

www.hoddereducation.co.uk/dynamiclearning

www.integralmaths.org

Although every eort has been made to ensure that website addresses are correct

at time of going to press, Hodder Education cannot be held responsible for the

content of any website mentioned in this book. It is sometimes possible to nd a

relocated web page by typing in the address of the home page for a website in the

URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable

products and made from wood grown in sustainable forests. The logging and

manufacturing processes are expected to conform to the environmental regulations

of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Milton Park, Abingdon, Oxon

OX14 4SB. Telephone: (44) 01235 827720. Fax: (44) 01235 400454. Lines are open

from 9.00–5.00, Monday to Saturday, with a 24-hour message answering service.

You can also order through our website www.hoddereducation.com

© Nick Geere 2018

Published by Hodder Education

An Hachette UK Company

Carmelite House, 50 Victoria Embankment, London EC4Y 0DZ

Impression number 5 4 3 2 1

Year 2021 2020 2019 2018

All rights reserved. Apart from any use permitted under UK copyright law, no part

of this publication may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying and recording, or held within

any information storage and retrieval system, without permission in writing from

the publisher or under licence from the Copyright Licensing Agency Limited.

Further details of such licences (for reprographic reproduction) may be obtained

from the Copyright Licensing Agency Limited, Saron House, 6–10 Kirby Street,

London EC1N 8TS.

Cover photo © ARCHITECTEUR/Shutterstock

Illustrations by Aptara Inc.

Typeset in BemboStd 11/13 pt by Aptara Inc.

Printed in the UK

A catalogue record for this title is available from the British Library

ISBN 9781510433359

eISBN 9781510433380

iii

Contents

Getting the most from this book iv

Prior knowledge v

1 Algorithms and graph theory

1.1 About algorithms 1

1.2 Packing and sorting 9

1.3 Types of graphs 15

1.4 Planarity of graphs 22

2 Algorithms on graphs

2.1 The minimum connector problem 28

2.2 The route inspection problem 35

2.3 Dijkstra’s algorithm 41

2.4 Floyd’s algorithm 44

2.5 The travelling salesperson

problem 50

3 Critical path analysis

3.1 Constructing an activity network 58

3.2 Critical paths and Gantt charts 62

3.3 Using Gantt charts 66

4 Linear programming

4.1 Solving linear programming

problems 72

4.2 The Simplex algorithm 76

4.3 Advanced Simplex methods 82

5 Allocation problems

5.1 Cost matrix reduction 87

5.2 The Hungarian algorithm 90

5.3 Modiﬁcations 93

5.4 Formulation as a linear

programming problem 94

6 Recurrence relations

6.1 Solving ﬁrst-order recurrence

relations 98

6.2 Solving second-order recurrence

relations 103

6.3 Generating functions 108

7 Network ﬂows

7.1 The language of network ﬂows 113

7.2 Flow augmenting 117

7.3 Reﬁnements 121

8 Game theory

8.1 Pay-off matrices 126

8.2 Dominated strategies 130

8.3 Optimal mixed strategies 131

8.4 Converting games to linear

programming problems 136

9 Transportation problems

9.1 Finding initial solutions 142

9.2 Finding an improved solution 150

9.3 Formulation as a linear

programming problem 157

10 Dynamic programming

10.1 Principles of dynamic

programming 161

10.2 Solving problems using dynamic

programming 166

11 Decision analysis

11.1 Decision analysis 177

Answers 187

iv

Getting the most from this book

Mathematics is not only a beautiful and exciting subject in its own right but also one that underpins many

other branches of learning. It is consequently fundamental to our national wellbeing.

This book covers the Decision Mathematics elements in the Edexcel AS and A Level Further Mathematics

specications. Students start these courses at a variety of stages. Some embark on AS Further Mathematics

in Year 12, straight after GCSE, taking it alongside AS Mathematics, and so have no prior experience of

A Level Mathematics. In contrast, others only begin Further Mathematics when they have completed

thefull A Level Mathematics course. This book requires no prior knowledge of A level Mathematics and

so can be started at any time. Both AS and A level content is included in each of the first eight chapters

with the sections on the AS content generally coming rst. The last three chapters are A level only.

Chapters 1 to 4 cover the Decision Mathematics 1 paper and Chapters 5 to 11 cover the Decision

Mathematics 2 paper. There is more detail on the split in each chapter in the section on prior knowledge.

Between 2014 and 2016 A Level Mathematics and Further Mathematics were very substantially revised,

for first teaching in 2017. Changes that particularly aect Decision Mathematics include increased

emphasis on

Q Problem solving

Q Mathematical rigour

Q Use of ICT

Q Modelling.

This book embraces these ideas. A large number of exercise questions involve elements of problem

solving and require the application of the ideas and techniques in a wide variety of real world contexts.

This develops independent thinking and builds on thorough understanding. Decision Mathematics often

provides descriptions of real world situations that make them tractable to calculations, and so modelling is

key to this branch of mathematics. It pervades much of the book, particularly the chapters on the use of

graphs to solve real world problems.

Throughout the book the emphasis is on understanding and interpretation rather than mere routine

calculations, but the various exercises do nonetheless provide plenty of scope for practising basic

techniques. The exercise questions are split into three bands. Band 1 questions (indicated by a light grey)

are designed to reinforce basic understanding; Band 2 questions (a darker bar) are broadly typical of what

might be expected in an examination; Band 3 questions (a solid black bar) explore around the topic

and some of them are rather more demanding. In addition, extensive online support, including further

questions, is available by subscription to MEI’s Integral website, http://integralmaths.org.

At the end of each chapter there is a list of key points covered as well as a summary of the new knowledge

(learning outcomes) that readers should have gained.

Two common features of the book are Activities and Discussion points. These serve rather dierent

purposes. The Activities are designed to help readers get into the thought processes of the new work that

they are about to meet; having done an Activity, what follows will seem much easier. The Discussion

points invite readers to talk about particular points with their fellow students and their teacher and so

enhance their understanding.

Answers to all exercise questions are provided at the back of the book, and also online

at www.hoddereducation.co.uk/EdexcelFurtherMathsDecision.

v

Prior knowledge

No prior knowledge of Decision Mathematics is needed for this book. It does, however, assume that the

reader is reasonably uent in basic algebra and graphs: working with formulae and expressions; solving linear

simultaneous equations; graphing inequalities.

Matrices are used to store information but manipulation of them is not required.

Decision Mathematics 1

Chapter 1 Algorithms and graph theory

This chapter is accessible from GCSE and many of the ideas are developed later in the book. Section 1.4 is material for

A Level only.

Chapter 2 Algorithms on graphs

The ideas from Chapter 1 are developed here with Sections 2.4 and 2.5 being material studied at A Level only.

Chapter 3 Critical path analysis

The first two sections are about going through the whole process of creating and using an activity network,

up to a Gantt chart. The third section is material for A Level only, on using the results to make decisions.

Thisbuilds on the ideas in graph theory in Chapter 1.

Chapter 4 Linear programming

The first section uses graphical methods. The second and third sections develop more complex methods and

are examined at A Level only.

Decision Mathematics 2

Many of the topics in Decision Mathematics 2 require familiarity with the content of Decision Mathematics 1.

Inparticular, the ideas and vocabulary of graph and network theory, linear programming and the Simplex algorithm

are used.

Chapter 5 Allocation problems

The first three sections on the Hungarian method are material studied at AS and the nal section on

reformulating as a linear programming problem is A Level work.

Chapter 6 Recurrence relations

The first section on first-order recurrence relations is AS material. The rest of the chapter deals with

second-order recurrence relations and is material for A Level only.

Chapter 7 Network ﬂows

The first two sections are AS work and the section on renements is material studied at A Level only.

Thisdevelops work on networks in Decision 1.

vi

Prior knowledge

Chapter 8 Game theory

The first two sections are AS work and the last two consist of material studied at A Level only. Matrices are used

but not manipulated. Linear graphs, and solving simultaneous equations to nd their intersection, are needed.

Chapter 9 Transportation problems

This chapter is all A Level only. Matrices are used but not manipulated.

Chapter 10 Dynamic programming

The work in this chapter is A Level only.

Chapter 11 Decision analysis

This chapter is A Level only. Familiarity with tree diagrams from GCSE is helpful.

1

An algorithm must be

seen to be believed.

Donald Knuth (1938–)

Algorithms and graph theory

➜ Use long division to work out 98 606 ÷ 47.

1 About algorithms

An algorithm is a finite sequence of operations for carrying out a procedure or

solving a problem. Cooking recipes, knitting patterns and instructions for making flat

pack furniture are algorithms, but obviously these are not mathematical algorithms.

Do you know on which day of the week you were born? Zeller’s algorithm can be

used to work it out. Try the algorithm using your date of birth.

ACTIVITY 1.1

Zeller’s algorithm Example: 29th Feb 2000

Let day number = D

Let month number = M

Let year number = Y

D = 29

M = 2

Y = 2000

If M = 1 or 2, add 12 to M and subtract

1fromY

M = 14

Y = 1999

Let C be the first two digits of Y and X be the

last two digits of Y

C = 19

X = 99

Calculate INT(2.6M − 5.4) + INT(X ÷ 4) +

INT(C÷ 4) + D + X − 2C

31 + 24 + 4 + 29 + 99 − 38 = 149

Find the remainder when this is divided by 7 2

If the remainder is 0 the day was Sunday, if it is

1 the day was Monday, and so on

Tuesday

Table 1.1

This uses the

current (new)

value of Y.

The remainder when

N is divided by 7 is

the same as

N − 7 × INT (N ÷ 7).

INT(N) is the integer part of N. This is

the largest integer that is less than or

equal to N. For example, INT (2.3) = 2,

INT (6.7) = 6, INT (4) = 4 and

INT (0) = 0. The integer part of a

negative number N is the negative

of INT(−N), for example, INT (−1.7)

= −1.

1

2

About algorithms

In mathematics an algorithm has an initial state and involves inputs, outputs and

variables. The initial state is the ‘factory setting’ values of any variables that are not

dened within the algorithm. Usually this means that all variables have the value 0

until they are updated.

For Zeller’s algorithm as given above, the inputs are the initial values of D, M and Y,

the output is the day and the variables are C, D, M, X and Y.

The output may be printed or displayed.

Communicating an algorithm

How do you communicate an algorithm? The form of communication depends on

who (for example a seven-year-old) or what (for example a computer) will be using

the algorithm.

Whatever method is used to communicate the steps of an algorithm it must be:

■ unambiguous, so the person or machine running the algorithm does not have

to make any choices

■ deterministic, so there is no chance or randomness involved

■ nite, so that the algorithm stops.

This means that each time the algorithm is used with a certain input, it gives the

same output, and that it does this in a finite number of steps.

An algorithm may be communicated in ordinary language, in a owchart or in

pseudocode.

Zeller’s algorithm could be written in pseudocode as:

Step 1 Let D be day number

Let M be month number

Let Y be year number

Step 2 If M < 3 then M = M + 12 and Y = Y − 1

Step 3 Let C = INT(Y ÷ 100)

Let X = Y − (100 × C)

Step 4 Let S = INT(2.6M − 5.4) + INT(X ÷ 4) + INT(C ÷ 4) + D + X − 2C

Step 5 Let A = S − (7 × INT(S ÷ 7)) and display the value of A

Note that the output is the day number and not the name of the day.

Algorithms for mathematical processes can usually be broken up into a number of

sequential steps. Sometimes an algorithm will involve decisions (‘if … then …’) and

may loop back to an earlier step (‘go to Step …’).

Algorithms may involve iterative processes. This means that after completing one

pass through the instructions a solution has been obtained that may only be part

way to the answer to the problem. By going back and carrying out further passes

the solution can be improved.

For example, an algorithm for nding square roots is given below:

Step 1 Input a positive number N

Step 2 Let A =

1

2

 N

Step 3 Let B =

1

2

()

+A

N

A

M = M + 12 means that

the value of (old) M + 12

becomes the value of

(new) M.

Completing a pass means

that you have worked

through the instructions

once, as far as either

terminating or looping

back to an earlier step.

1

3

Chapter 1 Algorithms and graph theory

Step 4 If (A − B)

2

 < 0.001 then go to Step 6

Step 5 Let A = B and then go to Step 3

Step 6 Display the value of B and STOP

An algorithm gives the logical structure that underlies a computer program for

solving a problem. Modelling with algorithms has obvious connections with

computer science but does not require programming skills or knowledge of any

specic computing language.

This is one possible

solution.

ACTIVITY 1.2

Work through this algorithm with N = 2. The algorithm loops back to Step 3;

a pass occurs each time that Step 3 is used. How many passes are carried out?

Solution

(i)

d = b

2

 – 4ac

Input a, b, c

Print x

1

, x

2

Stop

No

Ye s

Print ‘No real

solutions’

Is d  0?

x

1

= (–b + ¥d) ÷ (2a)

x

2

= (–b – ¥d) ÷ (2a)

Figure 1.1

The real roots of a quadratic equation

ax

2

 + bx + c = 0 (a ≠ 0)

can be found using the quadratic formula

x

bb ac

a

4

2

2

=

−± −

(i) Use a owchart to represent an algorithm for solving a quadratic equation.

(ii) Write the algorithm in pseudocode.

Example 1.1

(ii) Step 1 Let d = b

2

 − 4ac

Step 2 If d < 0 print

 ‘No real solutions’

 and go to Step 5

Step 3 Let x

1

bb ac

a

 4

2

2

=

−+ −

 Let x

2

bb ac

a

 4

2

2

=

−− −

Step 4 Print x

1

 and x

2

Step 5 STOP

Note

The word ‘algorithm’

has become more

commonplace since

the development of the

computer. A computer

program is simply an

algorithm written in such

a way that a machine can

carry it out.

4

About algorithms

Working through an algorithm ‘by hand’ is referred to as tracing it. For Euclid’s

algorithm, with inputs 120 and 75, this may look like:

Note

Using a table is helpful

for keeping track of the

values.

ACTIVITY 1.3

Below are two algorithms, one expressed in pseudocode and the other as a

ﬂowchart.

Step 1 Write the two

numbers side by side

Step 2 Beneath the left

number write double

that number

 Beneath the right

number write the

integer part of half

that number

Step 3 Repeat Step 2 until the

right number is 1

Step 4 Delete those rows

where the number in

the right column is even

Step 5 Add up the remaining

numbers in the left

column. This is the

result of multiplying

the original numbers

Work through the Russian algorithm with left number 13 and right number 37.

Work through the Euclidean algorithm with x = 6 and y = 15.

How could you represent these algorithms differently?

What different type of user might each representation be suitable for?

Russian algorithm for multiplying

two integers

Input x, y

Output x

Ye s

Subtract y from

x to get a new

value of x

Subtract x from

y to get a new

value of y

Ye s

Ye s

No

No

No

Is

x > y?

Is

x < y?

Does x = y?

Figure 1.2

Euclid’s method for ﬁnding the highest

common factor of two positive integers

x and y

Discussion point

➜ What are the beneﬁts of tracing an algorithm?

xy

120 75

45 75

45 30

15 30

15 15

Table 1.2

x = y so output 15

x < y so new y = 30 – 15 = 15

x > y so new x = 45 – 30 = 15

x < y so new y = 75 − 45 = 30

x > y so new x = 120 – 75 = 45

1

5

Chapter 1 Algorithms and graph theory

Algorithmic complexity

Most problems can be solved using a variety of algorithms, some of which might be

more ecient than others. ‘Ecient’ usually means using fewer operations (which,

in turn, means running more quickly and so taking less time). There might be other

considerations too, such as the amount of storage capacity needed if the algorithm

is to be run on a computer.

As a simple example of improving eciency, look back at Example 1.1, where you

saw an algorithm to nd the real roots of a quadratic equation. It is a good idea to

calculate the value of b

2

 − 4ac as a first step, because the sign of that value has to be

checked to see whether it is worth continuing with the calculation.

If an algorithm requires the evaluation of a quadratic expression, the way in which

the expression is written can make a dierence to the eciency.

For example, 3x

2

 + 2x + 9 can be written as (3x + 2)x + 9. This bracketed form is

called a nested form.

When x = 5, the evaluation with a calculator requires the following key presses:

3x

2

 + 2x + 9:

3 × 5 × 5 + 2×5 + 9

=

3multiplications and 2 additions

(3x + 2)x + 9:

(3 × 5 + 2) × 5 +

9

=

2 multiplications and 2additions.

The nested form uses fewer operations (multiplications and additions) so it should

be quicker (albeit by the tiniest amount of time).

Comparing the number of operations for a general polynomial of degree n gives:

a

n

x

n

 + a

 n−1

x

n − 1

 + …+ a

2

x

2

 + a

1

x + a

0

1

2

 n(n + 1) × and n +

(

(

(

(

…+ + +…++

−−

ax a x a x a x a))))

nn n12 10

 n × and n +

The nested method has linear order complexity (or order n or O(n)) because

the time taken to run the calculation involves n

1

 as the highest power of n. The

expanded form has quadratic order complexity (or order n

2

 or O(n

2

)) because

the time taken to run the calculation will involve n

2

 as the highest power of n.

The nested method is more ecient than the expanded form because O(n) is

a lower order complexity than O(n

2

). Irrespective of what the actual linear and

quadratic functions are that represent the run-times for the two methods for a

polynomial of degree n, a linear function will give lower values (smaller run-times)

than a quadratic function for realistic sized (huge) problems.

For example, if it takes M microseconds for a computer to multiply two numbers

and A microseconds for it to add two numbers, then (once the programs have been

written) inputting the coecients is the same for both methods and the run-time is

1

2

 n(n + 1)M + nA for the expanded form and nM + nA for the nested form.

Now, in this case,

1

2

 n(n + 1)M + nA is always bigger than nM + nA, but the details,

such as the

1

2

 and the (n + 1) are irrelevant: if n is huge, all that matters is that n

2

 is

much bigger than n.

Note

If any of the coefﬁcients

happened to be 0 then

some work would be

saved. It is usual to

focus on the worst-case

situation (rather than

the best case or an

average case). This is

partly because then any

predictions about run-

times will be ‘worst-case

scenarios’, but mainly

because the worst case

is usually the easiest to

consider.

6

About algorithms

O(n

2

) is always less ecient than O(n) once n becomes large. Similarly, O(n3) is less

ecient than O(n

2

) and so on.

■ If an algorithm has O(n) complexity then doubling the size of the problem will

roughly double the run-time, or tripling the size of the problem will roughly

triple the run-time. If the actual run-time is an + b then scaling the problem

size by a factor of k gives a run-time of akn + b. For large values of n, the run-

time akn (+ b) is roughly k times the original run-time an (+ b).

■ If an algorithm has O(n

2

) complexity then doubling the size of the problem will

roughly quadruple the run-time, or tripling the size of the problem will scale

the run-time by a factor of about 9. If the actual run-time is an

2

 + bn + c then

scaling the problem size by a factor of k gives a run-time of ak

2

n

2

 + bkn + c.

For large values of n, the run-time ak

2

n

2

 (+ bkn + c) is roughly k

2

 times the

run-time an

2

 (+ bn + c).

■ Similarly, if an algorithm has O(n

r

) complexity, then scaling the problem size by

a factor k will scale the run-time by a factor of (approximately) k

r

.

Note

Make sure you know the

difference between run-

time and the order of an

algorithm.

An algorithm has quadratic, O(n

2

), complexity. A problem, using this algorithm,

has run-time, T(n), of 0.02 seconds when n = 40. Estimate its run-time when

n = 200.

Example 1.2

Solution

The algorithm has complexity of O(n

2

), so the scale factor for the run-time is

the square of the scale factor for the size of the problem.

The scale factor for the size is

200

40

 = 5

⇒ scale factor for the run-time is 5

2

= 25

So the new run-time ≈ 25 × 0.02 = 0.5 seconds.

① Construct a owchart that can be used to check

if a number N is prime, where N is a positive

integer and N > 2.

② The following six steps dene an algorithm:

 Step 1 Think of a positive whole number and

call it X

 Step 2 Write X in words (using letters)

 Step 3 Let Y be the number of letters used

 Step 4 If Y = X then stop

 Step 5 Replace X by Y

 Step 6 Go to Step 2

(i) Apply the algorithm with X = 62.

(ii) Show that for all values of X between 1 and

99 the algorithm produces the same answer.

You may use the fact that, when written out,

numbers between 1 and 99 all have twelve

or fewer letters. [MEI]

③

(i) An algorithm has linear order. It takes

4milliseconds for it to solve a problem of

size n = 20. Estimate how long it takes to

solve a similar problem with size n = 600.

(ii) An algorithm has order O(n

4

). A problem

with size 30 takes it 0.004 seconds to solve.

Estimate the run-time for a similar problem

with size 900.

(iii) The order of an algorithm is O(n

3

).

A problem with n = 6000 takes it 2 seconds

to solve. Estimate how long it takes to solve

a similar problem of size n = 6.

Exercise 1.1

1

7

Chapter 1 Algorithms and graph theory

④ The following owchart denes an algorithm

which operates on two inputs, x and y.

Input x and y

Print q and r

Let r = r í x

Let q = q + 1

Let

 r = y and q = 0

Is r < x?

Ye s

No

Figure 1.3

(i) Run the algorithm with inputs of x = 3

and y = 41. Keep a record of the values of r

and q each time they are updated.

(ii) Say what the algorithm achieves.

 The owchart in Figure 1.4 denes an algorithm

with three inputs, x, y

1

 and y

2

.

(iii) Trace the algorithm with x = 3,

y

1

 = 4 and y

2

 = 1.

The two algorithms achieve the same result.

(iv) Suggest the advantages and disadvantages

of each algorithm. [MEI adapted]

Input y

1

 and y

2

Let r = y

1

 and q

1

 = 0

Print

q

1

, q

2

 and r

Is r < x?

Is r < x?

Ye s

No

No

Ye s

Let

r = r í x

Let q

2

 = q

2

 + 1

Let r = r í x

Let q

1

 = q

1

+ 1

y

2

Let r = 10r +

Let q

2

 = 0

Figure 1.4

Row M D C L X V I

1

1000 2 500 3 100 9 50 5 10 10 5 7 1 11

2

1000 2 500 3 100 9 50 5 10 10 5 7 1 11

3

100 9 50 5 10 10 5 7 1 11

4 100 450 510 10 5 71 11

550

 610 10 5 7 1 11

6

10 6 5 7 1 11

7

5 8 1 11

8

1 8

9

800 5 300 5 100 4 50 6 10 10 5 8 1 11

10

80 7 30 7 10 6 5 8 1 11

11

8 0 3 0 1 8

Table 1.3

⑤ Table 1.3 can be used to convert a number from

Roman numerals into ordinary base 10 numbers.

 To illustrate how this works, take the Roman

numeral CIX as an example.

 Always start by looking at row 1. Look at the

row 1 entry in the column headed C (the first

symbol in the Roman numeral) to nd 100

9. Add 100 to the running total (which was 0

originally) and move to row 9.

 Now look at row 9 in the column headed I (the

second symbol in the Roman numeral) to nd 1

11. Add 1 to the running total and move to row 11.

 Finally look at row 11 in the column headed

X (the third symbol in the Roman numeral) to

nd 8 0. Add8 to the running total. Since this

was the last symbol in the Roman numeral the

algorithm now stops.

 CIX = 100 + 1 + 8 = 109

(i) Write this algorithm as a set of steps.

(ii) What are the limitations of the algorithm?

(iii) Write pseudocode instructions for

converting ordinary base 10 numbers into

Roman numerals. [MEI adapted]

8

About algorithms

⑥ Programmable calculators use a version of the Basic

programming language that, amongst other things,

can perform repetitions using ‘for … next’.

To show how this works look at the following

programs and their printouts.

FOR M = 1 TO 3

PRINT M

NEXT M

1

2

3

1

2

2

3

3

3

1

1

2

1

2

3

FOR M = 1 TO 3

FOR N = 1 TO M

PRINT M, N

NEXT N

NEXT M

Figure 1.5

In a certain town the bus tickets are numbered 0000

to 9999.

Some children are collecting the tickets whose digits

add up to 21.

(i) How many such tickets will there be in the

tickets numbered from 0000 to 9999?

Two algorithms for nding the number of tickets

whose digits add up to 21 are given as calculator

programs below (A and B). You do NOT need to

put these programs into your calculator to answer

this question.

(ii) Show that each algorithm achieves the correct

result.

(iii) Compare the eciency of the two algorithms

by counting the number of additions/

subtractions and the number of comparisons

used.

A

T = 0

FOR J = 0 TO 9

FOR K = 0 TO 9

FOR L = 0 TO 9

FOR M = 0 TO 9

S = J + K + L + M

IF S = 21 THEN T = T + 1

NEXT M

NEXT L

NEXT K

NEXT J

PRINT T

⑦ A particular algorithm has a run-time of

0.04 seconds when solving a problem of size

n= 25. It has a run-time of 0.64 seconds when

solving a similar problem of size n = 100.

What do you think is the order of the algorithm?

⑧ The following algorithm nds the highest

common factor (HCF) of two positive integers.

1

 Let A be the rst integer and B be the

second integer

2

 Let Q = INT(B ÷ A)

3

 Let R = B − (Q × A)

4

 If R = 0 go to Step 8

5

 Let the new value of B be A

6

 Let the new value of A be R

7

 Go to Step 2

8

 Record the HCF as the value of A

9

 STOP

(i) Work through the algorithm with

A = 2520 and B = 5940.

(ii) What happens if the order of the input is

reversed, so A = 5940 and B = 2520?

 It has been claimed that the number of

iterations of this algorithm is approximately

()

÷

+

Mlog(1.17)

log

15

2

 where M is the larger of A and B.

(iii) Count the number of iterations of the

loop in the algorithm when A = 233 and

B = 377. Compare this with the number

claimed by the formula above.

T = 0: S = 0

FOR J = 0 TO 9

FOR K = 0 TO 9

FOR L = 0 TO 9

FOR M = 0 TO 9

IF S = 21 THEN T = T + 1

S = S + 1

NEXT M

S = S − 9

NEXT L

S = S − 9

NEXT K

S = S − 9

NEXT J

PRINT T

B

1

9

Chapter 1 Algorithms and graph theory

2 Packing and sorting

Packing

One of the situations where an algorithmic approach is useful is for one-

dimensional bin-packing problems. Imagine having to send a number of les

as attachments to the same email address, but there is a limit on the total size of

the les attached to one email. How should the les be put together so that the

number of emails needed is as small as possible?

The classic bin-packing problem packs ‘boxes’ of given sizes into a number of

(equal sized) ‘bins’.

Here are three methods that could be used:

1 First-t algorithm

 Take the boxes in the order listed and pack each box in the first bin that has

enough space for it (starting each time with the first bin).

2 First-t decreasing algorithm

 Reorder the boxes from the largest to the smallest, then apply the rst-t

method to this list.

3 Full-bin strategy

 Look for combinations of boxes that will ll bins. Pack these boxes. Put the rest

together in combinations that result in bins that are as nearly full as possible.

The boxes A to K with masses in kilograms as shown in Table 1.4 are to be packed

into bins that can each hold a maximum of 15 kg. Apply each of the three bin-

packing methods to this problem.

ABCDEFGHI J K

87496955673

Table 1.4

Example 1.3

Solution

First-t: Bin 1 A(8) B(7)

 Bin 2 C(4) D(9)

 Bin 3 E(6) F(9)

 Bin 4 G(5) H(5) K(3)

 Bin 5 I(6) J(7)

First-t decreasing:

First order the list D(9) F(9) A(8) B(7) J(7) E(6) I(6) G(5) H(5) C(4) K(3)

 Bin 1 D(9) E(6)

 Bin 2 F(9) I(6)

 Bin 3 A(8) B(7)

 Bin 4 J(7) G(5) K(3)

 Bin 5 H(5) C(4)

The ﬁrst bin with enough

capacity for E is bin 3.

C and D are put into bin 2

but there is not enough

room for E. Bin 2 has 2 kg

of spare capacity.

A and B are put into bin

1, which is then full.

D is put into bin 1 leaving

6 kg spare in bin 1.

F is put into bin 2 leaving

6 kg spare in bin 2.

A is put into bin 3 leaving

7 kg spare.

The ﬁrst

bin with

enough

capacity

for B is

bin 3.

When K is

reached, the ﬁrst

bin with enough

capacity is bin 4.

Continue in this way.

Continue in this way.

When K is reached, the

ﬁrst bin with enough

capacity is bin 4.

)

➜

10

Packing and sorting

Full-bin strategy:

For example

 Bin 1 A(8) B(7)

 Bin 2 C(4) E(6) G(5)

 Bin 3 D(9) I(6)

 Bin 4 J(7) H(5) K(3)

 Bin 5 F(9)

The full-bin strategy is not an algorithm because there is no set way to make the

full bins. It is probably evident that using the items with the largest weights to make

full bins is usually better than lling a bin with lots of smaller-weight items.

The only known algorithm that will always nd the optimal packing is to use a

complete enumeration (that is, try every possibility).

An algorithm that will usually nd a good solution, although not necessarily

an optimal (best) solution to a problem is called a heuristic (or a heuristic

algorithm). A heuristic is a method that nds a solution eciently, but with no

guarantee that the solution is optimal.

The consistency with which an algorithm gives a good solution is another factor in its

eciency. Heuristics are important when classical methods fail, for example when the

only way to guarantee nding the optimal solution is a complete enumeration.

The eciency of dierent packing strategies could be compared by counting the

number of comparisons needed in the worst case for a list of n items. In the worst

possible case, both rst-t and first-t decreasing algorithms use

1 + 2 + … + (n−1) =

1

2

(n − 1)n comparisons. Using this measure of complexity,

both first-t and first-t decreasing are quadratic order algorithms, O(n

2

).

The ad-hoc method of the full-bin strategy is, in fact, more likely to result in an

optimal solution than the algorithms but becomes very time consuming when

dealing with a large number of boxes.

Strengths and weaknesses of bin-packing methods

This is just one way to

make full bins (for bins

1 to 4).

Discussion points

➜ What does optimal

mean in this sense?

➜ Why might some

other criterion be

more appropriate?

➜ What are the

problems with

using a complete

enumeration?

Note

A solution can be checked

to see how close it is to

an optimal solution.

In Example 1.3 the bins

can contain 15 kg and the

sum of the masses of

the boxes to be packed

is 69 kg. Dividing 69 kg

by 15 kg gives 4.6, so a

minimum of ﬁve bins is

required. Five is a lower

bound for the optimal

solution.

Method Strengths Weaknesses

First-t It is an algorithm so a computer

can do it

It does not need all of the

information at the start

It is a heuristic algorithm so is ecient

It has quadratic complexity so is time-

consuming for large problems

It is unlikely to yield an optimal

solution

First-t

decreasing

It is an algorithm so a computer

can do it

It is a heuristic algorithm so is

ecient

It has quadratic complexity so is time-

consuming for large problems

There is an additional step of sorting

required at the start

It needs all of the information at the start

Full-bin It is more likely to give an optimal

solution

It may give more than one solution

It is not an algorithm so a computer

cannot do it

It is time-consuming for large problems

Table 1.5

1

11

Chapter 1 Algorithms and graph theory

Sorting

The first step in the first-t decreasing algorithm, considered above, involves sorting

the list of weights into decreasing order (largest to smallest). Sorting is used to put a

list of names into alphabetical order or to rank a list of universities on their ‘student

satisfaction’ scores. Usually such tasks are done using a computer, but how does a

computer sort a list?

Sorting is an everyday activity in which the eciency of the algorithm used is

important. There are many popular algorithms for sorting a list of numbers into

ascending or descending order.

The sorting algorithms that will be used here are the bubble sort and the quick

sort.

These algorithms are designed for use by a computer and their eciency depends

on the length of the list and how muddled the numbers are. A human may well sort

a relatively short list more quickly.

Bubble sort algorithm

The bubble sort is so named because numbers which are below their correct

positions tend to move up to their proper places, like bubbles in a glass of

champagne. On the first pass, the rst number in the list is compared with the

second and whichever is smaller assumes the first position. The second number

is then compared with the third and the smaller is placed in the second position,

and so on through the list. At the end of the rst pass the largest number will

have been left behind in the bottom position.

For the second pass, the process is repeated but excluding the last number, and on

the third pass the last two numbers are excluded. The list is repeatedly processed in

this way until no swaps take place in a pass. The list is then sorted.

Using the bubble sort, perform the first pass to sort the list 7, 5, 2, 4, 10, 1, 6, 3 into

ascending order, starting at the left-hand end.

Example 1.4

Solution

On the first pass compare 7 and 5, and swap them; then 7 and 2, and swap them;

then 7 and 4, and swap them; then 7 and 10, and do not swap them; then 10 and

1, and swap them; then 10 and 6 and swap them; then nally 10 and 3 and swap

them. This pass is shown in detail in Figure 1.6. Note that the last number is now

in its correct position.

➜

12

Packing and sorting

ACTIVITY 1.4

The results after making the 2nd and subsequent passes are shown in Figure 1.7.

Work through the process to check that you get these results.

3rd pass

2

4

1

5

3

6

7

10

4th pass

2

1

4

3

5

6

7

10

5th pass

1

2

3

4

5

6

7

10

6th pass

1

2

3

4

5

6

7

10

2

4

5

1

6

3

7

10

2nd pass

Figure 1.7

7

5

2

4

10

1

6

3

5

7

2

4

10

1

6

3

5

2

7

4

10

1

6

3

5

2

4

7

10

1

6

3

5

2

4

7

10

1

6

3

5

2

4

7

1

10

6

3

5

2

4

7

1

6

10

3

5

2

4

7

1

6

3

10

Original list 1st pass

Figure 1.6

The algorithm for the bubble sort for a list of length 8 can be written in computer

pseudocode like this:

repeat with i = 1 to 7

[repeat with j = 1 to (8 − i)

if L(j) > L(j + 1) swap L(j) and L(j + l)]

if no swaps end repeat

1

13

Chapter 1 Algorithms and graph theory

The number of comparisons made in a bubble sort for a list of length 8 will be

7 on the first pass, 6 on the second pass, etc. If the maximum number of passes is

needed, the total number of comparisons will be 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28.

The number of swaps on the first pass will be anything up to 7; on the second, up

to 6, etc. So the maximum possible number of swaps will also be

7 + 6 + 5 + 4 + 3 + 2 + 1 = 28.

Generalising to a list of size n you can see that the formula will become

(n − 1) + (n − 2) +

…

 + 3 + 2 + 1 =

1

2

 n(n − 1), showing that the bubble sort

algorithm has quadratic order, depending on the length of the list.

Quick sort algorithm

To sort a list of numbers into ascending (increasing) order:

1 The middle value in the list is the pivot. For two middle values use the right-most one.

 Excluding the pivot, pass along the list and write down each value that is less

than or equal to the pivot value. Write the pivot value and then write down the

values that are greater than the pivot.

 This concludes the first pass.

2 Repeat Step 1 on each sublist. If a sublist contains just one value, then this

becomes a pivot and is marked as being in its correct position in the nal list.

This concludes the next pass.

3 Continue in this way until every value is marked as being in its correct position

in the nal list.

At this stage, the pivot is

guaranteed to be in its

correct position in the ﬁnal

list and can be marked

in some way to indicate

this. The pivot splits the

list into two sublists: one

containing the values that

are less than or equal to

the pivot (excluding the

pivot itself) and the other

containing the values that

are greater than the pivot.

It is possible that one of

these sublists may be

empty.

Use quick sort to sort this list into ascending order:

7 5 2 4 10 1 6 3

Example 1.5

Solution

Original list

75

2

4101 6 3

After 1st pass

75

2

416310

After 2nd pass

21

3

475610

After 3rd pass

12

3

4 57610

After 4th pass

12

3

4 5 6710

Sorted list

12

3

456710

For a small example like this, writing down the sorted list is easy. The example is

used to illustrate how quick sort works when it is applied to a much longer list.

Note

Active pivots are boxed

and used pivots are

underlined.

Discussion point

➜ How would you

adapt quick sort

so that the pivot

is still the middle

value in the list (or

sublist) but the sort

is into descending

(decreasing) order?

You may be asked to count the number of comparisons (or comparisons

and swaps) to compare the eciency of two algorithms being used to sort

aparticular list.

The worst case for quick sort, in terms of comparisons, is when the pivot at each

pass is the smallest or largest value in the sublist (so one of the new sublists is

empty). This would be the case when the original list is already sorted (or sorted

but in reverse). In the worst case, quick sort has quadratic complexity, O(n

2

).

Note

Sometimes the list to

be sorted is written

vertically. In this case,

the two sublists will be

above and below the pivot

instead of to the left and

to the right of the pivot.

14

Packing and sorting

① Sam wants to download the following programs onto four 16 GB USB sticks. Can this be done?

Program ABCDEFGH I

Size (GB) 4 3.2 2.4 2.6 4.4 1 2 2.4 3.6

Program J KLMNOPQR

Size (GB) 5.6 3 4.8 3 4 2.8 8 4.8 1.6

Table 1.6

Exercise 1.2

② A small car ferry has a number of lanes, each 20 m long. The following vehicles are waiting to be loaded.

Petrol tanker 14 m Car 4 m Range Rover 5 m Car 4 m

Car 3 m Va n 4 m Car and trailer 8 m Car 3 m

Coach 12 m Lorry 11 m Car 4 m Lorry 10 m

Table 1.7

 How many lanes are needed to t all the vehicles

on the ferry at the same time?

③ Sort the list 6 5 9 4 5 2 using

(i) the bubble sort algorithm

(ii) the quick sort algorithm.

④

(i) Sort the list red, pink, yellow, green, purple,

blue, orange into alphabetical order using a

quick sort.

(ii) How many comparisons are made?

⑤ A plumber is using pipes that are 6 m long and

needs to cut the following lengths.

Length (m) 0.5 1 1.5 2 2.5 3 3.5

Number 0243012

Table 1.8

 Use the rst-t decreasing algorithm to nd a

way to cut the lengths.

⑥ Six items with the masses given in Table 1.9 are

packed into bags, each of which has a capacity of

10 kg.

Item ABCDEF

Weight 216335

Table 1.9

(i) Use the first-t algorithm to pack these

items into bags, saying how many bags are

needed.

(ii) Give an optimal solution. [MEI]

⑦ A list of 10 items takes 0.02 seconds to sort using

the bubble sort algorithm. Estimate how long it

takes to sort a list of 30 items using the bubble

sort algorithm.

⑧

(i) Determine the number of potential swaps

when using the bubble sort for a list of

length

(a) 6

(b) 7

(c) n.

(ii) Explain why the bubble sort has quadratic

order.

⑨

(i) The coach of a netball team has to arrange

three pre-season training sessions, each of

length 90 minutes. She wants to schedule the

activities that are listed below. Some are to be

scheduled more than once.

Activity Duration

(mins)

Number of

times activity

is to be

scheduled

A shooting

practice

10 3

B passing practice 15 3

C blocking

practice

12 3

D sprinting 5 3

E intermediate

distance running

14 2

F long distance

running

20 1

G team games 12 3

H 4-a-side

practice game

20 2

I full-scale

practice game

20 1

Table 1.10

OEBPS/nav.xhtml

		Cover

		Title Page

		Copyright

		Contents

		Getting the most from this book

		Prior knowledge

		1 Algorithms and graph theory

		1.1 About algorithms

		1.2 Packing and sorting

		1.3 Types of graphs

		1.4 Planarity of graphs

		2 Algorithms on graphs

		2.1 The minimum connector problem

		2.2 The route inspection problem

		2.3 Dijkstra’s algorithm

		2.4 Floyd’s algorithm

		2.5 The travelling salesperson problem

		3 Critical path analysis

		3.1 Constructing an activity network

		3.2 Critical paths and Gantt charts

		3.3 Using Gantt charts

		4 Linear programming

		4.1 Solving linear programming problems

		4.2 The Simplex algorithm

		4.3 Advanced Simplex methods

		5 Allocation problems

		5.1 Cost matrix reduction

		5.2 The Hungarian algorithm

		5.3 Modifications

		5.4 Formulation as a linear programming problem

		6 Recurrence relations

		6.1 Solving first-order recurrence relations

		6.2 Solving second-order recurrence relations

		6.3 Generating functions

		7 Network flows

		7.1 The language of network flows

		7.2 Flow augmenting

		7.3 Refinements

		8 Game theory

		8.1 Pay-off matrices

		8.2 Dominated strategies

		8.3 Optimal mixed strategies

		8.4 Converting games to linear programming problems

		9 Transportation problems

		9.1 Finding initial solutions

		9.2 Finding an improved solution

		9.3 Formulation as a linear programming problem

		10 Dynamic programming

		10.1 Principles of dynamic programming

		10.2 Solving problems using dynamic programming

		11 Decision analysis

		11.1 Decision analysis

		Answers

Guide

		Cover

		Contents

		Getting the most from this book

