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  Introduction


This book has been written for all students studying the Cambridge IGCSE™ and O Level Additional Mathematics syllabuses (0606/4037) for ﬁrst examination from 2025. The book carefully and precisely follows the syllabus. It provides the detail, guidance and practice needed to support and encourage learners as they advance their mathematical reasoning, skills and communication.


This is the second edition of this book, comprehensively updated to cover the revised syllabus. Teachers and learners using the ﬁrst edition have provided invaluable feedback, and their suggestions are incorporated into this edition. There are a few instances where the book goes beyond the syllabus to provide additional context to the topic for the beneﬁt of students’ deeper understanding. It is clearly indicated wherever this is the case.


Organisation of content


Where possible, the chapter titles and chapter section headings match those of the syllabus; however, the long, ﬁnal section on calculus is split into three chapters: Differentiation, Integration and Kinematics, so that it is easily manageable for students.


The content of every chapter is split into several short sections. Numerous worked examples are included to illustrate every aspect of the topic, as well as Exercises that provide ample opportunity to reinforce learning. Exercise questions increase in difﬁculty, from those that are very straightforward through to others that provide greater challenge.


There are also ﬁve summative Review exercises distributed throughout the book. These contain practice questions, including past paper questions, based on the topics in the preceding chapters. Each question is mapped to the chapters that students should have worked through before attempting the question. This means that students can complete the questions at the appropriate stage of the course even if they are not following the chapter order. Alternatively, they can be used at the end of the course for revision. Indicative marks are assigned to each question.


Answers are at the back of the book and worked solutions are provided online at Cambridge Extras (www.hoddereducation.co.uk/cambridgeextras). The intention is that students working on their own can check their answers for themselves.


INTRODUCTION
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Prior knowledge


Throughout this book, it is assumed that readers are competent and ﬂuent in the basic algebra that is covered in Cambridge IGCSE™ / O Level Mathematics:


» working with expressions and formulae, simplifying and collecting like terms» substituting numbers into algebraic expressions» linear and quadratic factorisation and the use of brackets» solving simple, simultaneous and quadratic equations» working with inequalities» changing the subject of a formula» plotting and sketching graphs.


The book opens with a Review chapter of 20 multiple choice questions providing readers with an opportunity to check that they are still familiar with these topics.


Assessment


For both Cambridge IGCSE™ and O Level Additional Mathematics you will take two examination papers, Paper 1 (Non-calculator) and Paper 2 (Calculator):


» 2 hours each


» 50% each.


The information in this section is taken from the Cambridge International syllabus. You should always refer to the appropriate syllabus document for the year of examination to conﬁrm the details and for more information. The syllabus document is available on the Cambridge International website at www.cambridgeinternational.org


From the authors


We very much hope you enjoy this book. It introduces you to some of the exciting ideas of mathematics. These will broaden your understanding of the subject and prove really helpful when you go on to further study. They include topics such as identities, vectors and particularly calculus; all of these are covered in the later chapters of the book. In order to handle such topics conﬁdently, you will need to be ﬂuent in algebra and numerical work and be able to communicate the mathematics you are doing. The early chapters are designed to build on your previous experience in a way that develops these essential skills and at the same time expands the techniques you are able to use.


First edition authors   Second edition authors


Val HanrahanStephen WrigleyJeanette Powell   Roger PorkessRoger Porkess


From the authors
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INTRODUCTION




These are points you should discuss in class with your teacher or fellow students, to encourage deeper exploration and mathematical communication.




Discussion point


Consider the example above where 4223yx=−


x. At the point (1, 2), if the value of x increases by 0.001, what is the corresponding increase in y? What is the connection with the gradient at (1, 2)? What about at the points i (2, 0) and ii(0,0)?




Note


The gradient at a particular point can be used to find the approximate change in y corresponding to a small change in x.




Note


The Note feature contains useful information; for example, on the differences between how calculators may display information. Explanations encourage full understanding of mathematical principles.


Discussion points


Worked examples


The worked examples cover important techniques and question styles. They are designed to reinforce the explanations, and give you step-by-step help for solving problems.




Worked exampleFind the equation of the tangent and normal to the curve yxx=−4223 at the point (1, 2). Draw a diagram showing the curve, the tangent and the normal.


Solutionyxxyxxx=−⇒=−42d8623


d


2


At (1, 2), the gradient is yx=−=dd862The gradient of the tangent is m1 = 2So, using                               yymxx()−=−11


the equation of the tangent is 22(1yx−=−


)


2yx=


The gradient of the normal is mm2


=−=−


11


2


1


So, using                               yymxx()−=−11


 


the equation of the normal is yx−=−−212(1


)


2


52


.


yx=−+


The curve, tangent and normal are shown on this  graph.


x


y


2


3


1


1


2


3


It is slightly 


easier to use 11yymxx−=−() here than  y = mx + c. If you substitute the gradient m = 2 and the point (1, 2) into y = mx+ c, youget  2 = 2 × 1 + c and so c = 0So the equation of the tangent is  y = 2x.




Commentaries


The commentaries provide additional explanations and encourage full understanding of mathematical principles.


Approach


Each chapter is broken down into several sections, with each section covering a single topic. Topics are introduced through clear explanations, with key terms picked out in bold type.




 How to use this book 




The modulus function


The modulus of a number is its positive value even when the number itself is negative.


The modulus is denoted by a vertical line on each side of the number and is sometimes called the magnitudeof the quantity.




To make your study of IGCSE and O Level Additional Mathematics as rewarding and successful as possible, this endorsed textbook offers the following important features:
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Exercises


These appear throughout the text and provide ample and varied opportunities to practice and apply what you’ve learned.


The modulus function[3]


19


1 Given that f(x) = 3x + 2, g(x) = x2and h(x) = 2x, find:a) fg(2)b) fg(x)c) gh(x)d) fgh(x)Paper 12 Q7, November 20133Arrangements containing 5 different letters from the word 


2 Given that f(x) = +21xAMPLITUDE are to be made. Find


and g(x) = 4 − x,find:a) fg(−4)b) gf(12)c) fg(x)d) gf(x)(a) (i)  the number of 5-letter arrangements if there are no  


3 Given that f(x) = x  4, g(x)  2xand h(21xa) f²(x)b) g²(x)c) h²(x)d) hgf(x)4 For each function, find the inverse and sketch the graphs of y =f(x) and y = f−1(x) on the same axes. Use the same scale on both axes.−restrictions,  [1] (ii)  the number of 5-letter arrangements which start with the letter A and end with the letter E.  [1]Cambridge O Level Additional Mathematics (4037)  


+=2x) = +1, find:


a) f(x) = 3x  15 Solve the following equationsa) |x − 3| =4b) |2x +1|=7c) |3x − 2| =5d) |x + 2| =26 Sketch the graph of each function:a) y = x + 2b) y = |x +2|c) y = |x + 2| + 3Paper 11 Q4 a, June 2012


b) f(x) = x3, x > 0:Paper 11 Q4 a, June 2012Cambridge IGCSE Additional Mathematics (0606)  


7 Sketch these graphs for 0°  x  360°:a) y =cos xc) y =|cos x|Now you should be able to:H recognise the difference between permutations and 


b) y =cos x + 1d) y =|cos x| + 1 Graph 1 represents the line y = 2x − 1. Graph 2 is related to Gand Graph 3 is related to Graph 2.Write down the equations of Graph 2 and Graph 3.Graph 2Graph 3combinations and know when each should be usedH know and use the notation n! and the expressions for permutations and combinations of n items taken r at a timeH answer problems on arrangement and selection using permutations or combinations.


8raph 1 


 Graph 1


Exercise 1.2


xx0.50.5✔ n! = n ×(n – 1) ×(n – 2) … × 3 × 2 ×1 where n is a positive integer.✔ By convention, 0! =1.


–1


13✔ The number of ways of arranging n different objects in a line is n! This is read as nfactorial.


4


 ✔


9 The graph shows part of a quadratic curve and its inverse. The number of combinations of robjects from n is Cr = nr(− The order matters for permutations, but not for combinations.


1+−


(1, 2)


(2, 5)


1xand ln y were plotted and a line of best fit was drawn. It is given that the line of best fit crosses through the points with coordinates (1.35, 4.81) and (5.55, 2.29).b)


y = x


a) What is the equation of the curve?b) What is the equation of the inverse?yl1


Learning outcomes


Each chapter ends with a summary of the learning outcomes and a list of key points to conﬁrm what you should have learned and understood.


215


 


(b)A team of 6 people is to be selected from 8 men and 4 women. Find the number of different teams that can be selected if


(i) there are norestrictions, 


 


[1]


(ii) the team contains all 4 women,  


[1]


(iii) the team contains at least 4 men.  


Cambridge O Level Additional Mathematics (4037)  


Paper 12 Q7, November 2013Cambridge IGCSE Additional Mathematics (0606)  


 


Key points


✔ The number of permutations of robjects from n is nPr =


 


!nnr−


!)


(


✔n


!!!nr)


REVIEW EXERCISE 3


204


Review exercise 3


1 Solutions to this question by accurate drawing will not be accepted.  ()()()−−()


 The points 


3,


 2


, 


7,


 4


, 


2,


 3


AB


C


and 


, 3


Dk


 are such that 


CD


 is perpendicular to 


AB


. 


Find the equation of the perpendicular bisector of 


CD


. 


[6]


Cambridge O Level Additional Mathematics (4037) 


Paper 22 Q5, February/March 2019Cambridge IGCSE Additional Mathematics (0606) 


Paper 22 Q5, February/March 2019


2=


 It is thought that the relationship 


yaxn, where aand n are constants, connects the variables xand y. An experiment was carried out recording the values of y for certain values of x.a)=n


 Transform the relationship 


ya


x


 into straight line form. 


[2]


 


 The values of ln 


 


Calculate the constants 


a


and 


n


. 


[4]


3+−=22


 The diagram shows the circle 


xy


xy


44


170


and the lines l1, =+1yx


, and l2. The 


linel1 intersects the circle at points Pand Qand the line l2 intersects the circle at points ()()


5,


 2


R


and 


−


7,


 2


S


. The lines intersect at point 


T


.


x


O


P


Q


R


T


S


l


2


a) Find the coordinates of the point of intersection of l1and l2


. 


[5]


b)


 Give the coordinates of the points 


P


and 


Q


. 


[4]


c)


 Find the area of the triangle 


PST


. 


[2]


4++−+=22


 Two circles with equations 


689


xy


xy


 0 and 


+−−=22


21


50


xy


x


 intersect at 


points Aand B.a)


 Find the coordinates of the points 


A


and 


B


. 


[4]


b)


 State the equation of the line that passes through the points 


A


and 


B


. 


[1]


5 a)++−=22


 Show that the point (2, 8) lies inside the circle 


(1


)(


4)


100


xy


. 


[2]


b)


 A second circle has equation 


−+−=(2)(8)2522xy. Deduce that the two circles touch  


at only one point. You are not required to find the point of intersection. 


[1]


Ch 7


Ch 7


Ch2, 5, 7, 8


Ch 8




How to use this book


 These icons highlight questions where a calculator should not be used.


Review exercises


After Chapters 3, 6, 10, 13 and 16, you will ﬁnd Review exercises that cover the concepts learnt in previous chapters. You can work through these exercises during the course to summarise your learning or at the end of the course as revision. Next to each question are the chapters that you should have studied before attempting the question. Marks for each question are shown in square brackets.
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Command words


Command words are used to tell you how to answer a speciﬁc question. The list below contains the command words for this syllabus. The deﬁnitions explain what the words are asking you to do.


Command wordWhat it means


CalculateWork out from given facts, ﬁgures or information


DescribeState the points of a topic / give characteristics and 


main features


DetermineEstablish with certainty


ExplainSet out purposes or reasons / make the 


relationships between things clear / say why and/or how and support with relevant evidence


GiveProduce an answer from a given source or recall/


memory


PlotMark point(s) on a graph


Show (that)Provide structured evidence that leads to a given 


result


SketchMake a simple freehand drawing showing the key 


features


StateExpress in clear terms


VerifyConﬁrm a given statement/result is true


Work outCalculate from given facts, ﬁgures or information 


with or without the use of a calculator


WriteGive an answer in a speciﬁc form


Write downGive an answer without signiﬁcant working


The information in this section is taken from the Cambridge International syllabus. You should always refer to the appropriate syllabus document for the year of examination to conﬁrm the details and for more information. The syllabus document is available on the Cambridge International website at www.cambridgeinternational.org


Explore the book cover: how are pine cones mathematical?


The Fibonacci sequence begins 0, 1, 1, 2, 3, 5, 8, …. Each number in the sequence is equal to the sum of the preceding two numbers. Pine cones contain seed pods arranged in two spirals that twist in opposite directions. The number of steps in each spiral usually matches a pair of consecutive Fibonacci numbers. Research ‘Fibonacci in pine cones’ to discover more.


INTRODUCTION
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Review chapter


1


Review chapter


These questions are multiple choice. 1 Work out 5462. 2×−÷


A397B197C77D372 Work out 


2269557−++×


.


A 


514


B 


58


C 


78


D 


7143Evaluate 2


5711114−, giving your answer  as a fraction in its simplest form. 


A


 


1314


B 1


6


7


C 


914


D 4


12


4Evaluate 2


211


58


÷, giving your answer as a fraction in its simplest form. 


A 1


16


55


B 1


411


C 1


4988


D 3


27


55


5 Work out the exact value of 26510×. 


Write your answer as simply as possible. A2015B 600C760D1016


6 Work out the exact value of 2426+. 


Write your answer as simply as possible. A230B224C46D67Evaluate 3353×−, giving your answer in 


indexform.A 92B 915−


C15−


 3D 328Simplifyx(4


)62


.


A x8


8


B x16


8


C x8


12


D x16


12


9 Work out xyxy4622+−−


when x3=


  


and y2=−.


A13B5C −19D3710Expandand simplify pp453324+−−


()


()


.


A p163


−


B p86


+


C p326


+


D p243


−


11Expandand simplify xxx224()()()+−+


.


A x163−


B xxx4432+−


16−


C xx20163−−


D xx413−−


6


12 Fully factorise xyxy15252+.


A xyx53()


5+


B5


xyxy352()+


C xyx


1525()+


D xy4032
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REVIEW CHAPTER


2


13Solve 


xx210481()()−=+


.


A x


34


=−


B x


34


=


C x


4


3


=


D x


7


414Solve the inequalityxx423312()()−<+


=


.


A x


1514


<


B x


15


2


>−


C x


16


<


D x


15


215Rearrange axbc12−=


<


2 to make xthe subject.


A x


cba


2=±+


B x


cb2()+


a


=±


C x


cb2()


a


=


±+


D x


cba+


2=±


16Rearrange y


xx5−


5= to make xthe subject.


A x


yx5−


5()


=


B x


y


y55−


=


C xyy55=−


()


D x


yy55−


=


17 Work out 


xxxx25 441022+÷+. Give your answer as a fraction in its simplest form.


A x4


2


B 


xxxx225102()


44


()


++


C


 


x1 42


D 


xx78202+


18 Use Pythagoras’ Theorem to calculate the length of the side marked x.


145 cm


143 cm


x


A204cmB576cmC143cmD24cm19 An isosceles triangle, shown below, has a base of length 10 cm and an area of 60 cm2. Work out the perimeter of the triangle.


10 cm


A36cmB34cmC30cmD22cm20 The bearing of Zurich from London is 


126°. Find the bearing of London from Zurich.


London


N


126°


Zurich


A54°B126°C234°D306°
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1



If A equals success, then the formula is A equals X plus Y plus Z, with X being work, Y play, and Z keeping your mouth shut.


Albert Einstein (1879–1955)


Discussion point


Look at the display on this fuel pump. One of the quantities is measured and one is calculated from it. Which is which?


Output


 


149


6


5


6


Input 


123


4


5


6


f(x)


x


Discussion point


Which digits will never appear in the output set of the previous example?


Functions
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1 FUNCTIONs


4


A function is a rule that associates each element of one set (the input) with only one element of a second set (the output). It is possible for more than one input to have the same output, as shown above.


You can use a flow chart(ornumber machine) to express a function.


This flow chart shows a function, f, with two operations. The first operation is × 2 and the second operation is +3.


Input× 2+ 3Output


You can write the equation of a line in the form 23=+yx using 


 function notation.


f(x) = 2x + 3 


or f: x  2x + 3 


Using this notation, you can write, for example:


f(4) = 2 × 4 + 3 =11


 or f: (


−5)  2 × (−5) + 3 = −7


The domain and range


The domain of a function f(x) is the set of all possible inputs. This is the set of values of x that the function operates on. In the first mapping diagram of the next worked example, the domain is the first five positive odd numbers. If no domain is given, it is assumed to be all real values of x. This is often denoted by the letter ℝ.


The range of the function f(x) is all the possible output values, i.e. the corresponding values of f(x). It is sometimes called the image set and is controlled by the domain.


In certain functions one or more values must be excluded from the domain, as shown in the following example.


Worked example


For the function f(x) = 


x+121:


a) Draw a mapping diagram showing the outputs for the set of inputs odd numbers from 1 to 9 inclusive.


b) Draw a mapping diagram showing the outputs for the set of inputs even numbers from 2 to 10 inclusive.


c) Which number cannot be an input for this function?


Read this as ‘f of x  equals two x plus 


three’.


Read this as ‘f maps x x


onto two 


 plus three’.


Real numbers are all of the rational and irrational 


numbers.
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Functions


Solution


a)


 


Output 


Input 


1


3


5


7


9


1317111


115


119


b)


 


Output 


Input 


2


4


6


8


10


1519113


117


121


c) A fraction cannot have a denominator of 0, so 2x + 1 ≠ 0


 


⇒


 x−


 


=


 


12 must be excluded.


Mappings


A mapping is the process of going from an object to its image.


For example, this mapping diagram shows the function f(x) = x2 + 1 when the domain is the set of integers −2  x 2.


Output 


1


2


5


Input 


−2


Domain


Object


Range


Image


−1


0


1


2


There are four different types of mappings.


A mapping diagram is one way to illustrate a 


function.
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1 FUNCTIONs


6


One-one


Every object has a unique image and every image comes from only one object.


12


−1


−1


1


2


3


4


5


6


−2


−234


y


 =  + 1


x


Input Output 


y


x


Many-one


Every object has a unique image but at least one image corresponds to more than one object.


Input 


Output 


1


2


3


4


5


6


7


y


1


−1


−1


−2


−2−3


23x


y


 = 2 − 2


x
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Functions


One-many


There is at least one object that has more than one image but every image comes from only one object.


Input 


Output 


1


−1


1


2


3


4


5


−1


−2


−3


−4


23456x


y


y2 = 2x


Many-many


There is at least one object that has more than one image and at least one image that corresponds to more than one object.


Input 


Output 


−1


−2


−3


−4


−5


−6


1


2


3


4


5


6


x


y


x


2 + 2 = 25


y


−1


−2


−3


−4


−5


−612


3456
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1 FUNCTIONs


8


Types of function


A function is a mapping that is either one-one or many-one.


For a one-one function, the graph of yagainst x doesn’t ‘double back’ on itself.


Below are some examples of one-one functions.


» All straight lines that are not parallel to either axis.» Functions of the form y = x2n+1 for integer values of n.


» Functions of the form y = axfor a > 0.


» y = cos x for 0°  x 180°.


These are examples of many-one functions:»all quadratic curves,» cubic equations with two turning points.


Worked example


Sketch each function and state whether  it is one-one or many-one.


a) y = x + 3 b) y = x² − 1


Solution


a) y = x + 3 is a straight line.


When x = 0, y = 3, so the point (0, 3)  is on the line.


When y = 0, x = −3, so the point (−3, 0)  is on the line.


y = x + 3 is a one-one function.


b) y = x² is a ∪-shaped curve through the  origin.


y = x² − 1 is the same shape, but has  been moved down one unit so  crosses the y-axis at (0, −1).


y = x² − 1 factorises to y = (x +1)(x −1)


 


⇒ When y = 0, x = 1 or x = −1.


y = x² − 1 is a many-one function  since, for example, y = 0 corresponds  to both x = 1 and x = −1.


x


y


−3


3


y = x + 3


x


y


−1−1


1


y = x2 − 1
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Inverse function


The inverse function reverses the effect of the function. For example, if the function says ‘double’, the inverse says ‘halve’; if the function says ‘add 2’, the inverse says ‘subtract 2’. All one-one functions have an inverse; many-one functions do not.


Worked example


a) Use a flow chart to find the inverse of the function f(x) =


 32+


x


2b) Sketch the graphs of y =f(x) and y = f –1(x) on the same axes. Use the same scale on both axes.


.


c) What do you notice?


Solution


a) For f(x) = 


x


+2:


32


Input


3x3x + 23x + 2


2


× 3+ 2÷ 2Output


f(x)


x


Reversing these operations gives the inverse function.


 


Input


2x


2x − 2


× 2


− 2


÷ 3


Output


f−1(x)


x


2x − 2


3


b)


 


–2


–3–1–1


–2


–3


–4


–4


–5


1


1


2


3


4


5


6


7


234567


f()


x


x


y = x


y =


3x + 22


y =


2x − 23


c) The graphs of y =f(x) and y = f −1(x) are reflections of each other in the line y = x.


Reﬂecting in the line y = x has the effect of switching the x- and y


-coordinates.
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An alternative method is to interchange the coordinates, since this gives a reflection in the line y = x, and then use an algebraic method to find the inverse as shown in the next example.


Worked example


a)Find g−1(x) when g(x) =3


  x +4.


b)Sketchy =g(x) and y = g−1(x) on the same axes. Use the same scale on both axes. 


Solution


a) Lety = 3 x +


4.


Interchange xand y.        


x = 3 y +


 4


Rearrange to make ythe subject. x – 4 = 3 


y


⇒ y =3(x– 4)


 The inverse function is given by g


−1(x) =3(x– 4).


b)


 


−1−1


1


1


2


2


3


3


4


4


5


5


6


6


7


7


8


8


9


9


10


10


y = 3(x − 4)


g(x)


x


x


y =


y =  x


3


+ 4


Worked example


a) Sketch the graph of the function f(x) = x2 for −4  x 4.


b) Explain, using an example, why f(x) does not have an inverse with  −4  x  4 as its domain.


c) Suggest a suitable domain for f(x) so that an inverse can be found.


Rearranging and interchanging x and y can be done in 


either order.
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Solution


a)


 


–2


–3–1


–2


–4


2


4


6


8


10


12


14


16


1234


f(x)


x


y 


= f ()


x


b) The function does not have an inverse with −4  x  4 as its domain because, for example, f(2) and f(−2) both equal 4. This means that if the function were reversed, there would be no unique value for 4 to return to. In other words, f(x) = x2 is not a one-one function for −4  x 4.


c) Any domain in which the function is one-one, for example, 0  x 4.


Note


● The domain of f(x) is the same as the range of f −1(x).● The range of f(x) is the same as the domain of f −1(x).


Worked example


a) State the range of the function f(x) = x1−


 for x 1.


b) State the domain and range of the inverse function f −1(x).


Solution


a)


 


1


0


y


x


 So, the range of f(


x) is f(x)  0


f(x) is a many-one  function so it does  


not have an inverse.


You may find it useful to draw a 


sketch.
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b) The range of f(x) is f(x)  0 ⇒ the domain of f −1(x) is x  0 The domain of f(x) is x  1 ⇒ the range of f −1(x) is f −1(x)  1


 


1


1


0


y


x


y = f−1(x)


y = f(x)


y = x


 1


 For the function f(x) = 3x +4, find:a)f(3)b)f(−2)c)f(0)d)f12()


 2


 For the function g(x) = (x +2)²,find:a)g(4)b)g(−6)c)g(0)d) g12()


 3


 For the function h: x → 3x2 +1, find:a)h(2)b)h(−3)c)h(0)d)h13()


 4


 For the function f: x


 →a)f(3)b)f(−6)c)f(0)d)f14()


26x


3+


, find:


 5


 


For the function f(x) a) Draw a mapping diagram to show the outputs when the set of inputs is the odd numbers from 1 to 9 inclusive.


x21=+:


b) Draw a mapping diagram to show the outputs when the set of inputs is the even numbers from 2 to 10 inclusive.


c) Which number must be excluded as an input?


 6


 Find the range of each function:


a)f(x) = 3x – 2; domain {1, 2, 3, 4, 5}b)g(x) = 4−x; domain {−2, −1, 0, 1, 2}


2c)h(x) = 2x2; domain x∈ℝ


d)f: x → x2 + 6; domain x∈ℝ


 7


 Which value(s) must be excluded from the domain of these functions?a)f(x) = 1xb)f(x) = 1−x


c)f(x) =


 


323x


−


d)f(x) = 2


2−x


 8


 Find the inverse of each function:a)f(x) = 7x − 2


c)h(x) = (x −1)2for x  1


b)g(x) = 34+x


2


d)f(x) = x2 + 4 for x  0


 9


 a) Find the inverse of the function f(x) = 3x – 4.b)Sketchf(x), f –1(x) and the line y = x on the same axes. Use the same scale on both axes.


The domain and range of f −1(x) can be seen more clearly on this 


sketchgraph.


Exercise 1.1


x+


21  is the notation for the positive square x+


root of 


21
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10 a)  Plot the graph of the function f(x) = 4 − x2 for values of x such that 0  x  3. Use the same scale on both axes.


b) Find the values of f–1(−5), f–1(0), f–1(3) and f–1(4).c)Sketch y =f(x), y = f–1(x) and y = x on the same axes. Use the range −6 to +6 for both axes.


d) Find the domain and range of f–1(x).


Composition of functions


When two functions are used one after the other, the single equivalent function is called the composite function.


For example, if f(x) =3x + 2 and g(x) =2x – 3, then the composite function gf(x) is obtained by applying f first and then applying g to the result.


Input


3x + 22(3


x + 2)  − 36


x + 1


Output


x


g f (x)


f(x)


Output 


7


13


19


Input 


3


1


2


x


g f(x)


Think of two functions f(x) and g(x) such that the combined function gf(x) exists. The function f(x) is applied first and so the domain of the combined function gf(x) must be contained in the domain of f(x). The domain of gf(x) cannot include any stray elements that f(x) cannot act on because they are outside its domain. So the domain of gf(x) is either the same as that of f(x) or a subset of it. This is written domain of  gf(x) ⊆ domain of f(x).


Similarly, the function g(x) is applied second and so any element in the outcomefrom the combined function gf(x) must be an element that is a possible outcome from the function g(x). This is written range of  gf(x) ⊆ range of g(x).


f 2(x) is the same as f(f(x)) and means that you apply the same function twice.


The order in which these operations are applied is important, as shown below.


Worked example


Given that f(x) = 2x, g(x) = x2and h(x) = 1x, find:a) fg(x)b) gf(x)


d) fgh(x)


e) hgf(x)


c) h2(x)


Exercise 1.1 (cont)


Plot: Start with a table of values.Sketch: Show the main features of 


the curve.
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Solution


a) fg(x) =f(x2)= 2x2


b) gf(x) =g(2x)


 


=(2x)2


 


= 4x2 


c) h²(x) =h[h(x)]


 


= h


1x


()


 


= x1÷


1


 


= x


d) fgh(x) =fg


1x


()


 


= f


12x


()











 


= f


12


()


x


 


= 22


x


 


e) hgf(x) =hg(2x)


 


=h((2x)²)


 


=h(4x²)


 


= 1


42x


Worked example


a) Find f–1(x) when f(x) = 


−214x


b) Find f[f–1(x)].


c) Find f–1[f(x)].


d) What do you notice?


Solution


a) Write f(x) as y = 


−214x


Interchangexand y. x = −21y


4


 


⇒ 4x = 2y − 1


 


⇒ 2y = 4x +1


 


⇒ y = +41x


2


 


⇒ f–1(x) = +41x


2


b)f[f–1(x)] = f


+412x


 = ()+−2412x


1


4


 


=


 


()+−41x


14


 


= 44x= x


 


c)f–1[f(x)] = f–1−21x


()= ()−+4214x


4


 


1


2


 


=


 


()−+21x


1


2


 


= 22x= x


 


d)Questions aand b show that  f[f–1(x)] = f–1[f(x)] = x.


This result is true for all functions that 


have an inverse.
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The examples above show that applying a function and its inverse in either order leaves the original quantity unchanged, which is what the notation f(f–1) or f–1(f) implies. 


Worked example


Using the functions f(x) = sin xand g(x) = x2, express the following as functions of x:


a)fg(x)


b)gf(x)


c)f 2(x)


Solution


a)fg(x) =f[g(x)]


=sin(x2)


b)gf(x) =g[f(x)]


=(sin x)²


c)f²(x) =f[f(x)]


=sin(sin x)


The modulus function


The modulus of a number is its positive value even when the number itself is negative.


The modulus is denoted by a vertical line on each side of the number and is sometimes called the magnitudeof the quantity.


For example, |28| = 28 and |–28| =28


|x| = xwhen x  0 and |x| = –xwhen x < 0


Therefore for the graph of the modulus function y =|f(x)|, any part of the corresponding graph of y =f(x) where y < 0, is reflected in the x-axis.


Worked example


For each of the following, sketch y =f(x) and y =|f(x)| on separate axes:


a) y = x – 2;   −2  x  6


b) y = x2 – 2; −3  x  3


c) y = cos x;   0°  x  180°


Notice thatsin(x 2) is not the same as x2x


(sin 


)


or sin(sin 


).
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Solution


a)


 


–1


–1


–2


–3


–4


–5


–2


1


2


3


4


5


6


1234


56


x


y


–1


–1


–2


–3


–4


–5


–2


1


2


3


4


5


y


 


= −


 |


x


 


 2|


6


123456


x


y


y = x − 2


b)


 


–1–1


–2


–3


–2


–3


1


2


3


4


5


7


6


123x


y


–1–1


–2


–3


–3–2


1


2


3


4


5


y=x2 − 2|


 


 | 


7


6


123x


y


y=x2−


 


 


 


 2


c)


 


–1


–1


90°


180°


90°180°


–1


1


y = cos x


y = cos x 


x


x


y


y


Notice the sharp change of gradient from negative to positive, where part of the graph is reflected. This point is called a 


‘cusp’.
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1 Given that f(x) = 3x + 2, g(x) = x2and h(x) = 2x, find:a)fg(2)b)fg(x)c)gh(x)d)fgh(x)


2 Given that f(x) = +21x


and g(x) = 4 − x, find:


a)fg(−4)b)gf(12)c)fg(x)d)gf(x)


3 Given that f(x) = x + 4, g(x) = 2x2and h(x) = +121x, find:a)f²(x)b)g²(x)c)h²(x)d)hgf(x)


4 For each function, find the inverse and sketch the graphs of y =f(x) and y = f−1(x) on the same axes. Use the same scale on both axes.a)f(x) = 3x − 1b)f(x) = x3, x > 0


5 Solve the following equations:a)|x − 3| =4b)|2x +1| =7c)|3x − 2| =5d)|x + 2| =26 Sketch the graph of each function:a) y = x + 2b) y = |x +2|c) y = |x + 2| + 3


7 Sketch these graphs for 0°  x  360°:a) y = cos xb) y = cos x +1c) y = |cos x|d) y = |cos x| +18 Graph 1 represents the line y = 2x − 1. Graph 2 is related to graph 1 and graph 3 is related to graph 2. Write down the equations of graph 2 and graph 3.


Exercise 1.2


Graph 1Graph 2Graph 3


xx


x


y


y


y


–1


1


0.5


0.5


3


4


0.5


 9


 The graph shows part of a quadratic curve and its inverse.a) What is the equation of the curve?


b) What is the equation of the inverse?


10 a)  Sketch the graphs of these functions:i) y = 1 − 2x


ii) y =|1 − 2x|iii) y = −|1 − 2x|iv) y = 3 −|1 − 2x|


b) Use a series of transformations to sketch the graph of y =|3x +1| −2.


11 For each part:a) Sketch both graphs on the same axes.


Note


In Chapter 10, you will look again at the relationshipbetweeny = f(x) andy = |f(x)|, where f(x) is trigonometric.


1


(1, 2)


(2, 5)


1


x


y


y = x
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b) Write down the coordinates of their points of intersection.i) y = |x| and y = 1 − |x|ii) y =2|x| and y = 2 − |x|iii) y =3|x| and y = 3 − |x|


Past-paper questions


1 The functions f and g are defined by


 


f()x


2for0,x>


1x+


g()1for1xxx=+>−


x


=


(i)Find fg(8). [2]


(ii) Find an expression for f2(x), giving your answer in the form ax


bxc+


, where a, b and c are integers to be found. [3]


(iii) Find an expression for g−1(x), stating its domain and range. [4](iv)  On axes like the ones shown, sketch the graphs of y =g(x) 


and y = g−1(x), indicating the geometrical relationship between the graphs. [3]


Cambridge O Level Additional Mathematics (4037)  


Paper 21 Q12, June 2014Cambridge IGCSE Additional Mathematics (0606)  


Paper 21 Q12, June 2014


2 (i)  Sketch the graph of y =|3x − 5|, for −2  x  3, showing the coordinates of the points where the graph meets the axes. [3]


(ii) On the same diagram, sketch the graph of y = 8x. [1](iii)Solve the equation 8x =|3x −5|. [3]


Cambridge O Level Additional Mathematics (4037)  


Paper 13 Q7, November 2010Cambridge IGCSE Additional Mathematics (0606)  


Paper 13 Q7, November 2010


Now you should be able to:


H understand the terms: function, domain, range (image set),  one-one function, many-one function, inverse function, and composition of functionsH find the domain and range of functionsH recognise and use function notationsHunderstandthe relationship betweeny =f(x) and y =|f(x)|, wheref(x) may be linear, quadratic, cubic or trigonometricH explain in words why a given function does not have an inverseH find the inverse of a one-one functionH form and use composite functionsH use sketch graphs to show the relationship between a function and its inverse.


O


x


y
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Key points


✔A mapping is a rule for changing one number into another number or numbers.


✔A function, f(x), is a rule that maps one number onto another single number.


✔Thegraph of a function has only one value of y for each value of x. 


However, two or more values of x may give the same value of y.✔A flow chart can be used to show the individual operations within a function in the order in which they are applied.


✔Thedomain of a function is the set of input values, or objects, that the function is operating on.


✔Therangeor image set of a function is the corresponding set of output valuesor images, f(x).


✔A mapping diagram can be used to illustrate a function. It is best used when the domain contains only a small number of values.


✔ In a one-one function there is a unique value of y for every value of x and a unique value of x for every value of y.


✔ In a many-one function two or more values of xcorrespond to the same value of y.


✔ In a one-many function one value of x corresponds to two or more values of y.


✔ In a many-many function two or more values of x correspond to the same value of y and two or more values of ycorrespond to the same value of x.


✔Theinverse of a function reverses the effect of the function. Only one-one functions have inverses.


✔ The term composition of functions is used to describe the application of one function followed by another function(s).The notation fg(x) means that the function g is applied first, then f is applied to the result.


✔Themodulus of a number or a function is always a positive value.  |x| = x if x  0 and |x| = −x if x <0.


✔The modulus of a function y =f(x) is denoted by |f(x)| and is illustrated by reflecting any part of the graph where y < 0 in the x-axis.
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Quadratic functions


Algebra is but written geometry, and geometry is but figured algebra.


Sophia Germain (1776–1831)


Early mathematics focused principally on arithmetic and geometry. However, in the sixteenth century a French mathematician, François Viète, started work on ‘new algebra’. He was a lawyer by trade and served as a privy councillor to both Henry III and Henry IV of France. His innovative use of letters and parameters in equations was an important step towards modern algebra.
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