

[image: Image de couverture : Hugues Bersini ; Ken Hasselmann, L’IA en pratique avec Python, 4e édition inclus : technoloies LLM et RAG, Éditions Eyrolles]

Résumé

Recherche, optimisation, apprentissage

Ces trois mots reviennent sans cesse en intelligence artificielle. Trois approches que l’on confond facilement. Trois mécanismes fondamentaux qu’il est pourtant crucial de distinguer.

Face à un problème complexe, comment choisir la bonne stratégie algorithmique ? Pourquoi ce code trouvé sur le Web ne fonctionne-t-il pas dans votre contexte ? Comment éviter de perdre des heures à cause d’une méthode infructueuse ?

Ce livre vous donne les clés pour naviguer avec assurance dans l’univers des algorithmes d’IA. Fini les tâtonnements et les résultats de fortune copiés-collés ! Que vous découvriez le domaine ou que vous souhaitiez affiner votre expertise, vous apprendrez à identifier rapidement quelle approche adopter selon la situation.

Dans cette 4e édition enrichie des technologies LLM et RAG, vous aborderez l’univers algorithmique et l’IA à travers douze exercices ludiques grâce au code Python.

Compléments web

Le code source des exemples du livre en Python est disponible sur le site d’accompagnement https://www.editions-eyrolles.com/dl/0102315

Au sommaire

Jouons au taquin • Découvrir le plus court chemin • Jouons au sudoku • Jouons à Puissance 4 • Jouons au Snake • Jouons à Tetris • Comment reconnaître un spam • Découvrir les règles d’accès au crédit • Aider à trier la presse ou les avis de clients • Comment distinguer un chien d’un chat • Programmer un NanoGPT • RAG Time : améliorer le rendu des LLM • Conclusion : les deux IA

L’auteur

Membre de l’Académie royale de Belgique, Hugues Bersini enseigne l’informatique et la programmation aux facultés polytechnique et Solvay de l’université Libre de Bruxelles, dont il dirige le laboratoire d’intelligence artificielle. Il est l’auteur de très nombreuses publications (systèmes complexes, génie logiciel, sciences cognitives et bioinformatique) et de plusieurs ouvrages d’introduction à la programmation, l’intelligence artificielle et les systèmes complexes qui font aujourd’hui autorité dans le monde académique.

Ken Hasselmann est chercheur à l’École Royale Militaire de Belgique dans l’unité de robotique et systèmes autonomes, où il étudie l’IA appliquée à la robotique collective et au déminage dans le cadre de la défense. Auparavant il a obtenu sa thèse de doctorat à l’Université Libre de Bruxelles au sein de l’Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA). Il y a étudié la conception automatique d’algorithmes dans les essaims de robots, et a participé notamment au projet européen ERC DEMIURGE dans le cadre de ses recherches.

www.editions-eyrolles.com

CHEZ LE MÊME ÉDITEUR

SUR LE MÊME THÈME

V. LE GOFF. – Apprenez à programmer en Python.
N°0102497, 5e édition, 2026 (à paraître), 540 pages.

J. BRIGGS. – Python pour les kids.
N°0101347, 2e édition, 2023, 344 pages.

E. MATTHES. – Cartes mémo Python.
N°67860, 2020, 101 cartes.

J-B. CIVET, B. HANUŠ. – Algorithmique et programmation en Python.
N°67769, 2019, 96 pages.

M. O’HANLON, D. WHALE. – Apprendre à coder en Python avec Minecraft.
N°67721, 2e édition, 2019, 304 pages.

G. SWINNEN. – Apprendre à programmer avec Python 3.
N°13434, 3e édition, 2012, 435 pages.

DANS LA MÊME COLLECTION

D. GERMAIN. – Kubernetes.
N°0102264, 2025, 322 pages.

S. AUSIN. – Tailwind CSS.
N°0101421, 2024, 120 pages.

V. LE GOFF. – Elixir.
N°0101175, 2023, 522 pages.

E. SARRION. – JavaScript – Vue.js côté client et Node.js/MongoDB côté serveur.
N°0100836, 2022, 240 pages.

E. BOURREAU, G. FLEURY, P. LACOMME. – Introduction à l’informatique quantique.
N°0100653, 2022, 424 pages.

E. GASSARA. – Docker/Kubernetes.
N°0100569, 2022, 200 pages.

Y. BENZAKI. – Les data sciences en 100 questions/réponses.
N°67951, 2020, 126 pages.

K. NOVAK. – Administration Linux par la pratique – Tome 2.
N°67949, 2020, 418 pages.

C. DELANNOY. – Le guide complet du langage C.
N°67922, 2020, 876 pages.

Retrouvez nos bundles (livres papier + e-book) et livres numériques sur
http://izibook.eyrolles.com

Hugues Bersini
Ken Hasselmann

L’IA
en pratique avec
Python

4e édition
inclus : technoloies
LLM et RAG

[image:]

ÉDITIONS EYROLLES
61, bd Saint-Germain
75005 Paris
info@eyrolles.com
www.editions-eyrolles.com

Depuis 1925, les éditions Eyrolles s’engagent en proposant des livres pour comprendre le monde, transmettre les savoirs et cultiver ses passions ! Pour continuer à accompagner toutes les générations à venir, nous travaillons de manière responsable, dans le respect de l’environnement. Nos imprimeurs sont ainsi choisis avec la plus grande attention, afin que nos ouvrages soient imprimés sur du papier issu de forêts gérées durablement. Nous veillons également à limiter le transport en privilégiant des imprimeurs locaux. Ainsi, 89 % de nos impressions se font en Europe, dont plus de la moitié en France.

Attention : pour lire les exemples de lignes de code, réduisez la police de votre support au maximum.

En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement ou partiellement le présent ouvrage, sur quelque support que ce soit, sans l’autorisation de l’Éditeur ou du Centre français d’exploitation du droit de copie, 18, rue du 4-Septembre, 75002 Paris.
© Éditions Eyrolles, 2022, 2023, 2024, 2026 pour la présente édition, ISBN : 978-2-416-02315-6

Avant-propos

Un peu de cinéma

Dans le troisième opus de la série Die Hard, le héros interprété par Bruce Willis doit résoudre un ensemble de problèmes logiques, chaque fois en une minute maximum, sinon un horrible méchant risque de faire exploser New York. L’un de ces problèmes implique deux cruches non graduées, de capacité cinq litres et trois litres, que notre héros peut remplir et vider à une fontaine à proximité. Il lui est demandé de remplir en moins d’une minute la cruche de cinq litres avec exactement quatre litres. C’est un problème idéal pour l’Intelligence Artificielle qui l’aurait, elle, résolu en quelques millisecondes. Bruce Willis anticipe plusieurs actions dans sa tête, même plusieurs séquences d’actions, avant de trouver la bonne solution deux secondes avant l’apocalypse. Il faut remplir la cruche de cinq litres avec celle de trois litres, il reste deux litres vide dans la première. On recommence la même opération avec la cruche de trois litres, il reste cette fois un litre dans la cruche de trois litres. Il suffit alors de vider la cruche de cinq litres, la remplir d’abord avec le reste de la cruche de trois litres, le litre restant, et recommencer l’opération pour obtenir les quatre litres dans la cruche de cinq. Pour l’IA, il suffit de décrire l’état du problème en tant que (X,Y), contenu des deux cruches, et coder chaque action possible sous la forme avant→après, par exemple (0,0)→(5,0) (remplissage de la première) ou (X,Y)→(5, Y-(5-X)), remplissage de la première avec une partie de la seconde. L’IA peut alors facilement enchaîner les actions et trouver la séquence optimale : (0,0) puis (0,3) puis (3,0) puis (3,3) puis (5,1) puis (0,1) puis (1,0) puis (1,3) puis (4,0). Bruce Willis, doté d’un QI bien supérieur à la moyenne, raisonne exactement comme l’IA d’avant, celle des années 1950-1960, celle qui a fait de notre raison la cible à abattre.

Autre film, autre ambiance. Dans ces scènes de cinéma que Steven Spielberg prend tant de plaisir à réaliser, les petits garçons n’ont jamais aucun mal à reconnaître leur maman, que ce soit le héros de L’empire du soleil, surtout à la fin du film, ou même le petit robot de AI (ça tombe bien)1. Il leur suffit de percevoir, même de très loin, même dans l’obscurité, même dans une foule, surtout dans une foule, le visage de leur maman, pour que le leur s’illumine. Cette reconnaissance est comme une évidence, un réflexe de survie qui ne nécessite pas le moindre raisonnement, contrairement à celui extrait du film précédent. Il s’agit d’un tout autre type de processus cognitif, bien plus primitif, dont sont dotés les enfants autant que les animaux. Même les singes les plus proches de nous sont totalement incapables de résoudre le problème de Die Hard, alors que la reconnaissance d’un visage de primate ou d’humain ne leur demande aucun effort, une dépense minimale de Watts neuronaux. Pour l’IA en revanche, il s’agit là d’un tout autre type de processus cognitifs à reproduire.

Alors que les premiers développements de l’IA cherchaient déjà à reproduire l’ensemble de tous les processus cognitifs humains, ces multiples intelligences, de celles qui nous permettent de raisonner, mais aussi voir, se mouvoir, entendre, parler, écrire, créer… les premières réussites logicielles tinrent surtout à la reproduction de la partie la plus cognitive de nos cerveaux : raisonnement, résolution de problème, maîtrise du langage naturel. On négligea la vision ou la robotique, car supposées beaucoup plus à portée que le jeu d’échec ou le résumé d’un texte (c’est d’une telle simplicité pour nous). Erreur de jugement fatale ! Il fallut attendre de nombreuses années pour que les idées déjà en ébauche aux origines de l’IA (comme les réseaux de neurones) finissent par porter leurs fruits et atteindre les résultats espérés, amenant cette autre tradition de l’IA (ancrée dans nos processus inconscients) à voler la vedette à la version d’origine (ancrée dans nos processus les plus conscients et les plus rationnels). Cette inversion de tendance incite certains chercheurs à aller jusqu’à déclarer que toute la tradition plus cognitive de l’IA, plus logique, plus séquentielle, basée sur la construction d’arbres de raisonnement, et exploitant les connaissances humaines pour simplifier la recherche, l’a conduite dans une impasse2. Aujourd’hui, on peut aller jusqu’à parler d’un remplacement généralisé de toute la tradition « logico-symbolique » de l’IA par les réseaux de neurones.

Dans ce livre, nous prenons quelques distances par rapport à ce grand basculement et, parmi nos missions premières, nous souhaitons réhabiliter ces premiers algorithmes de l’IA, de ceux que l’on retrouve abondamment dans les entreprises aujourd’hui, comme lorsque vous faites une recherche sur Google, jouez aux échecs, utilisez Waze ou Uber. Il est vrai que trois facteurs conjoncturels importants sont à l’origine du succès de ces nouveaux algorithmes d’IA bien davantage axés sur l’apprentissage : d’abord quelques innovations algorithmiques (de celles que l’on trouve par exemple dans les architectures plus récentes des réseaux de neurones : réseaux convolutifs ou transformers), mais surtout une quantité extraordinaire de données, comme autant de témoignages du génie humain dont les algorithmes d’apprentissage peuvent s’inspirer même sans les comprendre, et finalement des processeurs informatiques qui se sont extraordinairement « musclés » en puissance de calcul, recourant notamment à de plus en plus de parallélisme (ainsi l’ascendance des GPU sur les CPU pour les réseaux de neurones profonds). Nous en parlerons également.

Contenu et lectorat du livre

Plusieurs algorithmes d’IA, parmi les plus fameux et les plus usités, vont vous être illustrés, décortiqués et présentés dans ce livre. Il s’agit d’algorithmes de recherche (A*), d’optimisation (algorithmes génétiques) et d’apprentissage (renforcement et classification, à partir de réseaux de neurones ou pas). Ils le seront à travers des applications aussi simples que populaires et très certainement connues par la plupart d’entre vous. Nous décrirons d’abord l’algorithme de résolution de manière conceptuelle, puis aborderons plus en détail certaines parties du code permettant à cet algorithme de s’exécuter pour les applications en question. Les codes seront accessibles dans leur intégralité sur un site web dédié et donc récupérables et exécutables en l’état. Nous nous intéresserons également à certaines techniques propres au traitement du langage naturel (comme l’algorithme LDA, les transformers) et au traitement d’image (comme les filtres convolutifs), plusieurs domaines applicatifs qui ont vécu des améliorations assez conséquentes ces vingt dernières années.

Nous avons fait le choix du langage de programmation Python pour l’écriture et la présentation des codes. Ce choix pourrait sembler paradoxal quand vous lirez souvent dans l’ouvrage qu’un des critères les plus importants dans le choix d’un algorithme s’avère le temps de calcul que son exécution réclame. En effet, Python étant un langage interprété, ayant privilégié par ailleurs la simplicité d’écriture sur la vitesse d’exécution, il n’est nullement recommandé pour celle-ci. C’est bien évidemment cette simplicité d’usage qui en fait depuis quelques années le langage de prédilection pour l’enseignement de l’informatique et de la programmation ; donc, assez logiquement, pour l’enseignement des algorithmes d’IA. De surcroît, la plupart des bibliothèques logicielles dont nous dépendrons pour l’exécution de certains de nos codes sont elles-mêmes écrites en Python (comme la bibliothèque PyTorch pour les réseaux de neurones).

Nous ne souhaitons donc pas à déroger à cette tradition pédagogique, dont une des conséquences bénéfiques premières est l’extraordinaire offre logicielle sur le Web, notamment pour résoudre les mêmes applications que nous présenterons dans la suite de l’ouvrage. Lorsque nous comparons plusieurs algorithmes quant à leur vitesse d’exécution, nous passons évidemment totalement sous silence le langage de programmation utilisé. Libre à chacun d’entre vous, une fois comprise et assimilée la logique qui se cache derrière l’algorithme, de le transposer dans votre langage de programmation favori, afin de récupérer tout ce temps d’exécution perdu dont Python pourrait plaider coupable. Nous souhaitons aussi le plus souvent révéler la logique algorithmique (codée en Python) qui se dissimule derrière les performances des logiciels, afin de décourager le lecteur de se ruer sans discernement sur les bibliothèques qui implémentent l’algorithme et facilitent son usage, mais en en dissimulant ce cœur algorithmique. La compréhension profonde de ce dernier nous intéresse bien davantage que ses performances. C’est la pédagogie de l’IA qui nous importe, plus que son exploitation empressée.

Ce livre s’adresse à tous les étudiants, en informatique ou pas, qui découvrent l’IA dans leur parcours académique, mais aussi à tous les informaticiens, même les plus confirmés, qui se sentent de plus en plus décontenancés devant l’offre pléthorique des recettes d’IA dont ils n’arrivent pas toujours à comprendre « qui fait quoi ». Il est la conséquence de trente années d’enseignement de l’IA et des milliers d’étudiants que nous avons vu effectuer très souvent le mauvais choix algorithmique pour le problème qu’ils étaient censés résoudre. Parmi les raisons de ces errements : un manque de recul et de questionnement sur le problème, l’absence d’une connaissance plus en profondeur des recettes de l’IA (y compris les plus anciennes), le panurgisme et la facilité d’accès aux recettes les plus récentes et les plus à la mode, tel l’apprentissage profond. Les apprenants pourront, après avoir assimilé la logique algorithmique, facilement télécharger et exécuter les codes Python, quitte à les remanier, les améliorer et les transposer pour un problème du même acabit.

Remerciements

Hugues Bersini souhaite vivement remercier son co-auteur, Ken Hasselmann, dont il a eu la grande chance de bénéficier de l’accompagnement toutes ces dernières années dans son enseignement de l’IA. Il souhaite aussi remercier tous les membres historiques et ceux toujours présents du laboratoire IRIDIA, qu’il dirige avec son ami et formidable chercheur Marco Dorigo. Il s’agit de centaines et de centaines de chercheurs qui ont fait la réputation d’un laboratoire devenu un incontournable de l’IA dans le monde entier. Il souhaite remercier les milliers d’étudiants qu’il espère avoir sensibilisés, même plus, passionnés à l’IA, surtout ces deux dernières années, que la crise de Covid a rendu nettement plus malaisées, tellement moins agréables pour eux. Finalement, c’est à toute l’équipe d’Eyrolles, avec laquelle il contribue depuis tant d’années et qui continue à le soutenir et l’accompagner avec grand professionnalisme, qu’il souhaite adresser sa plus sincère reconnaissance. Rien ne fait mieux ressortir des lignes de code que la page blanche sur laquelle elles s’écrivent. Et combien de fois lui a-t-il été donné de vivre un eurêka salvateur, en feuilletant les pages d’un livre d’informatique ou de programmation, dans un métro, un train, à l’arrière d’une voiture ou faiblement éclairé par une lampe de chevet la tête posée sur l’oreiller. Le livre survivra, même dans sa version papier, surtout dans sa version papier, grâce aux éditeurs qui le défendent avec tant de passion.

Ken Hasselmann tient aussi à remercier Hugues Bersini, pour sa confiance et pour lui avoir offert l’opportunité de participer à l’élaboration de cet ouvrage, et toute l’équipe d’Eyrolles pour l’avoir rendu possible. Il tient à vivement remercier toute l’équipe d’IRIDIA pour l’ambiance chaleureuse et familiale qui règne au sein du laboratoire ! Pour finir, il souhaite remercier ses amis et sa famille pour leur soutien indéfectible et leur amour inconditionnel.

1. Alors qu’il cogitait à la réalisation de son film Artificial Intelligence, inspiré de la nouvelle Les supertoys durent tout l’été de Brian Aldiss, un des problèmes taraudant considérablement Stanley Kubrick, connu pour son perfectionnisme maladif, était l’apparence du petit garçon robot, David, le protagoniste du film. Lorsque Spielberg hérita de ce projet à la mort de Kubrick, il ne s’encombra pas de difficultés techniques outre mesure et choisit Haley Joel Osment, qui s’efforça, par la mécanicité de sa gestuelle et son statisme, de jouer au robot. Dans le film, une famille en mal d’enfants se voit confier David, représentant d’une nouvelle génération robotique frôlant la perfection et qui, alors qu’il est programmé pour être capable d’un véritable amour filial pour ses parents, surtout sa mère, souffre de l’absence de réciprocité de cette dernière, qui ne parvient pas à s’affranchir de la nature siliconée de son petit. On retrouve le problème relationnel parents/enfants si cher à Spielberg, rendu plus aigu encore par la difficulté dans laquelle se trouve la mère. Elle peine à voir dans David autre chose qu’un toasteur, capable de quelques expressions touchantes mais sans plus, et cela malgré les effets appuyés de séduction déployés à tout venant par le petit robot.

2. Afin de prendre position dans ce débat, nous recommandons la lecture de Rebooting Artificial Intelligence we can trust de Gary Marcus et Ernest Davis ou Architects of intelligence, the truth about AI from the people building it de Martin Ford.

Introduction

Cet écrit à vocation essentiellement pédagogique a pour but d’aider les débutants et même les praticiens confirmés de l’Intelligence Artificielle à mieux faire le tri entre certains mécanismes algorithmiques propres à cette discipline et souvent confondus, dont les trois fondamentaux que sont « la recherche », « l’optimisation » et « l’apprentissage ». Le besoin d’un tel écrit s’est fait sentir lorsque l’un des auteurs, qui enseigne cette discipline informatique depuis plus de trente ans, a constaté de manière accrue la grande confusion régnant dans l’esprit de ses étudiants lorsque ces derniers choisissent de programmer ce qui leur semble l’algorithme le plus désigné et prometteur pour résoudre certains problèmes :

	réussir le jeu du taquin ou des problèmes de sudoku ;

	affronter des joueurs humains au Puissance 4, aux dames ou aux échecs ;

	jouer aux vétérans Tetris ou Snake, ou pour contrôler Super Mario dans le jeu vidéo du même nom ;

	trouver le chemin le plus court dans un graphe ou le parcours le plus rapide traversant toutes les villes pour un voyageur de commerce ;

	séparer les spams des non-spams et, au-delà, organiser un ensemble de textes selon les thématiques qu’ils couvrent ;

	découvrir les règles qui distinguent un débiteur fiable de son contraire et reconnaître soit un chien soit un chat sur une photo qu’on lui présente ;

	produire automatiquement du texte cohérent et censé.

De fait, les trois mécanismes les plus souvent confondus ou hybridés sans grand discernement afin de s’attaquer à ces problèmes sont effectivement « la recherche », « l’optimisation » et « l’apprentissage ». C’est aussi un fait certain que la sémantique n’aide pas, surtout lorsqu’on apprend à chercher à optimiser, que l’on optimise son apprentissage ou que l’on cherche à apprendre…

De la même manière, le Web regorge de solutions algorithmiques et de codes mis à disposition pour toujours ces mêmes types de problèmes (beaucoup d’enseignants en Intelligence Artificielle y ont recours pour leurs vertus pédagogiques). Une manière d’aborder et de résoudre le problème est exposée, le code est téléchargeable, de nombreuses bibliothèques disponibles sont prêtes à l’emploi, mais ce mode de résolution est rarement justifié et, surtout, peu comparé avec d’autres possibles. Et en effet, au risque de nous répéter, pour chaque problème, il existe de multiples manières algorithmiques de s’y attaquer. Ce qui manque donc, et c’est la raison de cet ouvrage, c’est le recul, la prise de distance nécessaire pour, entre ces différentes offres algorithmiques, parvenir à trancher. Les sciences cognitives nous enseignent, que, avant de bien résoudre un problème, il faut d’abord le comprendre au mieux, c’est-à-dire concevoir le modèle mental adéquat d’où découlera naturellement la voie algorithmique la plus prometteuse. En effet, plusieurs raisons expliquent la confusion.

	
Il peut sembler au premier abord possible de programmer un algorithme dérivé indifféremment de l’un de ces trois mécanismes fondamentaux et qui, de fait, réussi à résoudre le problème après un temps d’exécution donné. Prenons, par exemple, le problème du taquin, le premier cas d’école que nous approfondirons par la suite. Composé d’un certain nombre de carreaux, il consiste pour le joueur à déplacer un certain nombre de fois un carreau vide dans les quatre directions cardinales possibles afin que tous les carreaux, au départ dans une configuration quelconque, se retrouvent placés de façon ordonnée. Cette séquence optimale de coups, idéalement la plus courte, peut être découverte à la fois par l’algorithme de recherche A* (le vétéran de tous les algorithmes d’IA, mais sans une ride), par une méthode d’optimisation appelée algorithme génétique ou par un apprentissage par renforcement de type Q-learning (très à la mode aujourd’hui et plus encore dans sa version « Deep »). Dès lors, lequel choisir ?
Nous en discuterons dans le prochain chapitre et nous verrons qu’il est indispensable pour un praticien de l’IA de réussir à différencier ces algorithmes concurrents selon divers critères :

	certains propres à l’ordinateur censé les exécuter : temps de calcul, capacité d’occupation de la mémoire vive ;

	d’autres propres à la tâche du programmeur : complexité de l’algorithme et de sa programmation, sa décomposition facile, connaissance a priori de certaines voies résolutives déjà bien connues par les experts humains et possibilité de traduire cette expertise sous une forme algorithmique directement exploitable. Pourquoi ne pas faciliter la vie de l’algorithme (et surtout économiser ses ressources énergétiques) en partant de toute cette compétence que l’homme a acquise pour ce problème ? Pourquoi l’algorithme doit-il réinventer la roue ? Le cerveau humain doit-il jeter toutes ses armes au pied de la CPU machine ?

Comme toute situation de décision multicritère, le choix de l’algorithme adéquat pour le problème en question peut dériver de la priorité donnée à un critère plutôt qu’un autre ou d’un compromis judicieux entre ces différents critères.

	Une autre raison importante est l’existence de multiples possibilités de mélanges entre ces différents mécanismes, transformant l’IA en une espèce de boîte à outils ou de couteau suisse, desquels l’ingénieur sort l’un ou l’autre de ces outils et bricole, en les hybridant plus ou moins maladroitement (les assemblages sont multiples). Citons quelques exemples, toujours pour le taquin. L’algorithme A* requiert pour fonctionner une heuristique permettant d’évaluer et privilégier, parmi plusieurs configurations intermédiaires du jeu, laquelle est la plus prometteuse sur le chemin de la solution (i.e. à partir de laquelle on disposera les carreaux dans le bon ordre en le moins de coups possible). Or, il n’est pas toujours aisé de connaître une telle heuristique. Plusieurs voies peuvent être possibles, les meilleures permettant d’atteindre la solution en minimisant le temps de calcul pour un processeur qui ne se perd plus dans des chemins de traverse. Elles peuvent dès lors être apprises en les tentant et en les testant et en espérant que, une fois la meilleure mise à jour, elle se généralisera à toutes les situations de taquin, au-delà de celles qui ont justement servi à la découvrir. Ce qu’un apprentissage doit toujours réussir (on le comprendra mieux plus tard), c’est généraliser ce que l’on a trouvé à partir de quelques situations types à toutes les nouvelles situations qui n’ont pas servi pour le trouver mais qui lui ressemblent.
Nous voyons bien là un mélange entre un algorithme de recherche et un autre d’apprentissage, permettant au premier de fonctionner plus efficacement ou plus rapidement encore. Un autre exemple de mélange bien connu est le réseau de neurones : un algorithme d’IA vieux de plus de soixante ans, mais qui a regagné en jeunesse, vigueur et popularité dans sa version relookée dite de l’apprentissage profond. De tels réseaux ont besoin pour fonctionner d’une phase d’apprentissage basée sur un algorithme d’optimisation censé découvrir, par une « sorte » d’essai/erreur guidé, les meilleurs paramètres possibles reliant les neurones entre eux et assurant le bon fonctionnement de l’ensemble (nous détaillerons cela par la suite). Comme nous le verrons, apprentissage et optimisation ont généralement partie liée. C’est aussi un algorithme d’apprentissage qui peut tenter de découvrir les meilleurs paramètres d’un algorithme d’optimisation type génétique (également rencontré par la suite), cherchant à découvrir, en en évaluant le moins possible, le meilleur itinéraire d’un voyageur de commerce devant traverser une succession de villes pour revenir à son point de départ. Comme on l’aura compris, ce cocktail algorithmique, cette possibilité de mélange à l’infini, ne contribue pas à faciliter le tri pour identifier correctement quel candidat algorithmique s’applique à quel type de problème (dès lors que plusieurs peuvent y contribuer).

	Une dernière raison, un peu moins fondamentale et plus conjoncturelle, tient aux phénomènes de mode qui, comme partout ailleurs, ont un impact très important sur le choix et la popularité de ces algorithmes. Il n’aura échappé à aucun adepte de l’IA combien l’apprentissage machine et son représentant actuel le plus sexy, l’apprentissage profond, ont le vent en poupe aujourd’hui et se retrouvent projetés sur le devant de toutes les scènes logicielles. Ainsi, qui n’a pas été saisi d’enthousiasme et pour certains d’effroi devant les performances réellement impressionnantes de ChatGPT ? Pour de nombreux chercheurs en IA, quelque problème qui soit, quelque processus cognitif qui soit devraient pouvoir se traiter et se résoudre définitivement par l’apprentissage profond. Tout ce que l’IA a produit jusque-là ne conduirait qu’à un désolant cul-de-sac, soixante années de recherche et développement à jeter par les fenêtres ou reléguer au musée. Plusieurs de ces stars aujourd’hui vont même jusqu’à affirmer, à tort, que c’en est fini de la programmation, l’ordinateur pouvant tout résoudre par simple apprentissage, y compris s’autoprogrammer. Il suffirait de lui montrer quelques exemples et il retrouverait tout par lui-même. C’est d’ailleurs cette argumentation qui sous-tend en partie le développement de logiciels tels que ChatGPT dont les capacités de programmeur sont réellement impressionnantes. C’est bien évidemment ce qui amène beaucoup de nos étudiants à vouloir attaquer, leur enthousiasme le disputant à leur naïveté, le jeu du Puissance 4 ou du Snake avec, par exemple, un Deep-Q-learning (mélange de réseau de neurones profond et de l’apprentissage par renforcement, à découvrir par la suite), quand bien même cela revient à se munir d’un bazooka pour se débarrasser d’une mouche. C’est rendu d’autant plus possible et accessible au vu de la puissance de calcul actuelle de nos ordinateurs. Les pionniers de l’IA étaient, à raison, beaucoup plus attentifs aux limites imposées par la vitesse des processeurs et la capacité de mémoire vive. Et encore, les quelques degrés additionnels du réchauffement climatique ne leur pendaient pas au nez.
Les premières publications sur les réseaux de neurones datent des années quarante et, lors de la fameuse conférence de Dartmouth donnant naissance à ce nouveau champ disciplinaire qu’était l’IA, on parla déjà abondamment d’apprentissage machine et de réseaux de neurones. Lors de cette même conférence, Arthur Samuel proposa une méthodologie d’apprentissage dite par renforcement qui permettait à un logiciel d’apprendre tout seul à jouer aux dames de façon optimale. AlphaZero (le meilleur logiciel actuel pour le jeu de go), une autre découverte soi-disant révolutionnaire, reprend pour l’essentiel ces mêmes idées soixante ans plus tard. Toutefois, c’est la voie de la programmation et de la résolution de problème qui prirent à l’époque le dessus sur ces réseaux de neurones. Pour ces mêmes pionniers de l’IA, la bonne idée était de mettre de l’humain dans les machines, que ces dernières s’inspirent de nos processus cognitifs. Avaient-ils fondamentalement tort, comme leurs héritiers le prétendent aujourd’hui ?
Le vénérable chercheur qu’est un des auteurs a vécu de nombreux prétendus hivers et étés de cette discipline (au prix d’une certaine lassitude) et déjà, à l’orée des années 1980, on parlait de la revanche de ces grisonnants réseaux de neurones sur l’autre versant de l’IA dit symbolique, plus ancré dans le raisonnement explicite et, justement, basé sur les algorithmes de recherche. Ces modes, donc, se succèdent et se ressemblent ; elles s’en vont et s’en viennent, en fonction des succès pratiques accomplis par cette discipline. Face à de tels engouements passagers, il est judicieux de prendre quelque recul, de raison garder, de résister aux effets de mode et de ne comparer le comportement et les performances de ces algorithmes qu’à partir de critères suffisamment objectivables : complexité algorithmique, temps de calcul, occupation de la mémoire, compréhensibilité de l’algorithme. Nous ne pensons modestement pas avoir vécu une succession d’hivers et d’étés, pas plus qu’une progression de cette discipline ponctuée de révolutions comme on le lit souvent, mais un parcours bien plus linéaire, en progrès constant et modifiant la cible des faisceaux des projecteurs en fonction des résultats très pratiques obtenus par l’une ou l’autre approche. Rien de plus.

Dans les chapitres qui suivent, nous allons attaquer douze problèmes très classiques de l’univers algorithmique et de l’IA. Pour chacun, nous allons proposer l’une ou l’autre méthode issue d’un des trois mécanismes fondamentaux (recherche, optimisation ou apprentissage). Cela permettra aisément au lecteur de bien faire la différence entre les trois et de saisir lequel (si aucun mélange n’est possible) est le mieux adapté au problème donné. Pour chacun, nous proposerons un ou plusieurs code(s) Python disponibles dans un dépôt GitHub public et accessibles également via un site web1, ou sur la page du livre sur le site d’Eyrolles2. Ces douze problèmes seront dans l’ordre :

	le jeu du taquin ;

	l’algorithme du plus court chemin (celui que l’on trouve dans les GPS) ;

	le jeu du sudoku ;

	le jeu Puissance 4 à deux joueurs ;

	le jeu du Tetris ;

	le jeu du Snake ;

	la séparation des spams et des non-spams ;

	la découverte des règles d’attribution d’un crédit bancaire ;

	l’organisation thématique de documents textuels non étiquetés ;

	la reconnaissance sur photo de chiens ou de chats ;

	un mini modèle de langage « nanoGPT » capable de produire un texte imitant le style de Shakespeare ;

	la technologie RAG permettant d’améliorer grandement le fonctionnement de ces modèles de langage.

Nous débuterons chaque chapitre par une capture d’écran de l’exécution du logiciel Python, suivie d’un descriptif plus conceptuel des méthodes et mécanismes à l’œuvre dans la réalisation du logiciel. Finalement, nous présenterons quelques parties du code réalisant très concrètement ces mécanismes décrits précédemment.

Installation de Python

Nous faisons l’hypothèse que vous utilisez Windows 64 bits en version 7 et plus, ou une distribution récente et à jour basée sur GNU/Linux telle que Ubuntu 20.

Sous GNU/Linux, Python est préinstallé dans la plupart des distributions modernes, nous partons donc du principe que Python 3 (>3.7) est installé sur votre machine.

Sous Windows, rendez-vous tout d’abord sur le site web de Python et téléchargez l’exécutable de la dernière version (3.9.6 à l’heure d’écriture de ces lignes) : https://www.python.org/downloads/.

Lancez l’installation classique en cochant bien la case Add Python 3.9 to PATH.

Votre installation du langage sera alors disponible dans l’invite de commande de Windows ou dans Powershell. Nous vous conseillons l’utilisation de ce dernier. En programmation, il est de bonne pratique de savoir se servir un minimum de l’invite de commande sous Windows et sous Linux, sans nécessairement avoir d’interface graphique, et ainsi de pouvoir réaliser de simples programmes et les exécuter au plus proche de la machine, tout en comprenant vraiment ce que vous faites.

[image: Figure I–1 Installation de Python.]

Figure I–1
Installation de Python.

Nous vous invitons donc, si ce n’est déjà fait, à vous renseigner sur les commandes usuelles à utiliser lors d’une session dans l’invite de commande (par exemple : cd, ls, mv, cp, rm…), qui vous seront très utiles !

Powershell est facilement accessible depuis Windows. Lancez une recherche dans les programmes (au clavier : touche Windows, puis taper « powershell »).

[image: Figure I–2 Ligne de commande Powershell.]

Figure I–2
Ligne de commande Powershell.

Installation de poetry

Poetry est le gestionnaire de dépendances que nous avons choisi d’utiliser pour les différents exemples de ce livre. Il permet d’exécuter des programmes Python dans un environnement virtuel et gère automatiquement l’installation, la gestion et l’utilisation de ces environnements virtuels. Cela vous permettra de bien isoler les différents projets entre eux (ainsi que leurs dépendances), c’est pratique également si certains projets dépendent de bibliothèques dont les versions diffèrent d’un projet à l’autre.

Sous Windows

Vous retrouverez les instructions d’installation de poetry sur le site web : https://python-poetry.org/docs/#windows-powershell-install-instructions.

Il vous suffit pour cela de démarrer Powershell, d’y copier la ligne suivante et d’appuyer sur Entrée.

(Invoke-WebRequest -Uri https://raw.githubusercontent.com/python-poetry/poetry/master/

get-poetry.py -UseBasicParsing).Content | python -

[image: Figure I–3 Installation de poetry avec Powershell.]

Figure I–3
Installation de poetry avec Powershell.

Une fois ceci exécuté, il n’y aura plus besoin de le refaire ; poetry aura automatiquement été installé et aura détecté votre installation de Python. Redémarrez ensuite Powershell.

Si cette commande ne fonctionne pas, référez-vous à la documentation de poetry dans la section Alternative installation methods : https://python-poetry.org/docs/#alternative-installation-methods-not-recommended.

Sous Linux

Vous pouvez utiliser les dépôts de votre distribution, par exemple apt sous Ubuntu/Debian :

sudo apt install poetry

Si poetry n’est pas présent dans les dépôts de votre distribution, installez-le manuellement en copiant la ligne suivante dans un terminal de commande (https://python-poetry.org/docs/#osx--linux--bashonwindows-install-instructions) :

curl –sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py |

python3 -

Puis redémarrez votre terminal.

Fichiers des différents projets

Rendez-vous sur la page associée au livre sur le site d’Eyrolles ou directement sur GitHub pour récupérer le dépôt contenant les différents projets.

Téléchargez l’archive zip (ou utilisez le gestionnaire de versions git) pour récupérer l’ensemble des codes et le placer dans votre dossier principal (par exemple : C:\Users\votrenom ou C:\Users\votrenom\Documents) et enfin désarchivez-le (Extraire tout dans le menu contextuel).

Ensuite, ouvrez Powershell et naviguez jusqu’à ce dossier. Pour cela, utilisez la commande cd suivie du nom du dossier (notez que la touche Tab du clavier offre une autocomplétion des commandes de la plus grande utilité).

Installer et utiliser les projets

Une fois dans le dossier principal, les différents projets s’installent de façon analogue. Rendez-vous dans le dossier du projet (par exemple, cd 8Puzzle depuis le dossier principal).

Puis entrez la commande suivante (une seule fois pour chaque projet) :

poetry install

Ou souvent dans le Powershell de Windows :

python –m poetry install

Une fois les dépendances installées et l’environnement créé, vous n’avez plus qu’à exécuter le code de chaque projet à l’aide de la commande run de poetry ; par exemple, pour le taquin (8Puzzle), cela donne la commande suivante :

poetry run python3 main.py

Ou souvent dans le Powershell de Windows :

python –m poetry run python main.py

1. Pour chaque projet, vous trouverez sur le site quelques informations complémentaires pour y accéder, le télécharger et l’exécuter. https://iridia-ulb.github.io/AI-book/

2. https://www.editions-eyrolles.com/dl/0102315

1

Jouons au taquin

[image: Figure 1–1 Capture d’écran du logiciel Python mis à votre disposition pour le taquin.]

Figure 1–1
Capture d’écran du logiciel Python mis à votre disposition pour le taquin.

Principe – Choix algorithmique

Rappelons que ce jeu consiste pour le joueur à déplacer un carreau vide dans l’une des quatre directions cardinales (s’il est près du bord, certains mouvements deviennent impossibles) afin de placer tous les carreaux de manière uniquement ordonnée (figure 1–1).

[image: Figure 1–2 Un jeu possible du taquin : à gauche dans sa configuration initiale et à droite dans sa configuration finale, celle désirée.]

Figure 1–2
Un jeu possible du taquin : à gauche dans sa configuration initiale et à droite dans sa configuration finale, celle désirée.

Ce jeu est simple et tous les concepts fondamentaux de l’IA ainsi que les bases de toutes les solutions algorithmiques peuvent y être parfaitement illustrés.

Commençons par le concept d’état, fondamental en IA, qui décrit la configuration du jeu à un moment donné ; ici, le positionnement de tous les carreaux, y compris le carreau vide. Un problème en IA démarre en général par une configuration initiale de cet état, une manière formelle de le représenter, et se définit par la configuration finale désirée dans ce même formalisme. On conçoit le caractère universel d’une telle définition, ce qui laissa penser aux précurseurs de l’IA que les algorithmes de résolution qu’ils mettraient au point conserveraient ce même caractère d’universalité. Sans surprise d’ailleurs, un des algorithmes les plus célèbres de l’IA des origines s’appelait modestement le GPS (General Problem Solver1).

Puis vient le concept d’action ; dans ce cas-ci, le déplacement du carreau vide dans les positions successives possibles qui permet de faire évoluer l’état comme seul résultat de l’action. Là aussi, toute la dimension cognitive de l’IA se trouve illustrée par ce concept. L’humain est capable de prédire l’effet de ses actions sur le monde et, de ce fait, d’échafauder des plans d’action en enchaînant les prédictions et en s’autorisant des retours en arrière si ces inférences ne mènent nulle part, tout comme les algorithmes d’IA (on parle de backtracking). Ces algorithmes de recherche furent dès les années 1950, à la naissance de l’IA, une parfaite transposition informatique d’une démarche cognitive conçue comme universelle et vue comme la quintessence de l’intelligence humaine : résoudre un problème en enchaînant les actions/prédictions jusqu’à découvrir le meilleur enchaînement possible, le bon plan.

On voit alors se dessiner un arbre dont les nœuds sont les états et les branches les actions qui permettent de descendre de nœud à nœud, jusqu’à aboutir au nœud cible. Enfin vient le concept de solution du problème, ici la succession d’actions (ou de coups dans le cas d’un jeu), idéalement la plus courte, qui, à partir de n’importe quelle configuration initiale, conduira à la configuration ordonnée. La solution pour le taquin est donc une succession de longueur minimale de coups gagnants.

Attaquons ce même problème à l’aide de deux des trois mécanismes fondamentaux de l’IA : la recherche et l’apprentissage. L’optimisation serait aussi envisageable et nous esquisserons juste sans approfondir l’algorithme génétique en question, que nous expliquerons plus en détail pour le jeu du sudoku. En effet, ces trois mécanismes sont applicables ici et tous les trois peuvent mener à la solution, même si, dans ce cas précis, nous allons chercher à vous convaincre que le premier, le plus ancien par ailleurs, s’impose très naturellement.

Recherche : A*

Cette approche, historiquement emblématique des premiers succès très pratiques de l’IA, consiste, en partant de la configuration initiale, à explorer tous les coups possibles afin de construire un arbre se ramifiant vers le bas : de coup en coup. À chaque niveau, on obtient autant de nouvelles configurations qu’il y a de coups possibles, jusqu’à obtenir la solution au dernier niveau. La recherche en largeur d’abord, illustrée à la figure 1–3, revient en effet à tenter à chaque niveau tous les coups possibles, en repérant les configurations communes entre plusieurs branches et en interdisant les cycles (c’est-à-dire en évitant de revenir sur une configuration déjà rencontrée précédemment). Il est clair que cette recherche finira par atteindre la configuration solution en le moins de coups possible, si une séquence qui y conduit existe en effet (le jeu pourrait être insoluble). Dès que la configuration désirée est trouvée, on conçoit aisément qu’elle aura été atteinte par une séquence minimale de coups.

Une alternative est la recherche en profondeur d’abord (figure 1–4), qui consiste à s’enfoncer de plus en plus dans l’arbre, en sélectionnant à chaque niveau un seul coup possible (fixant un ordre de priorité entre les coups), mais capable de rebrousser chemin et d’emprunter une voie alternative si cette succession de choix de coups mène à un cul-de-sac (plus aucun coup possible). Cette option, sans avoir besoin de vous le démontrer, est susceptible de trouver une séquence de coups gagnants, mais n’est plus assurée de vous révéler la séquence optimale. Elle s’arrêtera à la première trouvée.

[image: Figure 1–3 Résolution du jeu du taquin par une recherche en largeur d’abord.]

Figure 1–3
Résolution du jeu du taquin par une recherche en largeur d’abord.
https://courses.cs.washington.edu/courses/cse473/12au/slides/lect3.pdf

[image: Figure 1–4 Résolution du jeu du taquin par une recherche en profondeur d’abord.]

Figure 1–4
Résolution du jeu du taquin par une recherche en profondeur d’abord.
https://sandipanweb.wordpress.com/2017/03/16/using-uninformed-informedsearch-algorithms-to-solve-8-puzzle-n-puzzle/

Un des algorithmes les plus fameux de l’IA, nommé A*, le meilleur algorithme conçu pour résoudre le taquin et que nous comprendrons mieux encore à l’aide du code Python qui accompagne ce chapitre (quelque peu schématisé à la figure 1–5), se situe entre les deux précédents et privilégie les coups à jouer selon une évaluation des configurations intermédiaires obtenues, sommant à la fois le nombre de coups effectués jusqu’à présent (souvent désigné par g et appelé coût de la configuration) et la qualité de la configuration obtenue jusqu’ici sur le chemin de la solution (par exemple, le nombre de carreaux mal positionnés par rapport à la solution). Cette deuxième partie de l’évaluation, souvent désignée par h pour « heuristique », fut la très belle innovation de l’algorithme A* par rapport à ses prédécesseurs. Nous y reviendrons par la suite, quand il sera question du problème du plus court chemin. La valeur g témoigne de la qualité de la solution obtenue jusqu’ici, alors que la valeur h, autrement plus subtile, relève d’une prédiction sur la solution future, une estimation. Comme toute heuristique et estimation future, elle possède aussi en son sein de quoi nous fourvoyer, nous emmener dans un cul-de-sac ou une solution de moindre qualité. g dit toujours la vérité, rien que la vérité, alors que h nous enjoint de prendre des risques et s’avère susceptible de nous perdre. Pourquoi un tel h alors, quand g seul pourrait parfaitement faire l’affaire ? Pour une unique raison : gagner du temps, nous éviter d’évaluer des solutions qui finiront par s’avérer de bien moindre qualité.

[image: Figure 1–5 Illustration de l’algorithme A* pour le jeu du taquin.]

Figure 1–5
Illustration de l’algorithme A* pour le jeu du taquin.
https://blog.goodaudience.com/solving-8-puzzle-using-aalgorithm-7b509c331288?gi=fa9b0fd6a73d

Cette heuristique est une autre preuve de l’extraordinaire source d’inspiration pour l’IA que constitue la cognition humaine. En effet, nous aussi cherchons bien souvent à économiser du temps ou d’autres ressources précieuses, en estimant les chances de succès de certaines de nos décisions avant de les prendre. Nous empruntons cette petite rue pour chercher à nous garer dans un centre-ville saturé de voitures, car nous prédisons qu’il y a plus de chances d’y trouver une place de stationnement, au risque de refaire le tour du centre-ville si notre prédiction s’avère trompeuse. Le choix de la prochaine configuration sur laquelle A* se concentre sera donc celle qui minimise f=g+h. Si certaines conditions de l’heuristique sont remplies, comme surtout sa non-surestimation de l’évaluation finale de la solution (par exemple, le nombre de coups qu’il a fallu effectuer pour arriver à la solution), on a la garantie que la solution finalement obtenue sera bien la meilleure (la plus rapide) pour arriver à la configuration désirée. Une heuristique très souvent utilisée dans le cas du taquin est la distance de Manhattan, qui s’obtient en calculant et sommant le nombre de déplacements (horizontaux et verticaux) qui conduirait à la configuration idéale. Toutefois, on pourrait parfaitement en imaginer d’autres, comme simplement le nombre de cases mal placées.

Ce célèbre algorithme de l’IA qui, malgré son grand âge, n’a pas pris une seule ride est clairement le plus rapide en temps de calcul, car il est impossible de trouver la séquence de coups optimale en un temps de calcul et un nombre inférieur d’exécution d’instructions. La qualité de cet algorithme dépend bien évidemment de celle de son heuristique et de l’assurance de la condition (la nonsurestimation) qui, si elle n’est pas vérifiée, peut ralentir la recherche (sachant qu’il est toujours possible de rebrousser chemin et repartir d’une nouvelle configuration). En l’absence de cette heuristique, le « filet de sûreté » reste la recherche par largeur d’abord qui, au prix d’une mémorisation de toutes les configurations obtenues sur les différentes branches de l’arbre, est également assurée de trouver la solution optimale, mais en un temps de calcul cette fois nettement plus long. En effet, dans le cas du taquin, le g vaut 1 à chaque coup (nous verrons que cette valeur est plus « informative » dans le cas du plus court chemin) et y recourir ne nous apporte rien de plus qu’une simple stratégie en largeur d’abord.

Le logiciel Python du taquin (8Puzzle) en pratique

Le projet du taquin se présente sous la forme suivante :

	un fichier Game_UI.py qui contient le code en charge de l’interface graphique du jeu ;

	le programme principal dans main.py ;

	deux autres fichiers EightPuzzle_RL.py et EightPuzzle_astar.py, qui contiennent respectivement les algorithmes de l’apprentissage par renforcement et de la recherche A*.

Recherche A*

Attardons-nous sur quelques extraits intéressants du code pour la recherche A*. Commençons par la partie centrale de l’algorithme :

def solveAI(puzzle):

 """

 Implementation of the A* algorithm to solve the 8-puzzle game.

 :param puzzle: The puzzle instance

 :return: The sequence of positions of the blank tile in order

 to solve the puzzle.

 This corresponds to the path to go from the initial

 to the winning configuration.

 """

 start = puzzle.tiles

 q = [(0, start, [start[-1]])]

 # We transform q into a priority queue (heapq)

 heapq.heapify(q)

 g_scores = {str(start): 0}

 while len(q) != 0:

 current = heapq.heappop(q)

 puzzle.tiles = current[1]

 if puzzle.isWin():

 print("Found solution:", current[2])

 return current[2]

 for m in moves(puzzle):

 # for all moves, g is the current cost

 g = g_scores[str(current[1])] + 1

 # f is the sum of the current cost + heuristic

 f = g + heuristic(puzzle, m)

 if str(m) not in g_scores or g < g_scores[str(m)]:

 heapq.heappush(q, (f, m, current[2] + [m[-1]]))

 g_scores[str(m)] = g

OEBPS/Images/cover.jpg
Hugues Bersini
Ken Hasselmann

IR
en pratique avec

Python

OEBPS/Images/18_img02.jpg
B Windows Powershell a

windous Powershell

Copyright (C) Microsoft Corporation. Tous droits réservés.

Testez le nouveau systbne multiplateforne Pouershell https.

Jaka.ns pscores

PS C:\Users\iaiamis

OEBPS/Images/18_img01.jpg
 Python 396 (64-bi0) Setup. -

Install Python 3.9.6 (64-bit)

Select Install Now to install Python with default settings,or choose
Customize to enable or cisable features.

@ install Now
CAUserkenne\ AppData\Local Program Python Python3d

Includes DLE pip and documentation
Crestes shorteuts and e ssociotions

= Customize installation
Choose location sndfestures

python

& Instal launcher for al users (recommended)

WINJOWS @A pyon 3910 paTH =T

OEBPS/Fonts/calibri.ttf

OEBPS/Fonts/calibrii.ttf

OEBPS/Images/19_img01.jpg
B8 Windows Powershell - o x

Windous PowerShell
Copyright (C) Microsoft Corporation. Tous droits réservés.

Teste 1o nouveau systine miltiplateforas PouerShell htps://aks.s/pscores

75 C:\Usens > (Tnvoke obRequest 1 hitps: /nau. g1thubiusercontent. con/python-postry /poetr
V/masten/get-postry. py Lo)-Content | python

OEBPS/Fonts/calibrib.ttf

OEBPS/Fonts/times.ttf

OEBPS/Fonts/calibriz.ttf

OEBPS/Fonts/timesbi.ttf

OEBPS/Images/24_img01.jpg

OEBPS/Fonts/timesbd.ttf

OEBPS/Images/21_img01.jpg
Moves :
Shortcuts
Pause: Escape

Move up: <z>
Move down: <s>

~ Move left: <q>

Move right: <d>
Random move: <Space>

OEBPS/Fonts/timesi.ttf

OEBPS/Text/nav.xhtml

Sommaire

		Couverture

		Le résumé et l’auteur

		Page de titre

		Copyright

		Avant-propos

		Table des matières

		Introduction

		Installation de Python

		Installation de poetry

		Sous Windows

		Sous Linux

		Fichiers des différents projets

		Installer et utiliser les projets

		Chapitre 1 : Jouons au taquin

		Principe – Choix algorithmique

		Recherche : A*

		Le logiciel Python du taquin (8Puzzle) en pratique

		Recherche A*

		Apprentissage par renforcement : le Q-learning

		Application au taquin

		L’algorithme d’optimisation génétique

		Chapitre 2 : Découvrir le plus court chemin

		Principe – Choix algorithmique

		Recherche du plus court chemin

		Problème du voyageur de commerce

		Le logiciel Python de la recherche du plus court chemin en pratique

		Chapitre 3 : Jouons au sudoku

		Principe – Choix algorithmique

		Le logiciel Python du sudoku en pratique

		Recherche best-first

		Algorithme génétique

		Chapitre 4 : Jouons à Puissance 4

		Principe – Choix algorithmique

		Le logiciel Python de Puissance 4 en pratique

		Min-Max

		MCTS

		Chapitre 5 : Jouons au Snake

		Principe – Choix algorithmique

		Réseaux de neurones artificiels

		Retour au Snake

		Le logiciel Python du Snake en pratique

		Recherche A*

		Réseau de neurones et algorithme génétique

		Chapitre 6 : Jouons à Tetris

		Principe – Choix algorithmique

		L’apprentissage par renforcement pour le Tetris

		Le logiciel Python du Tetris en pratique

		Apprentissage par renforcement neuronal

		Algorithme génétique

		Chapitre 7 : Comment reconnaître un spam

		Principe – Choix algorithmique

		Le logiciel Python du détecteur de spams en pratique

		Classificateur naïf de Bayes

		Chapitre 8 : Découvrir les règles d’accès au crédit

		Principe – Choix algorithmique

		Démarrons par un petit récit personnel

		Et l’apprentissage vint à la rescousse

		Comment fonctionnent les arbres de décision ?

		De l’arbre à la forêt

		De l’éthique de l’apprentissage machine

		L’arbre de décision en pratique

		Construire un arbre de décision en utilisant sklearn

		Chapitre 9 : Aider à trier la presse ou les avis de clients

		Principe – Choix algorithmique

		Supervisé et non supervisé

		L’algorithme LDA (Latent Dirichlet Allocation)

		Word2Vec et Doc2Vec – Catégoriser le sens profond et non plus les mots

		Le logiciel Python de la catégorisation de documents en pratique

		LDA

		Représenter les documents par un vecteur de « sens »

		Chapitre 10 : Comment distinguer un chien d’un chat

		Principe – Choix algorithmique

		Le logiciel Python de la reconnaissance chien/chat en pratique

		Apprentissage profond

		Chapitre 11 : Programmer un NanoGPT

		Principe – Choix algorithmique

		Il était une fois un… wouahhh !

		Et voici que déboule ChatGPT

		Les transformers

		La vectorisation des mots ou « word embedding »

		Comment coder l’attention

		Prédire le mot qui suit

		Le coup de main du renforcement

		Le génie du prompt

		Un incroyable mystère à élucider

		Le logiciel NanoGPT en pratique

		Chapitre 12 : RAG Time : améliorer le rendu des LLM

		Principe – Choix algorithmique

		Haro sur les hallucinations !

		Retrieval-Augmented Generation (RAG)

		Le logiciel du RAG en pratique

		Conclusion : les deux IA

		Index

Landmarks-Repères

		Couverture

		Résumé et auteur

		Page de titre

		Page de copyright

		Avant-propos

		Table des matières

		Introduction

		Chapitre 1 : Jouons au taquin

		Conclusion : les deux IA

		Index

Liste de pages

		Résumé

		I

		II

		III

		IV

		V

		VI

		VII

		VIII

		IX

		X

		XI

		XII

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

OEBPS/Images/23_img01.jpg
EISICI N G
eI —r
=~ B A
ese] [elsle
aolo oo
N S
o= o I+
o 0 — [
alol ol ==l
e
e\ oo [plsle
oo~
o[<o =6 [=
[~ o olale
<o —la]w
o[1ol [Fen =
o~ olo] [w[e[o
alsio <le
ol [Elel
<le] [=[o
SlNjel—{m e
of<lal el [l
oo
SN [ERBE] [ese
I
o] (o] [~

OEBPS/Images/logo.jpg
® Editions
EYROLLES

OEBPS/Images/22_img01.jpg
Configuration initiale Configuration finale

OEBPS/Images/25_img01.jpg
123
070, h=3, f=g+h=3
46
7[5 8
o1,1e4,:5 =1, 15
0= =3
2[3 123
1]ale ! 70ae
758 58
0=2,h=1,1=3 g=2,h=3, =5
1]2[3 3 1 3
2|45 6 4|2 ¢
7 |8 8 758
0=3,h=2,1=5 A)
1]2]3 123
456 34|56
7.8 7|8

