation mark. On your Raspberry Pi Pico, you can use characters to handle letters in text or single symbols in data.

What Are Characters and Why Use Them?

A character stores one symbol inside single quotes, such as 'A', '5', or '?'. Even though it looks like text, the Pico actually stores it as a number inside memory. This number is called the ASCII code. For example, the character 'A' has the ASCII value 65.

Use Cases in Real Projects

Characters are useful in many Pico projects. You can store a grade as a letter, read keypad input, or send letters over a serial connection. They are also used to build strings, which are just groups of characters.

Basic Rules for Characters

	
Use the keyword char to declare a character

	
Place the value in single quotes, like 'B'

	Characters are stored as numbers using ASCII codes

	One character takes 1 byte of memory on the Pico

	Characters can also be used in simple math operations

Syntax for Characters

char letter = 'A';

Syntax Explanation

The keyword char tells the Pico to make space for one character. The variable name letter is the label. The equal sign = puts the value inside. The single quotes mean you are storing a character, not a number.

Common Mistakes to Avoid

Beginners often confuse single quotes with double quotes. Single quotes are for one character, double quotes are for strings. Another mistake is trying to store more than one symbol in a character variable. You also must remember characters are case-sensitive: 'a' is not the same as 'A'.

Best Practices for Characters

Always use clear variable names like grade or choice. Keep in mind that characters are stored as ASCII numbers, so printing them as integers may not show the symbol. Use comments to explain the purpose of each character variable.

Safety Notes

Remember that the Raspberry Pi Pico GPIO pins still run at 3.3 volts. Characters are values inside the program and do not change this, but always check your wiring in hardware projects.

Try It Yourself Project: Using Characters to Control LED Blink Speed

Project Overview

We will use a character input from the serial terminal to control how fast an LED blinks.

Things You’ll Need (Hardware)

	Raspberry Pi Pico

	Breadboard

	1 LED

	1 Resistor (330Ω)

	Jumper wires

Tools & Software

	Raspberry Pi Pico SDK

	CMake

	VS Code

Power Source Clarification

Power the Pico using the USB cable connected to your computer.

Circuit Connection With Explanation

Place the LED on the breadboard. Connect the long leg to GPIO pin 15 through the resistor. Connect the short leg to GND.

[Connections are illustrated in Circuit Diagram 4.1 Please refer to it for proper wiring and layout.]

Coding Time

Save the program as char_led_control.c.

#include "

pico/stdlib.h"

#include <stdio.h>

int main()

{

stdio_init_all();

const uint LED_PIN = 15;

gpio_init(LED_PIN);

gpio_set_dir(LED_PIN, GPIO_OUT);

char command; // character variable to store input

while (true)

{

if (scanf("%c", &command) == 1) // read character from terminal

{

if (command == 'f') // fast blink

{

gpio_put(LED_PIN, 1);

sleep_ms(200);

gpio_put(LED_PIN, 0);

sleep_ms(200);

}

else if (command == 's') // slow blink

{

gpio_put(LED_PIN, 1);

sleep_ms(1000);

gpio_put(LED_PIN, 0);

sleep_ms(1000);

}

}

}

}

Build & Upload the Program

	Save the file as char_led_control.c

	Build the program with the Pico SDK and CMake

	A .uf2 file will be created

	Hold BOOTSEL and plug in your Pico

	Drag and drop the .uf2 file onto the Pico drive

	The Pico will restart and run the program

What You’ll See (Output)

When you type 'f' in the serial terminal, the LED will blink quickly. When you type 's', it will blink slowly.

Troubleshooting Tips

	LED not blinking? Check the wiring and resistor

	Nothing happens when typing? Make sure the terminal is open and active

	Wrong blink speed? Check the sleep_ms values inside the code

Try Something New

	Add another command for medium speed blinking

	
Use 'o' to keep the LED always on

	
Use 'x' to turn the LED off completely

4.8 Unsigned Character Data Type for Raspberry Pi Pico

Let’s Begin with Unsigned Characters

An unsigned character is a very small data type. It stores only positive numbers or symbols. On the Raspberry Pi Pico, it takes just 1 byte of memory.

What Are Unsigned Characters and Why Use Them?

Unsigned means no negative values are allowed. A character usually stores letters or symbols, but it can also store numbers. With unsigned, the range is 0 to 255. Think of it as a tiny box that can hold up to 255 marbles.

Use Cases in Real Projects

Unsigned characters are useful for storing ASCII codes, small counters, or byte values received from sensors. They are also used when communicating with devices that send single-byte data.

Basic Rules for Unsigned Characters

	
Use the keyword unsigned char

	Stores whole numbers or single symbols

	Range: 0 to 255

	Always takes 1 byte of memory

	Useful for compact storage of small values

Syntax for Unsigned Characters

unsigned char grade = 'A';

Syntax Explanation

The keyword unsigned char tells the Pico to create a 1-byte box. The variable name is the label. The equal sign = stores the value inside. Here 'A' is stored, and its ASCII number is saved in memory.

Common Mistakes to Avoid

Many beginners confuse characters with strings. Remember, an unsigned char can only store one symbol. Another mistake is trying to store negative numbers. Finally, using the wrong format specifier in printf will show strange results.

Best Practices for Unsigned Characters

Use unsigned char when you need small values only. Always use %c when printing characters and %u when printing as numbers. Add comments to remind yourself if the variable stores text or numbers.

OEBPS/d2d_images/chapter_title_above.png

OEBPS/d2d_images/chapter_title_corner_decoration_left.png

OEBPS/d2d_images/cover.jpg
Raspperry Pi
Pico
C Programming

C Programming, Hardware Interfaces,
RP2040

o21d Id Auuagdsey

2

NVSSVH TNJddvs

OEBPS/d2d_images/image001.png
Or X 0 0 @ B G e me
€3t B e—— O
R o
o) e
ows I oot
Bram e e
N et

OEBPS/d2d_images/image012.png

OEBPS/d2d_images/chapter_title_corner_decoration_right.png

OEBPS/d2d_images/image002.png
Environment Variables

User variables for admin New.
Path CUsers\admin\AppDatalLocal\Microso
PICOSDKPATH Cipico-sdk Edit.
TEmP CAUsers\admin\AppData\Local\Temp

™ Delete

/pico-sdk

$ s echo scho $PICO_SDK_PATH
pico-sdk

OEBPS/d2d_images/image010.jpg
Raspberry Pi Pico ©2020
@ oty .

OEBPS/d2d_images/chapter_title_below.png

OEBPS/d2d_images/image005.png
Raspberry Pi Pico ©2020
L) !

E:@l

OEBPS/d2d_images/image003.png

