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Getting the most from this book


Mathematics is not only a beautiful and exciting subject in its own right but also one that underpins many 


other branches of learning. It is consequently fundamental to our national wellbeing. 


This book covers the Decision Mathematics elements in the Edexcel AS and A Level Further Mathematics 


specications. Students start these courses at a variety of stages. Some embark on AS Further Mathematics 


in Year 12, straight after GCSE, taking it alongside AS Mathematics, and so have no prior experience of 


A Level Mathematics. In contrast, others only begin Further Mathematics when they have completed 


thefull A Level Mathematics course. This book requires no prior knowledge of A level Mathematics and 


so can be started at any time. Both AS and A level content is included in each of the first eight chapters 


with the sections on the AS content generally coming rst. The last three chapters are A level only.  



Chapters 1 to 4 cover the Decision Mathematics 1 paper and Chapters 5 to 11 cover the Decision 


Mathematics 2 paper. There is more detail on the split in each chapter in the section on prior knowledge.


Between 2014 and 2016 A Level Mathematics and Further Mathematics were very substantially revised, 


for first teaching in 2017. Changes that particularly aect Decision Mathematics include increased 


emphasis on


Q Problem solving



Q Mathematical rigour



Q Use of ICT



Q Modelling.



This book embraces these ideas. A large number of exercise questions involve elements of problem 


solving and require the application of the ideas and techniques in a wide variety of real world contexts. 


This develops independent thinking and builds on thorough understanding. Decision Mathematics often 


provides descriptions of real world situations that make them tractable to calculations, and so modelling is 


key to this branch of mathematics. It pervades much of the book, particularly the chapters on the use of 


graphs to solve real world problems.


Throughout the book the emphasis is on understanding and interpretation rather than mere routine 


calculations, but the various exercises do nonetheless provide plenty of scope for practising basic 


techniques. The exercise questions are split into three bands. Band 1 questions (indicated by a light grey) 


are designed to reinforce basic understanding; Band 2 questions (a darker bar) are broadly typical of what 


might be expected in an examination; Band 3 questions (a solid black bar) explore around the topic 


and some of them are rather more demanding. In addition, extensive online support, including further 


questions, is available by subscription to MEI’s Integral website, http://integralmaths.org.


At the end of each chapter there is a list of key points covered as well as a summary of the new knowledge 


(learning outcomes) that readers should have gained.


Two common features of the book are Activities and Discussion points. These serve rather dierent 


purposes. The Activities are designed to help readers get into the thought processes of the new work that 


they are about to meet; having done an Activity, what follows will seem much easier. The Discussion 


points invite readers to talk about particular points with their fellow students and their teacher and so 


enhance their understanding.


Answers to all exercise questions are provided at the back of the book, and also online  


at www.hoddereducation.co.uk/EdexcelFurtherMathsDecision.
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Prior knowledge


No prior knowledge of Decision Mathematics is needed for this book. It does, however, assume that the 


reader is reasonably uent in basic algebra and graphs: working with formulae and expressions; solving linear 


simultaneous equations; graphing inequalities.


Matrices are used to store information but manipulation of them is not required.


Decision Mathematics 1


Chapter 1 Algorithms and graph theory


This chapter is accessible from GCSE and many of the ideas are developed later in the book. Section 1.4 is material for 


A Level only.


Chapter 2 Algorithms on graphs


The ideas from Chapter 1 are developed here with Sections 2.4 and 2.5 being material studied at A Level only.



Chapter 3 Critical path analysis


The first two sections are about going through the whole process of creating and using an activity network, 


up to a Gantt chart. The third section is material for A Level only, on using the results to make decisions. 


Thisbuilds on the ideas in graph theory in Chapter 1.


Chapter 4 Linear programming


The first section uses graphical methods. The second and third sections develop more complex methods and 


are examined at A Level only.


Decision Mathematics 2


Many of the topics in Decision Mathematics 2 require familiarity with the content of Decision Mathematics 1. 


Inparticular, the ideas and vocabulary of graph and network theory, linear programming and the Simplex algorithm 


are used.


Chapter 5 Allocation problems


The first three sections on the Hungarian method are material studied at AS and the nal section on 


reformulating as a linear programming problem is A Level work.


Chapter 6 Recurrence relations


The first section on first-order recurrence relations is AS material. The rest of the chapter deals with  


second-order recurrence relations and is material for A Level only.


Chapter 7 Network ﬂows


The first two sections are AS work and the section on renements is material studied at A Level only. 


Thisdevelops work on networks in Decision 1.













vi


Prior knowledge


Chapter 8 Game theory


The first two sections are AS work and the last two consist of material studied at A Level only. Matrices are used 


but not manipulated. Linear graphs, and solving simultaneous equations to nd their intersection, are needed.


Chapter 9 Transportation problems


This chapter is all A Level only. Matrices are used but not manipulated.


Chapter 10 Dynamic programming


The work in this chapter is A Level only.


Chapter 11 Decision analysis


This chapter is A Level only. Familiarity with tree diagrams from GCSE is helpful.
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An algorithm must be 


seen to be believed.



Donald Knuth (1938– )


Algorithms and graph theory


➜   Use long division to work out 98 606 ÷ 47.



1 About algorithms


An algorithm is a finite sequence of operations for carrying out a procedure or 



solving a problem. Cooking recipes, knitting patterns and instructions for making flat 


pack furniture are algorithms, but obviously these are not mathematical algorithms.


Do you know on which day of the week you were born? Zeller’s algorithm can be 


used to work it out. Try the algorithm using your date of birth.


ACTIVITY 1.1


Zeller’s algorithm Example: 29th Feb 2000


Let day number = D



Let month number = M



Let year number = Y



D = 29



M = 2



Y = 2000



If M = 1 or 2, add 12 to M and subtract 


1fromY



M = 14



Y = 1999



Let C be the first two digits of Y and X be the 


last two digits of Y



C = 19



X = 99



Calculate INT(2.6M − 5.4) + INT(X ÷ 4) + 


INT(C÷ 4) + D + X − 2C



31 + 24 + 4 + 29 + 99 − 38 = 149


Find the remainder when this is divided by 7 2


If the remainder is 0 the day was Sunday, if it is 


1 the day was Monday, and so on


Tuesday


Table 1.1


This uses the 


current (new) 


value of Y.


The remainder when 


N is divided by 7 is 



the same as  


N − 7 × INT (N ÷ 7 ).



INT(N ) is the integer part of N. This is 



the largest integer that is less than or 


equal to N. For example, INT (2.3) = 2, 



INT (6.7) = 6, INT (4) = 4 and  



INT (0) = 0. The integer part of a 



negative number N is the negative  



of INT(−N ), for example, INT (−1.7) 



= −1.



1
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About algorithms


In mathematics an algorithm has an initial state and involves inputs, outputs and 


variables. The initial state is the ‘factory setting’ values of any variables that are not 


dened within the algorithm. Usually this means that all variables have the value 0 


until they are updated.


For Zeller’s algorithm as given above, the inputs are the initial values of D, M and Y, 



the output is the day and the variables are C, D, M, X and Y.



The output may be printed or displayed.


Communicating an algorithm


How do you communicate an algorithm? The form of communication depends on 


who (for example a seven-year-old) or what (for example a computer) will be using 


the algorithm.


Whatever method is used to communicate the steps of an algorithm it must be:


■   unambiguous, so the person or machine running the algorithm does not have 



to make any choices


■  deterministic, so there is no chance or randomness involved



■  nite, so that the algorithm stops.



This means that each time the algorithm is used with a certain input, it gives the 


same output, and that it does this in a finite number of steps.


An algorithm may be communicated in ordinary language, in a owchart or in 


pseudocode. 



Zeller’s algorithm could be written in pseudocode as:


Step 1  Let D be day number


Let M be month number


Let Y be year number


Step 2   If M < 3 then M = M + 12 and Y = Y − 1



Step 3   Let C = INT(Y ÷ 100)



Let X = Y − (100 × C)


Step 4  Let S = INT(2.6M − 5.4) + INT(X ÷ 4) + INT(C ÷ 4) + D + X − 2C



Step 5  Let A = S − (7 × INT(S ÷ 7)) and display the value of A



Note that the output is the day number and not the name of the day.


Algorithms for mathematical processes can usually be broken up into a number of 


sequential steps. Sometimes an algorithm will involve decisions (‘if … then …’) and 


may loop back to an earlier step (‘go to Step …’).


Algorithms may involve iterative processes. This means that after completing one 


pass through the instructions a solution has been obtained that may only be part 



way to the answer to the problem. By going back and carrying out further passes 


the solution can be improved.


For example, an algorithm for nding square roots is given below:


Step 1  Input a positive number N



Step 2  Let A = 


1


2


 N



Step 3  Let B = 


1


2


 


()


+A



N


A


M = M + 12 means that 



the value of (old) M + 12 



becomes the value of 


(new) M.



Completing a pass means 


that you have worked 


through the instructions 


once, as far as either 


terminating or looping 


back to an earlier step.













1


3


Chapter 1  Algorithms and graph theory



Step 4  If (A − B)


2


 < 0.001 then go to Step 6


Step 5  Let A = B and then go to Step 3


Step 6  Display the value of B and STOP


An algorithm gives the logical structure that underlies a computer program for 


solving a problem. Modelling with algorithms has obvious connections with 


computer science but does not require programming skills or knowledge of any 


specic computing language.


This is one possible 


solution.


ACTIVITY 1.2


Work through this algorithm with N = 2. The algorithm loops back to Step 3; 


a pass occurs each time that Step 3 is used. How many passes are carried out?


Solution




(i) 


d = b


2


 – 4ac



Input a, b, c



Print x



1


, x



2


Stop


No


Ye s


Print ‘No real


solutions’


Is d  0?



x


1 


= (–b + ¥d) ÷ (2a)


x


2 


= (–b – ¥d) ÷ (2a)




Figure 1.1


The real roots of a quadratic equation


ax


2


 + bx + c = 0 (a ≠ 0)


can be found using the quadratic formula


x


bb ac


a


4


2


2


=


−± −


(i)  Use a owchart to represent an algorithm for solving a quadratic equation.


(ii)  Write the algorithm in pseudocode.


Example 1.1


(ii) Step 1 Let d = b



2


 − 4ac


Step 2 If d < 0 print  


    ‘No real solutions’  


    and go to Step 5


Step 3  Let x



1


 


bb ac


a


 4


2


2


=


−+ −


  Let x



2


 


bb ac


a


 4


2


2


=


−− −


Step 4  Print x



1


 and x



2 


Step 5  STOP


Note


The word ‘algorithm’ 


has become more 


commonplace since 


the development of the 


computer. A computer 


program is simply an 


algorithm written in such 


a way that a machine can 


carry it out.
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About algorithms


Working through an algorithm ‘by hand’ is referred to as tracing it. For Euclid’s 


algorithm, with inputs 120 and 75, this may look like:


Note


Using a table is helpful 


for keeping track of the 


values.


ACTIVITY 1.3


Below are two algorithms, one expressed in pseudocode and the other as a 


ﬂowchart.


Step 1   Write the two 


numbers side by side


Step 2   Beneath the left 


number write double 


that number 


   Beneath the right 


number write the 


integer part of half 


that number


Step 3   Repeat Step 2 until the 


right number is 1


Step  4    Delete  those  rows 


where the number in 


the right column is even


Step 5   Add up the remaining 


numbers in the left 


column. This is the 


result of multiplying 


the original numbers


Work through the Russian algorithm with left number 13 and right number 37.


Work through the Euclidean algorithm with x = 6 and y = 15.


How could you represent these algorithms differently?


What different type of user might each representation be suitable for?


Russian algorithm for multiplying 



two integers


Input x, y



Output x



Ye s


Subtract y from



x to get a new



value of x



Subtract x from



y to get a new



value of y



Ye s


Ye s


No


No


No


Is 


x > y?



Is 


x < y?



Does x = y?



Figure 1.2


Euclid’s method for ﬁnding the highest 



common factor of two positive integers 


x and y


Discussion point


➜   What are the beneﬁts of tracing an algorithm?



xy


120 75


45 75


45 30


15 30


15 15


Table 1.2


x = y so output 15



x < y so new y = 30 – 15 = 15



x > y so new x = 45 – 30 = 15



x < y so new y = 75 − 45 = 30



x > y so new x = 120 – 75 = 45
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Chapter 1  Algorithms and graph theory



Algorithmic complexity


Most problems can be solved using a variety of algorithms, some of which might be 


more ecient than others. ‘Ecient’ usually means using fewer operations (which, 


in turn, means running more quickly and so taking less time). There might be other 


considerations too, such as the amount of storage capacity needed if the algorithm 


is to be run on a computer.


As a simple example of improving eciency, look back at Example 1.1, where you 


saw an algorithm to nd the real roots of a quadratic equation. It is a good idea to 


calculate the value of b



2


 − 4ac as a first step, because the sign of that value has to be 


checked to see whether it is worth continuing with the calculation.


If an algorithm requires the evaluation of a quadratic expression, the way in which 


the expression is written can make a dierence to the eciency.


For example, 3x



2


 + 2x + 9 can be written as (3x + 2)x + 9. This bracketed form is 


called a nested form.


When x = 5, the evaluation with a calculator requires the following key presses:


3x



2


 + 2x + 9: 


3 × 5 × 5 + 2×5 + 9


=


  


3multiplications and 2 additions


(3x + 2)x + 9: 


( 3 × 5 + 2 ) × 5 +


9


=


 


2 multiplications and 2additions.


The nested form uses fewer operations (multiplications and additions) so it should 


be quicker (albeit by the tiniest amount of time).


Comparing the number of operations for a general polynomial of degree n gives:




a


n


x


n


 + a


 n−1 


x


n − 1



 + …+ a


2


x


2


 + a


1


x + a


0


  


1


2


 n(n + 1) × and n +



(


(


(


(


…+ + +…++


−−


ax a x a x a x a))))



nn n12 10



  n × and n +



The nested method has linear order complexity (or order n or O(n)) because 


the time taken to run the calculation involves n



1


 as the highest power of n. The 



expanded form has quadratic order complexity (or order n



2


 or O(n



2


)) because 


the time taken to run the calculation will involve n



2


 as the highest power of n.


The nested method is more ecient than the expanded form because O(n) is 


a lower order complexity than O(n



2


). Irrespective of what the actual linear and 


quadratic functions are that represent the run-times for the two methods for a 


polynomial of degree n, a linear function will give lower values (smaller run-times) 


than a quadratic function for realistic sized (huge) problems.


For example, if it takes M microseconds for a computer to multiply two numbers 


and A microseconds for it to add two numbers, then (once the programs have been 


written) inputting the coecients is the same for both methods and the run-time is  


1


2


 n(n + 1)M + nA for the expanded form and nM + nA for the nested form.



Now, in this case, 


1


2


 n(n + 1)M + nA is always bigger than nM + nA, but the details, 



such as the


1


2


 and the (n + 1) are irrelevant: if n is huge, all that matters is that n



2


 is 


much bigger than n.






Note


If any of the coefﬁcients 


happened to be 0 then 


some work would be 


saved. It is usual to 


focus on the worst-case 


situation (rather than 


the best case or an 


average case). This is 


partly because then any 


predictions about run-


times will be ‘worst-case 


scenarios’, but mainly 


because the worst case 


is usually the easiest to 


consider.
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O(n



2


) is always less ecient than O(n) once n becomes large. Similarly, O(n3) is less 


ecient than O(n



2


) and so on.


■  If an algorithm has O(n) complexity then doubling the size of the problem will 



roughly double the run-time, or tripling the size of the problem will roughly 


triple the run-time. If the actual run-time is an + b then scaling the problem 


size by a factor of k gives a run-time of akn + b. For large values of n, the run-


time akn (+ b) is roughly k times the original run-time an (+ b).


■  If an algorithm has O(n



2


) complexity then doubling the size of the problem will 


roughly quadruple the run-time, or tripling the size of the problem will scale 


the run-time by a factor of about 9. If the actual run-time is an



2


 + bn + c then 


scaling the problem size by a factor of k gives a run-time of ak



2


n


2


 + bkn + c.  



For large values of n, the run-time ak



2


n


2


 (+ bkn + c) is roughly k



2


 times the  


run-time an



2


 (+ bn + c).


■  Similarly, if an algorithm has O(n



r


 


) complexity, then scaling the problem size by 


a factor k will scale the run-time by a factor of (approximately) k



r


.


Note


Make sure you know the 


difference between run-


time and the order of an 


algorithm.


An algorithm has quadratic, O(n



2


), complexity. A problem, using this algorithm, 


has run-time, T(n), of 0.02 seconds when n = 40. Estimate its run-time when  


n = 200.



Example 1.2


Solution


The algorithm has complexity of O(n



2


), so the scale factor for the run-time is 


the square of the scale factor for the size of the problem.


The scale factor for the size is 


200


40


 = 5 


⇒ scale factor for the run-time is 5



2 


= 25



So the new run-time ≈ 25 × 0.02 = 0.5 seconds.


 


①  Construct a owchart that can be used to check 



if a number N is prime, where N is a positive 


integer and N > 2.


②  The following six steps dene an algorithm:



  Step 1   Think of a positive whole number and 



call it X



  Step 2  Write X in words (using letters)



  Step 3  Let Y be the number of letters used



  Step 4  If Y = X then stop



  Step 5  Replace X by Y



  Step 6  Go to Step 2



(i)  Apply the algorithm with X = 62.



(ii)  Show that for all values of X between 1 and 



99 the algorithm produces the same answer. 


You may use the fact that, when written out, 


numbers between 1 and 99 all have twelve 


or fewer letters.  [MEI]



③ 


(i)  An algorithm has linear order. It takes 



4milliseconds for it to solve a problem of 


size n = 20. Estimate how long it takes to 


solve a similar problem with size n = 600.


(ii)  An algorithm has order O(n



4


). A problem 


with size 30 takes it 0.004 seconds to solve. 


Estimate the run-time for a similar problem 


with size 900.


(iii)  The order of an algorithm is O(n



3


).  


A problem with n = 6000 takes it 2 seconds 


to solve. Estimate how long it takes to solve 


a similar problem of size n = 6.


Exercise 1.1
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④  The following owchart denes an algorithm 



which operates on two inputs, x and y.


Input x and y



Print q and r



Let r = r í x



Let q = q + 1



Let


 r = y and q = 0



Is r < x?


Ye s


No


Figure 1.3


(i)  Run the algorithm with inputs of x = 3 



and y = 41. Keep a record of the values of r 


and q each time they are updated.


(ii)  Say what the algorithm achieves.



  The owchart in Figure 1.4 denes an algorithm 



with three inputs, x, y



1


 and y



2


.


(iii)  Trace the algorithm with x = 3,  



y


1


 = 4 and y



2


 = 1. 



The two algorithms achieve the same result.


(iv)  Suggest the advantages and disadvantages  



of each algorithm.  [MEI adapted]


Input y



1


 and y



2


Let r = y



1


 and q



1


 = 0


Print 


q


1


, q



2


 and r



Is r < x?



Is r < x?



Ye s


No


No


Ye s


Let 


r = r í x


Let q



2


 = q



2


 + 1



Let r = r í x



Let q



1


 = q



1 


+ 1


y


2


Let r = 10r + 



Let q



2


 = 0


Figure 1.4




Row M D C L X V I


1


1000 2 500 3 100 9 50 5 10 10 5 7 1 11


2


1000 2 500 3 100 9 50 5 10 10 5 7 1 11


3


100 9 50 5 10 10 5 7 1 11


4 100  450  510  10 5  71  11



550


  610  10 5 7 1  11



6


10   6 5 7 1 11


7


5 8 1 11


8


1  8


9


800 5 300 5 100 4 50 6 10 10 5 8 1 11



10


80 7 30 7 10   6 5 8 1 11


11


8  0 3 0 1  8


Table 1.3




⑤  Table 1.3 can be used to convert a number from 



Roman numerals into ordinary base 10 numbers.


  To illustrate how this works, take the Roman 



numeral CIX as an example.


  Always start by looking at row 1. Look at the 



row 1 entry in the column headed C (the first 


symbol in the Roman numeral) to nd 100 


9. Add 100 to the running total (which was 0 


originally) and move to row 9.


  Now look at row 9 in the column headed I (the 



second symbol in the Roman numeral) to nd 1 


11. Add 1 to the running total and move to row 11.


  Finally look at row 11 in the column headed 



X (the third symbol in the Roman numeral) to 


nd 8 0. Add8 to the running total. Since this 


was the last symbol in the Roman numeral the 


algorithm now stops.


  CIX = 100 + 1 + 8 = 109



(i)  Write this algorithm as a set of steps.



(ii)  What are the limitations of the algorithm?



(iii)  Write pseudocode instructions for 



converting ordinary base 10 numbers into 


Roman numerals.  [MEI adapted]
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About algorithms


⑥  Programmable calculators use a version of the Basic 



programming language that, amongst other things, 


can perform repetitions using ‘for … next’.


To show how this works look at the following 


programs and their printouts.


FOR M = 1 TO 3


PRINT M


NEXT M


1


2


3


1


2


2


3


3


3


1


1


2


1


2


3


FOR M = 1 TO 3


FOR N = 1 TO M


PRINT M, N


NEXT N


NEXT M


Figure 1.5


In a certain town the bus tickets are numbered 0000 


to 9999.


Some children are collecting the tickets whose digits 


add up to 21.


(i)  How many such tickets will there be in the 



tickets numbered from 0000 to 9999?


Two algorithms for nding the number of tickets 


whose digits add up to 21 are given as calculator 


programs below (A and B). You do NOT need to 


put these programs into your calculator to answer 


this question.


(ii)  Show that each algorithm achieves the correct 



result.


(iii)  Compare the eciency of the two algorithms 



by counting the number of additions/


subtractions and the number of comparisons 


used.


A


T = 0


FOR J = 0 TO 9



FOR K = 0 TO 9 



FOR L = 0 TO 9 



FOR M = 0 TO 9 



S = J + K + L + M


IF S = 21 THEN T = T  + 1 


NEXT M


NEXT L


NEXT K


NEXT J


PRINT T


⑦  A particular algorithm has a run-time of  



0.04 seconds when solving a problem of size 


n= 25. It has a run-time of 0.64 seconds when 



solving a similar problem of size n = 100.  



What do you think is the order of the algorithm?


⑧  The following algorithm nds the highest 



common factor (HCF) of two positive integers.


1


   Let A be the rst integer and B be the 



second integer


2


  Let Q = INT(B ÷ A )



3


  Let R = B − (Q × A)



4


  If R = 0 go to Step 8



5


  Let the new value of B be A



6


  Let the new value of A be R



7


  Go to Step 2



8


  Record the HCF as the value of A



9


  STOP



(i)  Work through the algorithm with  



A = 2520 and B = 5940.



(ii)  What happens if the order of the input is 



reversed, so A = 5940 and B = 2520?


  It has been claimed that the number of 



iterations of this algorithm is approximately 


 


()


÷


+


Mlog( 1.17)



log


15


2


  where M is the larger of A and B.



(iii)  Count the number of iterations of the 



loop in the algorithm when A = 233 and 


B = 377. Compare this with the number 



claimed by the formula above.


T = 0: S = 0 


FOR J = 0 TO 9



FOR K = 0 TO 9 



FOR L = 0 TO 9 



FOR M = 0 TO 9 



IF S = 21 THEN T = T  + 1


S = S + 1 


NEXT M 


S = S − 9 


NEXT L 


S = S − 9 


NEXT K 


S = S − 9 


NEXT J


PRINT T


B
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2 Packing and sorting


Packing


One of the situations where an algorithmic approach is useful is for one-


dimensional bin-packing problems. Imagine having to send a number of les 


as attachments to the same email address, but there is a limit on the total size of 


the les attached to one email. How should the les be put together so that the 


number of emails needed is as small as possible?


The classic bin-packing problem packs ‘boxes’ of given sizes into a number of 


(equal sized) ‘bins’.


Here are three methods that could be used:


1  First-t algorithm



  Take the boxes in the order listed and pack each box in the first bin that has 



enough space for it (starting each time with the first bin).


2  First-t decreasing algorithm



  Reorder the boxes from the largest to the smallest, then apply the rst-t 



method to this list.


3  Full-bin strategy



  Look for combinations of boxes that will ll bins. Pack these boxes. Put the rest 



together in combinations that result in bins that are as nearly full as possible.


The boxes A to K with masses in kilograms as shown in Table 1.4 are to be packed 


into bins that can each hold a maximum of 15 kg. Apply each of the three bin- 


packing methods to this problem.


ABCDEFGHI J K


87496955673


Table 1.4


Example 1.3


Solution


First-t: Bin 1  A(8)  B(7)



  Bin 2  C(4)  D(9)


  Bin 3  E(6)  F(9)


  Bin 4  G(5)  H(5)  K(3)


  Bin 5  I(6)  J(7)


First-t decreasing:


First order the list D(9)  F(9)  A(8)  B(7)  J(7) E(6)  I(6)  G(5)  H(5)  C(4)  K(3)


  Bin 1   D(9)   E(6)


  Bin 2   F(9)  I(6)


  Bin 3   A(8)   B(7)


  Bin 4   J(7)   G(5)   K(3)


  Bin 5   H(5)   C(4)


The ﬁrst bin with enough 


capacity for E is bin 3.


C and D are put into bin 2 


but there is not enough  


room for E. Bin 2 has 2 kg  


of spare capacity.


A and B are put into bin 


1, which is then full.


D is put into bin 1 leaving 


6 kg spare in bin 1.


F is put into bin 2 leaving 


6 kg spare in bin 2.


A is put into bin 3 leaving 


7 kg  spare.


The ﬁrst 


bin with 


enough 


capacity 


for B is 


bin 3.


When K is 


reached, the ﬁrst 


bin with enough 


capacity is bin 4.


Continue in this way.


Continue in this way.


When K is reached, the 


ﬁrst bin with enough 


capacity is bin 4.




)




➜
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Full-bin strategy:


For example


  Bin 1   A(8)   B(7)


  Bin 2   C(4)   E(6)   G(5)


  Bin 3   D(9)   I(6)


  Bin 4   J(7)   H(5)   K(3)


  Bin 5   F(9)


The full-bin strategy is not an algorithm because there is no set way to make the 


full bins. It is probably evident that using the items with the largest weights to make 


full bins is usually better than lling a bin with lots of smaller-weight items.


The only known algorithm that will always nd the optimal packing is to use a 


complete enumeration (that is, try every possibility).


An algorithm that will usually nd a good solution, although not necessarily 


an optimal (best) solution to a problem is called a heuristic (or a heuristic 


algorithm). A heuristic is a method that nds a solution eciently, but with no 


guarantee that the solution is optimal. 


The consistency with which an algorithm gives a good solution is another factor in its 


eciency. Heuristics are important when classical methods fail, for example when the 


only way to guarantee nding the optimal solution is a complete enumeration.


The eciency of dierent packing strategies could be compared by counting the 


number of comparisons needed in the worst case for a list of n items. In the worst 


possible case, both rst-t and first-t decreasing algorithms use  


1 + 2 + … + (n−1) = 


1


2


(n − 1)n comparisons. Using this measure of complexity, 


both first-t and first-t decreasing are quadratic order algorithms, O(n



2


).


The ad-hoc method of the full-bin strategy is, in fact, more likely to result in an 


optimal solution than the algorithms but becomes very time consuming when 


dealing with a large number of boxes. 


Strengths and weaknesses of bin-packing methods


This is just one way to 


make full bins (for bins 


1 to 4).


Discussion points


➜   What does optimal 



mean in this sense? 


➜   Why might some 



other criterion be 


more appropriate? 


➜   What are the 



problems with 


using a complete 


enumeration?


Note


A solution can be checked 


to see how close it is to 


an optimal solution.


In Example 1.3 the bins 


can contain 15 kg and the 


sum of the masses of 


the boxes to be packed 


is 69 kg. Dividing 69 kg 


by 15 kg gives 4.6, so a 


minimum of ﬁve bins is 


required. Five is a lower 


bound for the optimal 


solution.


Method Strengths Weaknesses


First-t  It is an algorithm so a computer 


can do it 


It does not need all of the 


information at the start 


It is a heuristic algorithm so is ecient


It has quadratic complexity so is time-


consuming for large problems 


It is unlikely to yield an optimal 


solution


First-t 


decreasing


It is an algorithm so a computer 


can do it 


It is a heuristic algorithm so is 


ecient


It has quadratic complexity so is time-


consuming for large problems 


There is an additional step of sorting 


required at the start 


It needs all of the information at the start


Full-bin It is more likely to give an optimal 


solution 


It may give more than one solution


It is not an algorithm so a computer 


cannot do it 


It is time-consuming for large problems


Table 1.5
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Sorting


The first step in the first-t decreasing algorithm, considered above, involves sorting 


the list of weights into decreasing order (largest to smallest). Sorting is used to put a 


list of names into alphabetical order or to rank a list of universities on their ‘student 


satisfaction’ scores. Usually such tasks are done using a computer, but how does a 


computer sort a list?


Sorting is an everyday activity in which the eciency of the algorithm used is 


important. There are many popular algorithms for sorting a list of numbers into 


ascending or descending order.


The sorting algorithms that will be used here are the bubble sort and the quick 



sort.



These algorithms are designed for use by a computer and their eciency depends 


on the length of the list and how muddled the numbers are. A human may well sort 


a relatively short list more quickly.


Bubble sort algorithm


The bubble sort is so named because numbers which are below their correct 


positions tend to move up to their proper places, like bubbles in a glass of 


champagne. On the first pass, the rst number in the list is compared with the 


second and whichever is smaller assumes the first position. The second number 


is then compared with the third and the smaller is placed in the second position, 


and so on through the list. At the end of the rst pass the largest number will 


have been left behind in the bottom position.


For the second pass, the process is repeated but excluding the last number, and on 


the third pass the last two numbers are excluded. The list is repeatedly processed in 


this way until no swaps take place in a pass. The list is then sorted.


Using the bubble sort, perform the first pass to sort the list 7, 5, 2, 4, 10, 1, 6, 3 into 


ascending order, starting at the left-hand end.


Example 1.4


Solution


On the first pass compare 7 and 5, and swap them; then 7 and 2, and swap them; 


then 7 and 4, and swap them; then 7 and 10, and do not swap them; then 10 and 


1, and swap them; then 10 and 6 and swap them; then nally 10 and 3 and swap 


them. This pass is shown in detail in Figure 1.6. Note that the last number is now 


in its correct position.


➜
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ACTIVITY 1.4


The results after making the 2nd and subsequent passes are shown in Figure 1.7. 


Work through the process to check that you get these results.


3rd pass


2


4


1


5


3


6


7


10


4th pass


2


1


4


3


5


6


7


10


5th pass


1


2


3


4


5


6


7


10


6th pass


1


2


3


4


5


6


7


10


2


4


5


1


6


3


7


10


2nd pass


Figure 1.7


7


5


2


4


10


1


6


3 


5


7


2


4


10


1


6


3


5


2


7


4


10


1


6


3


5


2


4


7


10


1


6


3


5


2


4


7


10


1


6


3


5


2


4


7


1


10


6


3


5


2


4


7


1


6


10


3


5


2


4


7


1


6


3


10


Original list 1st pass



Figure 1.6


The algorithm for the bubble sort for a list of length 8 can be written in computer 


pseudocode like this:


repeat with i = 1 to 7


[repeat with j = 1 to (8 − i)


if L( j) > L( j + 1) swap L( j) and L( j + l)]



if no swaps end repeat
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The number of comparisons made in a bubble sort for a list of length 8 will be 


7 on the first pass, 6 on the second pass, etc. If the maximum number of passes is 


needed, the total number of comparisons will be 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28. 


The number of swaps on the first pass will be anything up to 7; on the second, up 


to 6, etc. So the maximum possible number of swaps will also be  


7 + 6 + 5 + 4 + 3 + 2 + 1 = 28.


Generalising to a list of size n you can see that the formula will become  


(n − 1) + (n − 2) + 


…


 + 3 + 2 + 1 = 


1


2


 n(n − 1), showing that the bubble sort 



algorithm has quadratic order, depending on the length of the list.


Quick sort algorithm


To sort a list of numbers into ascending (increasing) order:


1  The middle value in the list is the pivot. For two middle values use the right-most one.



  Excluding the pivot, pass along the list and write down each value that is less 



than or equal to the pivot value. Write the pivot value and then write down the 


values that are greater than the pivot.


  This concludes the first pass.


2  Repeat Step 1 on each sublist. If a sublist contains just one value, then this 



becomes a pivot and is marked as being in its correct position in the nal list. 


This concludes the next pass.


3  Continue in this way until every value is marked as being in its correct position 



in the nal list.


At this stage, the pivot is 


guaranteed to be in its 


correct position in the ﬁnal 


list and can be marked 


in some way to indicate 


this. The pivot splits the 


list into two sublists: one 


containing the values that 


are less than or equal to 


the pivot (excluding the 


pivot itself) and the other 


containing the values that 


are greater than the pivot. 


It is possible that one of 


these sublists may be 


empty.


Use quick sort to sort this list into ascending order:


7    5    2    4    10    1    6    3


Example 1.5


Solution


Original list


75


2


4101 6 3


After 1st pass


75


2


416310



After 2nd pass


21


3


475610



After 3rd pass


12


3


4 57610



After 4th pass


12


3


4 5 6710



Sorted list


12


3


456710


For a small example like this, writing down the sorted list is easy. The example is 


used to illustrate how quick sort works when it is applied to a much longer list.


Note


Active pivots are boxed 


and used pivots are 


underlined.


Discussion point


➜   How would you 



adapt quick sort 


so that the pivot 


is still the middle 


value in the list (or 


sublist) but the sort 


is into descending 


(decreasing) order?


You may be asked to count the number of comparisons (or comparisons 


and swaps) to compare the eciency of two algorithms being used to sort 


aparticular list.


The worst case for quick sort, in terms of comparisons, is when the pivot at each 


pass is the smallest or largest value in the sublist (so one of the new sublists is 


empty). This would be the case when the original list is already sorted (or sorted 


but in reverse). In the worst case, quick sort has quadratic complexity, O(n



2


).


Note


Sometimes the list to 


be sorted is written 


vertically. In this case, 


the two sublists will be 


above and below the pivot 


instead of to the left and 


to the right of the pivot.
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①  Sam wants to download the following programs onto four 16 GB USB sticks. Can this be done?



Program ABCDEFGH I



Size (GB) 4 3.2 2.4 2.6 4.4 1 2 2.4 3.6



Program J KLMNOPQR



Size (GB) 5.6 3 4.8 3 4 2.8 8 4.8 1.6



Table 1.6


Exercise 1.2


②  A small car ferry has a number of lanes, each 20 m long. The following vehicles are waiting to be loaded.



Petrol tanker 14 m Car 4 m Range Rover 5 m Car 4 m



Car 3 m Va n 4 m Car and trailer 8 m Car 3 m



Coach 12 m Lorry 11 m Car 4 m Lorry 10 m



Table 1.7


  How many lanes are needed to t all the vehicles 



on the ferry at the same time?


③  Sort the list 6   5   9   4   5   2 using



(i)  the bubble sort algorithm



(ii)  the quick sort algorithm.



④ 


(i)  Sort the list red, pink, yellow, green, purple,  



blue, orange into alphabetical order using a  


quick sort.


(ii)  How many comparisons are made?



⑤  A plumber is using pipes that are 6 m long and 



needs to cut the following lengths.


Length (m) 0.5 1 1.5 2 2.5 3 3.5



Number 0243012



Table 1.8


  Use the rst-t decreasing algorithm to nd a 



way to cut the lengths.


⑥  Six items with the masses given in Table 1.9 are 



packed into bags, each of which has a capacity of 


10 kg.


Item ABCDEF



Weight 216335



Table 1.9


(i)  Use the first-t algorithm to pack these 



items into bags, saying how many bags are 


needed.


(ii)  Give an optimal solution.  [MEI]



⑦  A list of 10 items takes 0.02 seconds to sort using 



the bubble sort algorithm. Estimate how long it 


takes to sort a list of 30 items using the bubble 


sort algorithm.


⑧ 


(i)  Determine the number of potential swaps 



when using the bubble sort for a list of 


length


(a)  6



(b)  7



(c)  n.



(ii)  Explain why the bubble sort has quadratic 



order.


⑨ 


(i)  The coach of a netball team has to arrange 



three pre-season training sessions, each of 


length 90 minutes. She wants to schedule the 


activities that are listed below. Some are to be 


scheduled more than once.


Activity Duration 


(mins)


Number of 


times activity 


is to be 


scheduled


A shooting 


practice


10 3


B passing practice 15 3


C blocking 


practice


12 3


D sprinting 5 3


E intermediate 


distance running


14 2


F long distance 


running


20 1


G team games 12 3


H 4-a-side 


practice game


20 2


I full-scale 


practice game


20 1


Table 1.10
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