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Introduction


Mathematics and philosophy have dated for ages. This book describes in a not-too-serious vein some of their most memorable encounters.


The two fields seem to be made for each other. On the one hand, mathematics is a useful tool for both theoretical and practical philosophy. For instance, the theory of knowledge deals with topics such as space and chance that are at the core of geometry and probability theory; ethics deals with notions such as fairness and the social contract, on which game theory sheds a light; and so on. On the other hand, mathematics itself is among the most puzzling and rewarding sources of philosophical problems. It is obviously not an empirical science, so why is it so practical? Is it invented or discovered? And what makes mathematical knowledge seem so secure?


Such questions will lead to entertaining, informative, and occasionally rambling excursions into the history of human thought, involving some remarkably original characters, all of them celebrities from the Dead Thinkers’ Society. Philosophical and mathematical ways of thinking are utterly distinct, but have often progressed on twin tracks. There were times when philosophers and mathematicians could not be told apart. Those times are receding, but the fact remains that the two fields have wonderful ways of stimulating and often surprising each other. It seems that the two siblings from Greece are fated to remain eternally entangled, in a complex and occasionally dizzying waltz—and not without, sometimes, stepping on each other’s toes. Let us follow their evolutions.


There are many illustrations and very few formulas in the book. It is meant as a sightseer’s guide and no more. The text will not say too much on the philosophy of mathematics itself, an arduous field, but it will make up for this by describing applications of mathematics to all kinds of philosophical questions, from morals to logic, and emphasizing the historical quirks of an age-old quest. That quest is guaranteed to remain open-ended, especially as the current explosion of artificial intelligence is likely to sweep some cardhouses of reason from the table, and deal us a new hand.


The first part of the book has to do with space, number, algorithm, axiom, and proof. It traces the evolution of the self-image of mathematics, a short coming-of-age version of the long official history that leads from Euclid to Turing, or more precisely, from Thales to Hales (no pun intended!). Thales was the semi-legendary figure from Miletus, on the shore of the Ionian Sea, who may (or may not) have first conceived, some hundred generations ago, the idea of a mathematical proof conveying insight and certainty. Thomas Hales is the contemporary US mathematician who has become famous for a proof that was so complex that nobody could be completely sure of its validity. Thereupon, Hales removed all doubts by convincing a computer.


The development of mathematics between these two milestones has involved drastic changes in perspective, which greatly exercised the minds of mathematicians and philosophers alike. On the menu were the role of spatial intuition; the fate of the parallel axiom; the divorce of mathematical and physical space; the nature and purpose of number; infinity, surrounded by its halo of taboos and scandals; and the incestuous relations of mathematics with logic. All these issues underwent centuries of development, punctuated by major revolutions, and all led to strange encounters (almost encounters of the third kind) between mathematicians and philosophers.


The second part of this book deals with chance and the continuum. The latter provided thinkers such as Zeno of Elea with riddles to confuse the best minds and filled ancient mathematics with unease. It was only in the aftermath of the Renaissance, during the heyday of the alchemists, that some intellectual adventurers began to develop an infinitesimal calculus. They aimed to reach for the limit by a daredevil “fast forward”—named “passage to the limit”—and to divide the finite into infinitely many infinitely small parts. At almost the same time, probability was tamed. This was the age when mathematicians, with the confidence of sleepwalkers, went beyond common sense. Nobody understood properly how chance fits with causality, nor how an infinitesimal could be smaller than anything and yet not zero. All that seemed to matter was that the stuff worked. In due time, it emerged that the calculus of chances and the computation of volumes could be handled by the same analytical tools. Mathematicians got used to defying reason. They also began to vex philosophers.


The third part of the book turns to practical philosophy: morality and economics, politics and law. Plato had once proposed that ideal rulers should start out by doing mathematics for ten years. Mercifully, this suggestion fell flat. But 2000 years later, some mathematicians did indeed turn to reflect on what was good and desirable. This started harmlessly enough, with the investigation of voting schemes, at a time when democracy was the pipe dream of radicals and the only republic was the “republic of scholars.” A little later, the Benthamite notion of a “felicity calculus” attracted ridicule, but that of “utility” took hold of economics. Eventually, utility turned on itself and cast a shadow on our optimistic self-image as “rational beings.”


Toward the middle of last century, under the innocuous heading of “theory of games,” mathematics began to investigate conflicts of interest. Such conflicts are the raison d’être for all morals and laws. Today, it seems hard to understand how philosophers could ever have cogitated on selfishness, cooperation, or the social contract without resorting to the Prisoner’s Dilemma or the Stag Hunt game. Similarly, the notion of fairness or the evolution of ownership norms are by now fully established as mathematical issues (which does not necessarily mean that we understand them any better).


The fourth and last part of this book tries to approach mathematics from the outside, as if landing on an unknown shore and fraternizing with the native tribe. The first chapter takes a look at the language of mathematics, or more precisely, at its writing. This quasi-graphological approach reveals that the tribe is currently undergoing a change, one that seems to accelerate at a dizzying pace. This upheaval is caused by digitalization, of course (a word that refers to the fingers used for counting). The computer, that mathematical brainchild, is radically transforming mathematics in more ways than can be reckoned yet. The next chapter is a tip of the hat to the philosophy of mathematics, a venerable discipline that seems, today, to deal almost as much with itself as with mathematics. And the last chapter turns to what may appear, to many eyes, to be the greatest riddle: namely, why does mathematics provide so much delight for some (but only some) of us?


As for myself, I have loved mathematics since as far as I can think back. I well remember the cozy evening at home when little me carefully measured the angles of a triangle, added them up, and discovered that my dad had been right! While growing up in Vienna, I soon crossed traces of Ludwig Wittgenstein, Kurt Gödel, and the Vienna Circle, and I could not help wondering about their disparate views. There were other formative experiences. A large part of my professional life (maybe the best) was spent teaching mathematics to undergraduates and watching how, within a few months, they acquired a specific mindset, as budding mathematicians. It felt like witnessing an initiation rite. My scientific research dealt first with dynamical systems on the borderline of deterministic and probabilistic models. Later, I turned to evolutionary game theory. The former field offered food for thought on theoretical philosophy, the latter on practical philosophy. Despite this heady diet, I am an expert on neither, alas! In fact, I have not touched one topic, in this book, on which there are not many better experts. My excuse is that I have merely intended to cover a vast field lightly, in a series of leisurely strolls, sometimes returning to the same spot from another side, sometimes relaxing to enjoy the view.


This being said, I must confess that I have occasionally experienced, while writing this book, a sort of The Old Man and the Sea feeling: namely, that I had hooked a fish who is far, far too big for me and drags me and my skiff, hell knows where.…


I can only take it philosophically.
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Geometry


Memories of a Nameless


The Art of Unforgetting


The opening scene is set in Athens, in the villa of a shady politico named Anytus. Young Meno, an up-and-coming military leader, is on a visit. Socrates also happens to be around. Meno is quick to seize the occasion and asks him whether virtue can be taught—a bait that never failed to hook Socrates. The gambit secured Meno’s passport to eternity. He died soon after, in the Persian Wars, under dubious circumstances, but a Platonic dialogue was named after him.
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Figure 1.1. Socrates (469–399 BCE).
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Figure 1.2. A page of Meno.









Meno is one of the earliest works of Plato. This is where, for the first time, the philosopher presents one of his favorite ideas: There is a knowledge that we learn by remembering. Our immortal soul has known it all along. We only need to dig it up.


The Greeks have a word for this recovery of buried knowledge: anamnesis. The notion may strike us as hopelessly outdated, a leftover from an age of superstition. However, it led to one of the most venerable, and indeed thrilling, encounters between philosophy and mathematics. This came about when Socrates proposed to defend his curious idea by performing, for Meno’s benefit, an experiment on total recall.


One of the slaves hanging around is asked to approach, a boy whose utter lack of education is beyond any doubt. By skillful questioning, Socrates leads him to the discovery of a geometric theorem that the boy had certainly never been told before. Hence, concludes Socrates, he must have known it all along. The boy had merely been unaware of it. With gentle probing, his submerged knowledge has come to light. In modern parlance, part of the subconscious had become conscious, like in a session on the couch of Dr. Freud. Socrates himself likened his role to that of a midwife—he merely had helped the boy unforget what he had forgotten.


The whole episode took merely a quarter of an hour. With that, the boy returned to his lowly sphere of ignorance. He neither learned what all the questioning had been about, nor that it had brought him his fifteen minutes of fame—or rather (since he had never been asked for his name), fifteen minutes of immortality. Socrates and Meno returned to their discussion of what virtue is about.


Tellingly, Socrates had chosen geometry for his experiment, not any other science such as physics or geography. With his well-honed dialectical skills, he could probably have led the slave boy to also remember that Crete is an island or that everything is made from water, fire, air, and earth. Socrates preferred to focus on a geometric theorem, because nothing can pass more plausibly for an eternal truth.


The boy had been asked to construct, for a given square, a square of twice its area. We know, from school, that the length of its side must be √2 times the length of the side of the original square. It must therefore be as long as its diagonal. But talking of square roots was out of bounds. Actually, Socrates did not even mention a square. He spoke of a quadrilateral whose sides have equal length (Figure 1.3). This is not enough to define a square; but Socrates added—no doubt using a figure such as Figure 1.4—that its diagonals are of equal length. This guarantees that the quadrilateral with equal sides is indeed a square.
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Figure 1.3. A rhombus is a quadrilateral whose sides have equal length.













[image: image]

Figure 1.4. A square is a rhombus whose diagonals have equal length.









Socrates could have demanded instead that all angles are equal. This condition would also guarantee that the quadrilateral with equal sides is a square. But he preferred to introduce diagonals right at the start of the Q and A session, in a casual way—a neat trick, as these diagonals will eventually turn out to yield the solution (Figure 1.5). Toward this end, Socrates allowed the boy to follow his own way, gently correcting his mistakes. Double the side length? No, this would not do; it leads to a square having four times the area of the original square. Multiply the side length by one and a half? No, still too large. And so the dialogue winds on, until, in the end, Socrates has coached the correct answer from the boy.
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Figure 1.5. The gray square on the right has twice the area of the gray square on the left.









We shall see in the next chapter that the corresponding problem in three dimensions is unsolvable. It is the Delian problem, which owes its name to the tiny island of Delos in the Aegean Sea. Some thirty years before Socrates had his chat with Meno, a plague had raged through Greece. Pericles had died from it. As usual in a pandemic, experts knew exactly what to do. They said, “Go ask an oracle.” Lo and indeed, the oracle offered advice: double the size of the cube-shaped altar that stands in the temple of Apollo, and you will thereby appease the gods. Today, the plague is gone, the altar nowhere to be found. Apollo has quit. But the Delian problem remains unsolved. In fact, we know—we have proof—that it will remain unsolved for all time. How wise of Socrates not to have asked the boy to recall the solution.


Three Angles for Euclid


Geometry was the first branch of mathematics to really flourish. It may have done so because of its obvious use to architects, sailors, and field surveyors. More likely, it flourished because it is beautiful. Even the simplest geometric figures, such as the triangle, are fascinating. In music, the triangle is a marginal instrument hidden somewhere in the back of the orchestra. In mathematics, triangles shine in the front row—the very first objects to fascinate early Greek thinkers, such as Thales of Miletus or Pythagoras of Samos. Triangles are also the first mathematical figures likely to raise a child’s interest.


One of the oldest geometric theorems is that of Pythagoras (Figure 1.6). If a, b, and c are the lengths of the sides of a right triangle (c being that of the hypotenuse, the side opposite the right angle), then a2 + b2 = c2. This fact had been known to Egyptians, Indians, and Babylonians, but Pythagoras was (possibly? probably?) the first to offer a proof.


What is a proof? For the old Greeks, it was an argument to make everyone see why the statement is true—just as the slave boy suddenly came to see why the diagonal of a square is the side of a square of twice the size.


There exist many proofs of the Pythagorean theorem. The most common proof is based on Figure 1.7 (which in the case a = b is more or less straight from Meno). The large square, with side length a + b, is divided into five pieces: the four right triangles and the square formed by their hypotenuses. Each triangle has area [image: image], which altogether yields 2ab. We obtain c2 = (a + b)2 − 2ab by simply removing the right triangles from the large square.
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Figure 1.6. The theorem of Pythagoras.
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Figure 1.7. One step in its proof.
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Figure 1.8. Another step in its proof.









Another decomposition of the same “large” square with sides of length a + b (see Figure 1.8) yields the equation (a + b)2 = a2 + 2ab + b2. Substituting this into the previous equation, we obtain c2 = a2 + b2, as had to be proved.


At school we learn a few things about triangles (less than our elders did, by the way). For example, the perpendicular bisectors of the three sides of a triangle intersect in one point. This is immediately obvious from Figure 1.9. Indeed, let P be the point where the perpendicular bisectors of the sides AB and AC intersect. Being on the perpendicular bisector of AB, P is equidistant from A and B. Similarly, P is equidistant from A and C. Hence, P is equidistant from B and C, and thus on the perpendicular bisector of BC. We thereby also see that P is the center of the circle through A, B, and C.


Here is a very similar theorem: the three altitudes of a triangle intersect in one point (see Figure 1.10). But now the proof is a bit more demanding. Can you find it yourself? Do you remember having seen it in school (or in some earlier life, as Plato might expect)?
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Figure 1.9. The perpendicular bisectors intersect in a point.
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Figure 1.10. The altitudes intersect in a point.









Here is a trick that helps. Draw lines through A, B, and C that are parallel to the three opposite sides of the triangle (see Figure 1.11). This yields a large triangle. It is easy to see, using parallelograms, that the points A, B, and C are the midpoints of the sides of the new triangle (Figure 1.12). The altitudes of triangle ABC are perpendicular to these sides. Hence, they are the perpendicular bisectors of the new triangle. As such, they intersect in one point, as was to be proved.
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Figure 1.11. A proof that the three altitudes intersect in a point.
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Figure 1.12. Another step of the proof.









Many theorems about triangles are 2000 years old, but many more are much newer. In fact, the Greek geometers would tear their hair out if they were told how much they had missed.


For example, the triangle whose vertices A′, B′, and C′ are the feet of the three altitudes of an acute triangle ABC (i.e., the so-called pedal triangle A′B′C′, see Figure 1.13) has the smallest perimeter of all triangles inscribed in ABC (i.e., having their three vertices on the three sides opposite A, B, and C). An elastic ribbon stretched across the three sides of triangle ABC would, by contracting, end up in A′B′C′. The old Greeks had no elastic ribbons, but the theorem would have thrilled them. It was discovered by Leonhard Euler in the eighteenth century.
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Figure 1.13. A theorem of Euler.
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Figure 1.14. The theorem of Morley.









Here is another example: It is well known that the bisectors of the angles of a triangle meet in a point. Let us, instead, look at the trisectors (the lines dividing angles into three equal parts). It turns out that, for any triangle, the three points of intersection of adjacent trisectors of different angles form an equilateral triangle (Figure 1.14). It is an almost magical result. The proof is tricky, to say the least. In the words of H. S. M. Coxeter, the foremost geometer of the last century, “Much trouble is experienced if we try a direct approach.” Yet ten years ago, unfazed by this warning, the British mathematician John H. Conway found a wonderfully clever, one-page proof.


Flawed Evidence


Proofs in Euclidean geometry can be extremely sophisticated, full of ingenious and surprising moves. But each step seems immediately evident. This appeal to evidence was what convinced Plato and Pythagoras that the truth of geometric arguments could not be questioned. To see the square over the diagonal is to understand that its area is twice that of the original square. To see that the attitudes of one triangle are the perpendicular bisectors of another is to understand that they intersect in a point.


In many languages, “I see” means “I understand.” So does the expression “This is clear to me.” The Latin root of the word evidence is videre, meaning “to see.”


However, to see is to believe, they say, and to believe means to believe that you know. This can easily lead to fatal mistakes. Sense perceptions may be sense deceptions, as said Descartes. The old Greeks were familiar with optical illusions. They also knew of geometric fallacies. Here is a classic example: the “proof” that all triangles ABC are isosceles (an obvious nonsense).
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Figure 1.15. A triangle (clearly non-isosceles) and the bisector of angle A.









Indeed, let us consider the bisector of angle A (Figure 1.15). If it is perpendicular to the side BC, then the triangle is obviously isosceles. In this case, we are done. Thus, suppose that it is not perpendicular to BC. Then, it is not parallel to the perpendicular bisector of BC. Hence, it intersects that line in a point P (see Figure 1.16).
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Figure 1.16. One step to fallacy.
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Figure 1.17. Another step to fallacy.









Let us draw from P the perpendiculars to the sides AB and AC of the triangle, and denote their feet by E and F, respectively. The two right triangles APE and APF have equal angles and a common side. Hence, they must be congruent. In particular, AE and AF have equal length. The two right triangles BEP and CFP are also congruent (see Figure 1.17). Indeed, PE and PF are of equal length because P is on the bisector of angle A; and PB and PC are of equal length because P is on the perpendicular bisector of BC. But if AE and AF have the same length, and EB and FC have the same length, then we only have to add equals to equals to obtain that AB and AC are of the same length. This means that the triangle ABC is isosceles.


Here is another, more modern geometric fallacy: an example that by decomposing and rearranging polygons, we can reduce their area (see Figure 1.18). This is preposterous, of course; but what we seem to “see,” right in front of our eyes, is that a triangle is dissected into four parts that, when rearranged, look just as before, except for a tooth gap—a small indentation on the bottom side. This must be an illusion. It cannot be! We look again: the four pieces are two triangular pieces and two polyominos—polygons made up of squares of the same size (one made of seven, the other of eight). They are merely shifted around, and do not change their area. Yet in the rearrangement, one square is lost. What kind of legerdemain is at work?
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Figure 1.18. The mystery of the lost square.









In both examples the outcome is so obviously wrong that we start immediately to look for some mistake in the argument. It will not take long to discover the fallacies. (And they are pointed out in the references.) But what if a geometric theorem does not immediately strike us as wrong? What if no mental alarm bells start ringing?


As a matter of fact, wrong proofs abound in mathematics. Usually, their life span is short. Colleagues of the mathematician who erred will very willingly point out the mistake. But what if no colleague is ever interested in the result? How can one make sure that the theorem is valid? Evidence can mislead.


Euclid Writes a Bestseller


To avoid the pitfalls of intuition, Euclid decided to use it as little as possible. His idea was to start with a few statements placed up front, in plain sight; to accept them “on evidence” as given; and then never to recur to evidence again. Everything else should be deduced from the little that is given. That deduction must follow from strictly logical arguments, without any further appeal to intuition.


Not much is known about Euclid (except that he should never be confused with another Euclid, who hailed from Megara). Our Euclid apparently lived around 300 BCE in Alexandria. He may have frequented Plato’s academy in his youth. Or maybe not. The one thing that really counts is that he wrote a book, The Elements, which summed up the mathematical knowledge of his time in masterful clarity. With this book, mathematics ceased being a ragtag bundle of results and became an organized whole. If there ever was a game changer in mathematics, it was Euclid.


Euclid’s book set the standard for the next few thousand years. It reigned uncontested. For centuries, only the Bible sold more copies. More important than its success as a best- and long-seller was that it shaped mathematics by laying down the ground rules. A theory has to start with primitive concepts that remain undefined and primitive statements (the axioms) that remain unproved. All other concepts have to be defined in terms of the primitive concepts, and all other statements proved from the primitive statements. No theorem can hold without a proof. The proofs have to be chains of logical deductions without recourse to intuitive evidence. Any appeal to visualization was considered off-limits. In the nineteenth century, a German geometer insisted on holding his classes in a completely darkened lecture room. Arguing “from figures” was taboo.


It turned out that Euclid did not completely fulfill his own standards. Again and again, he unwittingly used intuition. This cannot surprise anyone. Human error is hard to avoid.


To keep things in perspective, we should bear in mind that the old Greeks were wrong on almost any count in anything they said. They believed that the Sun and planets wheeled around the Earth; they attributed health to the balance of blood, bile, and phlegm; they vastly overestimated the number of gods; and so on. When seen against this background, the achievements of Greek geometers are simply stupendous, and their mistakes no more than tiny imperfections.


The primitive concepts of Euclidean geometry were point, line (meaning a straight line), and distance. Here are the axioms in slightly updated form:


1. Any two points lie on a line.


2. Any line can be extended.


3. There exists a circle with any center and any radius.


4. All right angles are equal to one another.


5. Through any point not on a given line, there is a unique parallel to that line.


A right angle is an angle equal to its supplement, and the circles introduce the notion of distance. The last axiom is a story in itself, and will be dealt with in the next section.


During the nineteenth century, it became obvious that Euclid’s theorems were all correct, but some of their proofs incomplete. Occasionally, arguments of Euclid used “evidence” that was not warranted by the axioms: for instance, he assumed tacitly that if A, B, and C are three points on a line, with B between A and C, then C is not between A and B; or that a line intersecting a side of a triangle has to intersect another side, too. Unconsciously, or at least unwittingly, the spatial reasoning used in real life made things look “obvious” that had not been properly proved. Such glitches occurred from the first theorem onward.


In 1899, the famous mathematician David Hilbert wrote a little book on The Foundations of Geometry, where he used twenty-three axioms to derive Euclidean geometry in an indisputable way. (Later, this number was slightly reduced.)


The notion of “betweenness,” that blind spot of Greek geometers, was given a starring role on Hilbert’s list of primitives. In newer versions of geometry, the notion even replaced “line,” which joined the rank of concepts that could be defined. Indeed, we can start with any two points A and B, and then define a segment as the set of all points between A and B; next, we define two rays, one as the set of all points C such that B is between A and C, and the other as the set of all points C such that A is between C and B. The line g through A and B is then defined as the set consisting of the two points A and B, the two rays, and the segment. Next, we need (as an axiom!) that there is a point that is not on that line. We thus obtain the plane through that point and the line g. Next, we define angles, and triangles.


Now we are well-equipped to show, for instance, that if any points A, B,…, X are not all on one line, then there exists a line containing only two of these points. This is Sylvester’s theorem—another gem the Greeks had overlooked.


Hilbert’s book did much more than merely repair a few holes in Euclid’s Elements. It got rid of “evidence” and “intuition” altogether, evincing them out of their last retreat, the primitive concepts and axioms. Hilbert did not even try to give any meaning to the primitive concepts, besides that they obey the axioms.


Euclid’s statement “A point is that which has no part” finds no place in Hilbert’s book. The question “What is a point?” is as meaningless for modern geometry as “What is a rook?” is for chess. All that chess players, including chess computers, need to know is how a “rook” can move, which pieces it can capture, and so on. A rook may look like a little tower and be made of ebony, but this is irrelevant. It is the same with geometric concepts. What mathematicians think when they think of a point is their private affair. It may help a child to be shown a grain of sand or a dot on a blackboard, or better still, a star in the sky, to get the point (if I may say so when I mean to visualize “a point”). But the logic of a proof must proceed without any visualization—as in the geometry lectures of a German professor that were held in a pitch-dark auditorium.
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Figure 1.19. David Hilbert (1862–1943) refined the rules of the game.









Parallel Actions


The fifth axiom of Euclid, the parallel axiom, has a special status. Euclid actually used a different statement, which is equivalent. Geometers immediately sensed that this fifth axiom was less evident than the others.


Two lines are said to be parallel if they do not have a unique point in common (which means that the lines either coincide or have no point in common). The parallel axiom may seem evident, but only at first sight. If we are standing on a straight railway track, we see that the rails seem to intersect in a point on the horizon. We know that they don’t, but cannot advance any “evidence”: We don’t see that they don’t meet.


The old Greeks had no railways, but a fine sense for geometry, and knew that the parallel axiom is far from obvious. Indeed, lines extend to infinity (or, to speak more carefully, they have no end). So, how can one say that two lines will never, ever intersect? We cannot survey them entirely. Who can say what happens beyond our visual radius, beyond the limits of perception?


For thousands of years, the consensus was that the parallel axiom is true, no person of sound mind can seriously doubt it, yet it is not so evidently evident as one would like an axiom to be. Compared to the other axioms, it falls short. This is why generation after generation of geometers tried to get rid, not of that statement as such, but of its status as an axiom. They attempted to downgrade the axiom to the rating of a theorem. For this purpose, they had to derive it as a logical consequence of the other four axioms, which seemed altogether much more evident.
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Figure 1.20. The parallel axiom: through any point P not on the line g, there is a unique parallel to g.
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Figure 1.21. A parallel illusion.









However, that enterprise never succeeded. It was balked from the start. Many of the most powerful theorems could not be used, because they themselves had been derived by using the obnoxious fifth axiom. These include classics such as “The sum of the angles of a triangle is 180 degrees (i.e., equal to the sum of two right angles),” “There exist triangles of arbitrarily large area,” “Three points either lie on a line or on a circle,” “The theorem of Pythagoras holds,” and so on. It turned out that these theorems are actually equivalent to the parallel axiom. In its place, geometers could use any of these statements as their “fifth axiom” and derive Euclidean geometry. But that would have gained nothing.


The first substantial progress was based on a resounding failure. In the early eighteenth century, the Italian Giovanni Saccheri (1667–1733) attempted an indirect proof. The strategy was simple: assume that the parallel axiom does not hold, and keep deducing logical consequences until you hit an absurdity—a statement that follows from the assumption and yet contradicts it. This contradiction would imply that what had been assumed is false. The parallel axiom therefore would have been demonstrated to be true.


Saccheri drew a line g and, from two points on g, two perpendicular segments of equal length, both on the same side of the line (Figure 1.22). He then joined the two endpoints of those segments with a line h. This yields a quadrilateral. It is easy to show that the two segments intersect h at the same angle. If Saccheri could show that it is a right angle, the parallel axiom would follow easily. He thus had to show that the other two possibilities—acute or obtuse angles—both lead to contradictions. This he did, to his own satisfaction. He thought that he had proved that the fifth axiom is a consequence of the other four axioms, and hence a theorem. No need to presume it as given if it can be derived.
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Figure 1.22. Saccheri attempts to demote the parallel axiom to a mere theorem.









To Saccheri’s dismay, his colleagues were not convinced. They accepted his argument that “both angles are obtuse” leads to a contradiction, but found fault with his treatment of “both angles are acute.” Saccheri tried to repair his proof—a very long proof—but to no avail. Other mathematicians took over, always looking for the roadblock into which the assumption “both angles are acute” would eventually crash.


Some hundred years after Saccheri, two young mathematicians, working independently, began to suspect that there was no roadblock. The Russian Nikolai Ivanovich Lobachevsky and the Hungarian János Bolyai understood that far from leading to an impasse, Saccheri’s assumption leads into a new world. Things were different in this world—very different. Through any point not on a line, there are infinitely many parallels to that line. The sum of the angles of a triangle is smaller than 180 degrees—by how much depends on the triangle’s area. And so on. This so-called hyperbolic geometry was not one jot less interesting than Euclidean geometry.


The father of Bolyai happened to be a mathematician, too. He had studied in Göttingen and been friends with young Carl Friedrich Gauss. Now, he wrote him a glowing letter about his son’s splendid discoveries. In return, he received a letter in which Gauss declared that he could not well praise the achievement of the youth because he, Gauss, had discovered this new geometry himself, many years ago. He had described it in letters to close friends. Gauss had not published his results because he wanted to avoid what nowadays is called a shitstorm. Gauss actually used a more refined expression: “I fear the outcry of the Boeotians.” (The Boeotians were a Greek tribe known far and near for being dimwits.)


As a result, the work of Gauss on non-Euclidean geometry was published only after his death—and it was only then that the mathematical world at large took any interest in what, in their academic backwoods, Lobachevsky and Bolyai had published decades ago.


The strange reticence of Gauss was probably caused by the extraordinary influence, in Germany, of philosophers such as Kant, Hegel, and Schopenhauer. These philosophers held that Euclidean space was a necessity of thought. To ever doubt the parallel axiom was, so to speak, against the line—here in the sense of “party line.”


To be sure, Immanuel Kant was not your ordinary dim Boeotian. Few philosophers can have thought harder about intuition than he did. He saw in space and time forms of intuition given a priori, before every experience. Our perceptive apparatus uses these forms—cannot help using them—to arrange our sensations. Space is the background for perception. Space is inescapable, in that sense: we may be able to imagine that space is empty, but not that there should be no space. And it seemed evident to Kant that space comes equipped with Euclid’s geometry. Hence, this geometry is a priori, too—it is independent of our experience.


However, it is not analytic, which means that it is not deducible from logic alone. Though “An equilateral triangle is a triangle” is analytic alright, it hardly can count as geometry. You need not imagine a triangle to see that the proposition is true. By contrast, “The bisectors of the angles of a triangle meet in a point” is geometry. Yet, it is not an analytic proposition. It is synthetic: it requires intuition.


To “see” that the assertion about bisectors is true, or just to see what it means, you need a figure. By drawing a triangle on a blackboard, you fall clearly far short of capturing what a triangle is, in geometry. The lines are not completely straight; they are way too thick; and there exist infinitely many other triangles that you will never see but still want to include in your proposition. These shortfalls do not matter. Your intuition will overlook such trifles. The drawing is just a prop for your imagination. Geometry, as someone said, is the science of correct reasoning about incorrect figures.


Kant’s view of geometric intuition seemed convincing to his contemporaries. Geometry is neither analytic nor given by experience. It is the epitome of synthetic knowledge a priori. It seemed unconceivable to doubt that Euclid’s axioms are given by the pure form of intuition.


With hindsight, it is strange that Kant seems never to have been concerned with the special role of the parallel axiom. He had little to say on that issue. He must have been perfectly aware that from Euclid on, mathematicians had felt queasy about it. Since Saccheri’s heroic attempt to demonstrate the axiom, hardly a year passed without new treatises on the topic. To the geometers engaged on that quest, Kant’s silence must have sounded deafening.


Georg Wilhelm Friedrich Hegel was less silent on the matter: he explicitly rejected all attempts to prove the fifth axiom. It is, he claimed, as necessary for geometry as the notion of space itself. Hence, it must be accepted as given. Punctum.


Arthur Schopenhauer, with his usual brashness, summed it up:


Out of its womb, Euclid’s method of demonstration has produced its own telling parody and caricature, to wit, the famous dispute about the theory of parallels.… But it so happens that this axiom is a synthetic judgement a priori, and as such guaranteed by pure, non-empirical intuition, which is as immediate and certain as the principle of contradiction itself.


And Schopenhauer added for good measure: “The only immediate use which is left for mathematics is that it can habituate unsettled and fickle brains to concentrate their mind.”


So, this may have been what Gauss meant by “the outcry of the Boeotians.” But he must have known that his unpublished manuscripts would come to light after his death, and be eagerly studied by the best minds. It would convince at least the non-Boeotians that he (and Bolyai and Lobachevsky) had discovered a brave new geometry as rich and exciting as that of Euclid.


Euclid Confirmed


The final nail in the coffin of all vain aspirations to prove the parallel axiom was hammered in through joint efforts of the Italian Eugenio Beltrami, the French Henri Poincaré, and the German Felix Klein. They proved that hyperbolic geometry is as consistent as Euclidean geometry. This they did by constructing, within the Euclidean world, toy models of the hyperbolic world. Any inconsistency within the toy world would amount to an inconsistency in the Euclidean world. Since the same method can be used vice versa—construct a Euclidean toy model in a hyperbolic world—the two geometries are equally valid, from the logical point of view: a contradiction cannot be ruled out, but if it occurs in one geometry, it occurs in the other.


The two geometries thus stand and fall together. If Saccheri’s old dream could ever become real, it would be a nightmare. Had he succeeded in showing that the case of acute angles leads to a contradiction, he would have shown that the case of right angles, that is, Euclidean geometry, also leads to a contradiction. It would not prove Euclid’s fifth axiom; rather, it would destroy Euclid’s geometry.


Poincaré’s model is arguably the most elegant. The Euclidean plane is mapped into a disc. We are familiar with flat maps of the spherical Earth. Such maps not only reduce distances, but distort them—for instance, by making Greenland look larger than South America.


Poincaré’s disk is similarly distorted (Figure 1.24). The nearer to the boundary, the larger the distances. You will never be able to reach the boundary. It is as if the temperature there had reached absolute zero. All motion freezes in the vicinity. The distortion of distance means that the shortest path between two points in the interior of the disk is not a straight segment. Rather, it is an arc of a circle that intersects the disk’s boundary in right angles.
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Figure 1.23. A map of Earth.
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Figure 1.24. Poincaré’s disk, with three “lines.”













[image: image]

Figure 1.25. Many parallels to the thick line, which all share a common point.









The first four axioms of Euclid (or more precisely, their modern counterparts) still hold. Two “lines” have at most one point in common; through two points there is exactly one “line”; and such “lines” can be extended. The “distance” is a non-Euclidean distance, but we can still speak of “circles”—the points at equal “distance” from a given point, the “center.” Oddly enough, whereas “lines” do not look like lines, on the Poincaré disk “circles” do look like circles (but their “centers” differ, in general, from the centers of Euclid’s circles).


On Poincaré’s disk, however, the fifth axiom of Euclid fails to hold. Through a given point P not on a “line” g, there are more than one “lines” that do not intersect g—infinitely many, actually (Figure 1.25). So here, on the disk, we encounter a model for hyperbolic geometry. Each theorem about the points and “lines” in hyperbolic geometry translates into a theorem about points and circles-intersecting-the-boundary-in-right-angles in the usual Euclidean plane. A contradiction here translates into a contradiction there. One geometry is as consistent as the other. We simply see them through different lenses.


Whether such to-and-fro would have mollified Schopenhauer is unlikely. He still would make fun of the benighted geometers who toy with the idea that the arc of a circle can pretend to be a line. Such an arc may be the “shortest” path between two points, if you insist on distorting distances. Insofar, such an arc resembles a line segment in Euclidean geometry. But who can be fooled by a mere resemblance? The essence of a line lies in its straightness, surely. This argument, however, overlooks the fact that any nano-beings living in the disk would have no other means to understand “straightness” than via the “shortest path.”


Down to Earth


Once geometers became accustomed to stepping clear of intuition, and working with models rather than with the “given” world, geometry took on a new flavor. We will describe only one such model, which seems outrageous at first sight, yet brings us back to Earth—and literally so. Let us imagine in our “normal” three-dimensional Euclidean space one point F, whose role is just to focus our mind. (Remember Schopenhauer: a focus is exactly what fickle mathematicians are in need of.)


In this toy world, the lines through F (normal, straight, Euclidean lines) will be called pseudo-points, and the planes through F will be called pseudo-lines (see Figure 1.26). Through any two pseudo-points passes a pseudo-line. Any two pseudo-lines intersect in a pseudo-point. We just have to translate the “pseudo” to confirm these statements. Such hocus-pocus leads to a geometry (named elliptic) where there are no parallels at all: any two pseudo-lines intersect in a pseudo-point (because any two real, honest-to-God Euclidean planes through F intersect in a line through F).


Because the first four axioms of Euclid imply that parallels exist, some of his assumptions must be violated by our pseudo-lines and pseudo-points. It turns out that these assumptions are among those that Euclid took for granted without making them explicit: to wit, the axioms of “betweenness.” It makes no sense to say that for any three pseudo-points on a pseudo-line, exactly one is between the others. (It makes as little sense as saying, back in our usual geometry, that for any three lines through F on a plane through F, exactly one line is between the two others. Indeed, each of the three lines is between the other two.)


However, by using in place of the axioms of “betweenness” some axioms of “separated-ness” of a similar ilk, one obtains a rich geometry with curious properties, such as “the sum of the angles of a triangle is always larger than 180 degrees.” (These axioms of separated-ness describe arrangements, not of three but of four points on a line.)
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Figure 1.26. Elliptic geometry in one guise: a pseudo-point is a line through F; a pseudo-line is a plane through F.
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Figure 1.27. Elliptic geometry in another guise: if we consider the intersections of lines and planes with a sphere around F, a pseudo-point is a pair of antipodal points, and a pseudo-line a great circle.









Elliptic geometry becomes more intuitive, indeed downright familiar, if we imagine, in our usual space, a sphere with center F (Figure 1.27). A pseudo-line, being a plane through F, intersects the sphere in a great circle, and a pseudo-point, being a line through F, intersects the sphere in a pair of antipodal points. In fact, we are back on a globe, the good old globe of cartographers. Down to Earth, so to speak: the well-tried spherical geometry of navigators and mapmakers is nothing else than elliptic geometry. For centuries, mathematicians had it right under their nose, but bolted at the thought that it provided them with a model of a non-Euclidean geometry. What they lacked was not geometrical knowledge, but a mindset prepared to use words such as point or line without being encumbered by intuition.


In mathematics, names are mere conventions. This is hugely different from humanities, where everyone is aware, and quite rightly so, that each word gives rise to countless associations, conscious or not, which guide our thinking. Mathematicians view such associations with suspicion.


There are not just three geometries—Euclidean, hyperbolic, elliptic—but many more. Some are more useful or interesting than others. Ordered geometry, for instance, which is based on Euclid’s first and second axioms and nothing else, is fairly rich, although it knows neither distance nor angle. Ordered geometry must seem strange to those accustomed to defining geometry as the science of measurement.


The first four axioms define absolute geometry, which subsumes both Euclidean and hyperbolic geometry. (The term is Bolyai’s.) Axioms 1, 2, and 5 apply to affine geometry, and so on. Which geometry corresponds to our real space? Physicists are still working on that question. What seems pretty clear is that it is not Euclidean. So much for Schopenhauer.


Yet, relativistic cosmology is hardly a threat for Kant’s a priori (despite claims to the contrary). The categories of thinking with which we are equipped do not need to coincide with the reality of outer space. In fact, it would be surprising if they did. Spatial intuition is more a psychological than a physical concept. Darwin is probably more relevant than Einstein to account for our “forms of intuition.”


Evolutionary epistemology, which is some fifty years old, is but a footnote on Charles Darwin’s splendid two-liner dating from 1838. We read in his Notebook M:


Plato says that our “necessary ideas” arise from the pre-existence of the soul, not from experience


And after this gentle reminder of the curious notion of anamnesis, Darwin delivers his punch line:


—for “pre-existence” read monkey.


The a priori of Kant may well be the a posteriori of evolution, honed by natural selection. Different species come equipped with different sense organs and different ways of organizing these sense data. Ants are guided by pheromones and live in a world of smells; migratory birds lay their course with the help of a magnetic sense; bats hear the echoes of their cries. What is their spatial intuition a priori? And what is their relation with “true” physical space? The only justification of their intuition is pragmatic: it helps them survive. Can we expect anything better from our own intuition?


Human spatial perceptions seem mostly conveyed by sight and touch (babies spend many months exploring how the two senses relate, fascinated with grabbing their toes). In a way, the two senses correspond to two distinct geometries. Sight is related to projective geometry, the geometry first studied by Renaissance painters in their attempts to understand perspective. In projective geometry, there are no parallels. Any two lines in a plane meet in one point, and similarly any two points belong to one line: there is a perfect duality between the concepts of point and line. The sense of touch, on the other hand, belongs to the geometry of rigid bodies and their motions, and hence to the absolute geometry corresponding to Euclid’s first four axioms.


Oddly enough, tactile sensations seem privileged, as opposed to visual ones. When dipped into water, a pencil “appears” to be bent, while “in reality,” as we used to say, it is straight. Why does the sense of touch convey reality, and the sense of sight mere appearance? Does it have to do with the fact that we descend from a long line of apes and monkeys who had indeed to coordinate eyes and hands in their breakneck capering through forest canopies? For such beings, the sense of touch must have always had the last word. To miss a solid hold would spell the end of the line—the genealogical line.


A Fly on the Ceiling


With his contempt of mathematics, Schopenhauer belongs to a minority among philosophers. Many of them have a strong bent for geometry. The most famous example is Plato, without doubt. “Let no one ignorant of mathematics enter here” was engraved at the entrance of his academy (or so the story goes). Plato was particularly fascinated by the finding that there are five regular solids (Figure 1.28): tetrahedron, hexahedron (the cube), octahedron, dodecahedron, and icosahedron. These are the so-called Platonic solids.
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Figure 1.28. The Platonic solids.









Another philosopher with a good name in geometry is Blaise Pascal. At the tender age of sixteen, he discovered a most wonderful theorem on conics. Conics are circles, ellipses, or hyperbolas. (Whatever you see, at night, if you direct a flashlight on a wall, is bounded by a conic.) Suppose that you have six points on your conic. Join them by six consecutive segments, so that the lines close up and form a six-sided polygon. Then the intersections of the three pairs of opposite sides are aligned (Figure 1.30).


This is a striking claim. Its most striking aspect is that the very simplest example seems to contradict it already. Indeed, the simplest six-sided polygon is surely the regular hexagon. The simplest conic is surely the circle. If you inscribe a regular hexagon in a circle, then the pairs of opposite sides are parallel. The intersections do not lie on a line. They do not even exist because the opposite sides are parallel!


Pascal seems all wrong—but at this point the geometry teacher explains, possibly with a smug smile, that the three points of intersection do exist, after all. They merely are infinitely far away. Hence they are aligned—namely, on the line of all points at infinity. Why, don’t you see? If not, then try and upgrade your intuition. (The first to conceive of points at infinity was astronomer Johannes Kepler. He was myopic, by the way. Can this have helped?)
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Figure 1.29. Blaise Pascal (1623–1662).
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Figure 1.30. Pascal’s theorem on conics.









Not every philosopher of the seventeenth century was a great geometer. But they all wished to be. Baruch Spinoza wrote his Ethics in the style of Euclid—more geometrico, as he termed it. Thomas Hobbes kept proposing methods for squaring the circle, all fallacious.


The most important contribution of a philosopher to geometry is doubtlessly due to René Descartes. He was reclining in his bed and cogitating (as was his wont), when he observed a fly crawling on the ceiling. He noticed that he could specify the position of the fly by two numbers—the distance of the fly to two edges of the ceiling. Thus Cartesian coordinates were born. We owe analytic geometry to a fly. How fortunate that Descartes was not myopic! (Spoilsports point out that Pierre Fermat had discovered coordinate systems independently.)






[image: image]

Figure 1.31. René Descartes (1596–1650).
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Figure 1.32. Cartesian coordinates.









Coordinate systems are as familiar to us as decimal numbers. How had it been possible to ignore them for so long? With the minimum of schooling that none of us can avoid, we think of two perpendicular axes whenever we think of a plane, and we associate to each point two numbers, its coordinates. Lines are solutions of linear equations. Conics are solutions of quadratic equations. Geometry is algebra. It is simple, and utterly magical.


The same works for three-dimensional space. Young Isaac Newton, while spending some time in his home office during the Great Plague, discovered his famous laws with nothing but an apple tree in front of his window and The Geometry of Descartes on his desk. This is where Newton found his absolute space, a space that “in its own nature, without regard to anything external, remains always similar and immovable,” a vast receptacle for God’s creation, totally empty (whereas Descartes had assumed that extension and substance always come together). This mysterious space beyond physics played a seminal role for Kant’s metaphysics. Yet to ordinary intuition, it is a coordinate system with nothing in it, nothing at all, not even a fly.
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Number


Dreaming up Numbers


Kant Contributes to the Wisdom of the World


One of Kant’s lesser-known books is his Attempt to Introduce the Concept of Negative Magnitudes into the Wisdom of the World. It dates from 1763. His “wisdom of the world” (Weltweisheit, which is sometimes ineptly translated as “philosophy”) was presumably the state of knowledge among educated Europeans at Kant’s time. The booklet is slim. The subject seems meager. On 100 pages, give or take, Kant labors to convince his readers that negative integers (the numbers –1, –2, etc.) are not as absurd as they appear at first glance:


Indeed the negative magnitudes are not negations of magnitude, as the similarity of expressions has led to suppose, but something in itself truly positive, except being opposed to something else.


This opposition, said Kant, is not logical opposition but one that is real:


A magnitude is negative with respect to another insofar as it can only be taken as being contrary, in such a way that one cancels within the other as much as is equal to it.
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Figure 2.1. Immanuel Kant (1724–1804) tackles negative quantities.









Kant gives some examples to explain this. A ship sails from Portugal to Brazil. On one day, it advances by 12 miles, but then loses 3 miles due to adverse winds, hence “minus three” miles must be added to the distance covered. Similar situations arise in trading: debt can be viewed as negative wealth. (This idea is not new: negative numbers, which first were introduced in India, were originally named “debts.”)


So far, so good. But Kant goes on to comment:


Negation, in so far as it is the consequence of a real opposition, I will call deprivation (privatio); but every negation in so far as it does not issue in this kind of repugnance, I will call a defect (defectus, absentia).


After this, he becomes harder to follow.


Today, it is impossible to understand why Kant got so worked up about negative numbers. We are familiar with them from childhood on. We learn that there exist other types of numbers, too. A college-level mathematical curriculum often starts with an official introduction to integer, rational, real, and complex numbers; it takes only a few weeks (for budding engineers, a few days). Students have normally met such numbers in high school already, and know that they are needed for all sorts of things. If there is any question left, it is why it took centuries of struggles, confusions, and doubts to come up with them.


Indeed, it seems so obvious:


Since there is no natural number x solving the equation 5 + x = 3, we introduce −2 as a token for that missing object.


Since there is no integer number x solving 5 × x = 3, we introduce the rational number [image: image] in its place.


Since there is no rational number x solving x2 = 2, we introduce the irrational real number √2.


Since there is no real number x solving x2 = −1, we introduce the complex number i.


After this, we seem to be done: who could ask for more? The new numbers (whether integer, rational, real, or complex) are conjured up to stand for solutions that we don’t have at hand. Et voilà!


Needless to say, it is not that easy. Wishful thinking is not enough. If it were, we could also dream up a number x solving 1x = 2, or two numbers x and y solving simultaneously x + y = 1 and 2x + 2y = 5. The wish principle fails on these counts. Some desires can be met, some others cannot.


As the Vienna Circle philosopher Friedrich Waismann wrote in his Introduction to Mathematical Thinking, “We certainly should not confuse wishful thinking with wish fulfilment.” Old Sigmund Freud, who lived a few blocks away from Waismann’s mathematics department, would have agreed.


Numbers, Plane and Simple


The new numbers—negative, irrational, whatever—must be anchored somewhere. This is where the notion of a number line comes in handy. It is a line with two points, marked 0 and 1, that provide a yardstick. Numbers appear as segments on that line. School kids, once they are habituated to handling rulers, usually have not much trouble in localizing numbers such as −3 or √2 = 1.41… on this line, and deciding which is larger than which. They quickly grasp how to add them—it means a mere translation along the line. However, it took mathematicians many generations to understand that the product of two such numbers, each given as a point on the number line, is also somewhere on that number line. For a long time, that product was conceived as a surface area. This turned out to be the wrong kind of visualization. The right one relies on the similarity of triangles. It shows that the product of two numbers on the number line is obtained by stretching a segment and (possibly) flipping it over. The outcome of this operation is still on the line (Figure 2.2).


Two such number lines, at right angles to each other, help to visualize complex numbers. Again, this was not obvious from the start. Less than 400 years ago, an awestruck Gottfried Wilhelm Leibniz said: “Imaginary numbers are a fine and wonderful resource of the divine intellect, almost an amphibium between being and not being.” Not at all. They are points on a plane. Multiplying two complex numbers merely means to stretch and rotate (Figure 2.3).


Visualizing numbers on a line or a plane can help, but does not offer a firm foundation for these numbers. After all, lines and planes are mere fictions, too.
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Figure 2.2. Multiplication on the real line is based on the similarity of triangles. The point P is chosen arbitrarily (not on the horizontal real line), then a triangle similar to 1Pa (with b instead of 1) is constructed, having parallel sides. It yields the point ab. (In our case, a = [image: image] and b = 2.)
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Figure 2.3. Multiplication in the complex plane also is based on the similarity of triangles. A complex number is a point in the plane. Any point different from the origin is defined by the angle and the length of the segment joining it to the origin. To multiply two (nonzero) complex numbers a and b, we add the angles and multiply the lengths. The triangles 01a and 0b(ab) are similar. (Here, a = 3 + i, b = 1 + i, and ab = 2 + 4i.)









Budding mathematicians are subjected to some rites of initiation, and one of them consists in being walked through the construction of the various kinds of numbers, starting out from the natural numbers 1, 2, 3,.… That long march is usually headed by a motto due to the mathematician Leopold Kronecker, who famously stated: “The integers are given by God, all other numbers are the work of humans.” It is curious, however, that Kronecker sees the integers as God-given. Integers include –1, –2, and so on, which are negative magnitudes! A mere century before Kronecker’s time, these numbers were not part of worldly wisdom (if one can trust Kant) and the object of great puzzlement.


Integers are introduced as pairs of natural numbers (a, b). These pairs show up as regularly spaced lattice points on the plane (Figure 2.4). What the construction intends to capture with such a pair is the difference a − b, in other words, the number x that solves a = b + x. The number −3 corresponds to the difference 1 − 4 but also to 2 − 5, 3 − 6, and so on. Therefore, two such pairs (a, b) and (c, d) must be identified, or considered as equivalent, if a − b is the same as c − d, which means if a + d = b + c. With this convention, each integer corresponds not just to one pair of natural numbers, but to a whole set of such pairs (namely all lattice points on a parallel to the 45-degree line).
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Figure 2.4. Integers are derived from pairs of natural numbers. The pairs (2, 3) and (1, 2) correspond to the same integer –1, since 2 – 3 = 1 – 2. In the same vein, all grid points lying on the same 45-degree line denote the same integer.
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Figure 2.5. Fractions are also derived from pairs of natural numbers. The pairs (4, 2) and (2, 1) correspond to the same fraction, since [image: image]. All grid points on the same half-ray through 0 (except the horizontal) denote the same rational number.









In quite the same way, fractions [image: image] correspond to pairs of integers (a, b), with b ≠ 0 (Figure 2.5). They are intended to capture the solutions of a = bx. Again, this means that the pairs (a, b) and (c, d) denote the same fraction whenever ad = bc. Essentially, this is the same procedure as before. Once more, every rational number corresponds to a set of pairs (this time of integers). This set consists of the lattice points on lines through the origin (0, 0) (the horizontal line being excluded because division by 0 is out).


As to real numbers, they can be introduced by “cuts” separating the lattice points. For this, the rational numbers must be ordered by size. The details are both tedious and obvious. Each line through (0, 0) defines a half-ray on the upper half on the plane. One rational [image: image] is smaller than another [image: image] if a clock hand attached at (0, 0) and moving clockwise crosses the half-ray through (a, b) before it reaches the half-ray through (c, d).


At each moment of time, the hand of the clock separates the rational numbers into two parts, those on its left and those on its right. These two parts form what is known as a Dedekind cut. If a rational number is in the left part, all smaller rational numbers are there, too; if it is on the right side, all larger rational numbers are there, as well.


A real number, then, is defined as being such a cut—essentially, the cut is given by the position of this hypothetical clock hand. If a rational number happens to lie on the half-ray corresponding to the clock hand, it is identified with that cut, or in other words, with that real number. For instance, the set of all rational numbers left of [image: image] is the real number [image: image].


If no rational number is on the half-ray, the cut defines an irrational number. For instance, the set of all rational numbers that are negative or have a square that is smaller than 2 is such a cut, namely the real number √2. Rational and irrational numbers together are the real numbers—they fill the full number line.


Complex numbers, as we know, are defined as pairs of real numbers. This step is by far the easiest in the build-up. The complex number a + ib is the point (a, b) with the real numbers a and b as coordinates.


At each stage, defining the new class of numbers is not enough. Rules for addition and multiplication have to be set up, and it must be shown that each number system can be embedded into the next one without leading into conflict. It is a time-consuming task, and few students are likely, after such a chore, to ever again ask “what is a number?”


Needless to say, mathematicians who deal with complex numbers are not permanently aware of the fact that they are dealing with pairs of real numbers, each of them being a pair of sets of rational numbers, which themselves are pairs of integers, which in turn are pairs of natural numbers. To start reflecting on it can easily lead to befuddlement, similar to figuring out, in one’s head, the motions of tying a shoelace.


The working mathematicians just do what they are accustomed to doing. A philosopher, however, will try to dig deeper and wants to become aware of some of the bemusements experienced by children (or by readers of Kant) when faced with the odd set of customs taken for granted with numbers.


Much Ado About Less Than Nothing


Let us begin with the step leading from natural numbers to integers. Why should we accept the rule that “zero times zero equals zero”? The expression “two times three” can be used to tell you: take two times three apples. Accordingly, “take zero times three apples!” means that you take no times three apples. You take nothing. So far, so good: the rule 0 × 3 = 0 looks plausible enough. Yet the command “take zero times zero apples” should then mean to take no times no apple. No times no apples—wouldn’t this imply that you are to take some apples after all?


And how can “minus three” be smaller than zero? Zero means Nothing, so how can anything be smaller than Nothing?


And why does minus times minus yield plus? We may have learned at school the helpful analogy: “The enemy of my enemy is my friend.” But arithmetic is not based on Machiavelli, and hence the simile is somewhat extraneous. If we view the negative numbers as mirror images of the positive numbers, we can interpret multiplication with −1 as flipping around the point 0, and thus (−1) × (−1) as flipping twice, which leads back to the start and therefore yields 1. Explanations of this sort may serve to quiet the skepticism of children. Mathematicians, however, will tell you that the “true” reason for “minus times minus is plus” is that we want to keep the same rules as with natural numbers.


Remember that every integer can be viewed as the difference of two natural numbers. If a, b, c, and d are natural numbers with b > a and c > d, then the rule


(b − a) × (c − d) = b × c + c × d − (a × c + b × d)


is quite obvious, as can be seen from a simple sketch (Figure 2.6).






[image: image]

Figure 2.6. This figure shows that (8 − 3) × (5 − 2) = (8 × 5) − (3 × 5) − (2 × 8) + (2 × 3). We start with 5 × 8 (a rectangle of five times eight dots). To obtain (5 − 2) × 8, we take off the two upper rows. To obtain (5 − 2) × (8 − 3), we delete the three rightmost columns. However, we then have eliminated the top-right rectangle twice, which means that we have to return the corresponding 2 × 3.











Since −1 is, by definition, 1 − 2, the product (−1) × (−1) is nothing else than the product (1 − 2) × (1 − 2). If we wish to preserve the arithmetic rule above, for all natural numbers a, b, c, and d, no matter which are larger than which, then (1 − 2) × (1 − 2) must be equal to 1 + 4 − (2 + 2), which yields 1. Thus (−1) × (−1) = 1. A similar reasoning underpins 0 × 0 = 0.




As Gauss said in a letter to his ex-student Friedrich Wilhelm Bessel (who had turned into an eminent astronomer):


One should never forget that the functions, like all mathematical constructions, are only our own creations, and that when the definition with which one begins ceases to make sense, we should not ask “what is it?” but “what is it convenient to assume in order that it remain significant?” Take for instance the product of minus times minus.


Consider another example: a2 is defined as a × a and more generally an as a × a ×…× a, the product of n copies of the number a. This holds, in any case, if n is a natural number. But how should one define a0? What can it mean to take the product of 0 copies of a? What becomes of the number a when it is multiplied no times with itself? This question could lead to an abyss of deep thinking. Instead, mathematicians remember the pretty formula am+n = am an, which obviously holds for natural numbers m and n, and look for what happens if m = 0. In that case the formula yields an = an+0 = an a0, and it becomes immediately obvious that a0 = 1 “is convenient.” One proceeds in a similar way to define an for negative integers n, or if n is a rational number. Rather than trying to fathom the true essence of “raising to the power n,” one attempts to preserve the old familiar rules of computation. This sails under the flag of the permanence principle.






[image: image]

Figure 2.7. Carl Friedrich Gauss (1777–1855) looks for what is convenient.









Well before Immanuel Kant found it necessary to write his little booklet on negative magnitudes, Leonhard Euler had published his famous formula eiπ = −1. It deals with the ominous number e = 2.71…, whose logarithm is 1. This number is raised to a power—but what a power! There would be no problem with e2. The power e3.14 is slightly harder to understand, but since 3.14 is a rational number, the permanence principle tells us what it should be. It requires some added continuity arguments to make sense of eπ, since π is irrational. In Euler’s formula, however, something is claimed about eiπ, where i is the imaginary unit, once considered as a hocus-pocus residing “halfway between being and non-being.” And what Euler found out about this eiπ, by means of some magical manipulations, was that this number is none other than our friend −1. How strange that after such a tour de force, the so-called “wisdom of the world” invoked by Immanuel Kant exercised itself, not on the left-hand side of the formula eiπ = −1, but on its right-hand side, the negative magnitude −1.




Nothing shows better the deep split that had opened up in the century before Kant’s little book. Descartes, Leibniz, or Pascal were as much at ease in mathematics as in philosophy. By Kant’s time, a philosopher could still be well versed in mathematics (this holds particularly for Kant, whose academic career started officially with a professorship for mathematics at the University of Königsberg). Nevertheless, some philosophical minds were apt to exclaim, “hold it, nothing can be smaller than nothing!”


“Numbers are used for counting: one, two, three apples. You will never see a fruit bowl with minus three apples. Numbers are used for measuring: one, two, three feet. But nothing in the universe measures minus three feet!” True enough, but in addition to counting and measuring, numbers also serve for computing. As the centuries flowed by, the rules for computing took precedence.


Drowned by Numbers


Fractions are easier to grasp than negative magnitudes: half an apple, two and a half loaves of bread, three quarts of wine. Rational numbers were used in every higher civilization, even if sometimes under restrictions that appear odd today. In old Egypt, for instance, only unit fractions such as [image: image] were used, as well as sums of unit fractions—but with the injunction that no unit fraction is permitted to occur twice. Thus, [image: image] is given not as [image: image] + [image: image], but as [image: image] + [image: image]. In the net effect, all positive rational numbers can be obtained in this way, admittedly in a curiously roundabout way.


As long as one uses only the basic operations—addition, multiplication, subtraction, and division—one can compute with rational numbers much as one likes and always obtain rational numbers. Except for one caveat: it is forbidden to divide by 0. This is vexing, like any command restricting our freedom: don’t eat the fruits from this one tree in paradise; don’t open the door of this one room in Bluebeard’s castle. Beginners often suggest that we should introduce one extra number—say, the number with the sign ∞—by agreeing that 0 × ∞ = 1. Then, [image: image] = ∞ and division by 0 is feasible.


Unfortunately, this does not work. It clashes with a rule with which we are accustomed: the distributive law, which states that (a + b) × c = a × c + b × c. Indeed, 1 = 0 × ∞ would imply that 1 = (0 + 0) × ∞, since 0 + 0 = 0. By the distributive law, it would follow that 1 = 0 × ∞ + 0 × ∞ and thus 1 = 1 + 1, a contradiction. One could, of course, dispense with the distributive law, at least for this one new number ∞, but it turns out to be too high a price to pay. “It is not convenient,” as Gauss would say. Of course, this does not imply that there is no infinity. It only means that a number ∞ with the property 0 × ∞ = 1 will not be admitted into the society of rational numbers. The club rules would suffer from such an admission.


Rational numbers have a strange property that integers do not have. Though they can be ordered by size, they know no “next largest” number. Between any two rational numbers, there are others—infinitely many others, in fact. Rational numbers are dense: between any two points on the number line, one finds rational numbers. They cover the number line, leaving out not the tiniest stretch. At first glance this makes them perfectly suited for measuring things. Alas, no: rational numbers cover the line, but they don’t fill it.


For Pythagoras and his disciples, the first thinkers’ society of which we know, the news that the rationals are incomplete came like a bolt out of the blue. Not every length is a rational number. The length of the diagonal of the unit square isn’t, for instance. The unfortunate club member Hippasus, who had discovered (or merely disclosed to outsiders) that the diagonal of a square is not commensurable with its side, was thrown into the sea and held below until he stopped making waves. At least, this is what legend reports. Woe to all whistleblowers! But the truth could not be drowned.


The proof that √2 is irrational has been part of the canon for thousands of years, but must have seemed very odd, initially, being probably the first demonstration based on the indirect method, a method that has some resemblance with irony: it adopts a viewpoint and stresses it until it leads to absurd consequences. In the case at hand, one starts out by assuming that √2 is rational, draws some consequences, and arrives at a contradiction. Since contradictions cannot be, the number cannot be rational, as was to be proved. (More precisely, let us assume that √2 = [image: image], with natural numbers a and b. We can posit that at least one of the two numbers is odd: otherwise, we would just divide both a and b by 2 as often as needed. Squaring a = √2b, we obtain a2 = 2b2. Hence, a is even, that is, a = 2c for some natural number c. This yields (2c)2 = 2(2c2) = 2b2, and so b has to be even, too. Hence, a and b are both even, which we just had precluded: a contradiction.)


By the time of Plato, the irrationality of √2 was no longer a scandal. In the dialogue Theaetetus, the budding mathematics student with that name mentions almost in passing that he and his friends had just worked through the proof that the square roots of all numbers between 3 and 17 are irrational. (The fact that the square roots of 4, 9, and 16 are not irrational was left unmentioned, as was the irrationality of the square root of 2—all this was too obvious to point out.)


In his Republic, Plato reverts to the irrationality of √2 with strong words: “He is unworthy of the name of man, who is ignorant of the fact that the diagonal of a square is incommensurable with its side.” By then, the shocking secret of Hippasus was common knowledge. “Trusty Helens, this is one of the things of which one can say: it is a shame if one does not know it, and if you know it, it gives you no particular merit.”


Is it still possible, today, to feel the original sense of wonder about irrational numbers? The irrationality of √2 means that a half-ray from (0, 0) through (√2, 1) never meets any lattice point (x, y) with x and y integers. There are infinitely many lattice points in the plane, and yet some rays miss them all. We may sail straight into infinity and never hit any of them.


There exist sequences of nested intervals, each containing infinitely many rational numbers, yet such that no rational number lies in all intervals (Figure 2.8). It is even stranger to consider sectors between two half-rays issued from the origin (Figure 2.9). Each such sector contains infinitely many lattice points. There exist nested sequences of such sectors (each containing all the following ones) that have in common a ray through infinitely many lattice points. Yet, there also exist nested sequences of such sectors that have the property that no lattice point belongs to all of them. This latter case looks like a vanishing trick: each sector contains infinitely many fractions, and yet no fraction is contained in all the sectors. You close a pincer, and find out that you grasp… nothing.






[image: image]

Figure 2.8. There exist sequences of nested intervals with rational endpoints having no rational point in common.















[image: image]

Figure 2.9. There are pincers of half-rays through lattice points that grasp no lattice point.









The rays through the origin of the plane “are” the reals. The rays through a lattice point “are” the rational numbers. The rays that dodge all lattice points “are” the irrational numbers. And rather than ponder what these “are” mean, as philosophers may be tempted to do, mathematicians start defining the rules of arithmetic (plus, times, lesser than, etc.) such that everything fits smoothly.


End of the line, it seems. Indeed, in a certain, mathematically precise sense, the reals are “complete.” The number line holds no lacunas left to fill. But the word complete is misleading. The story is far from over.


A Hold on the Reals


All the artful constructions of real numbers cannot alter the two main facts we know from school: they are meant to correspond to the points on the line, and they are given by decimal expansions. A number such as √2 is 1.41421.… But how do we really get our hands on such numbers?


For the Greek geometers, the answer seemed clear: we can grasp a number if we can construct it, with ruler and compass. This is the ancients’ way of getting hold of it. Indeed, it is easy to construct √2. Even philosophers can do it, since they just have to look it up in Plato.


More generally, it is easy to construct the square root of a, for any given length a (Figure 2.10). The first step is to construct, on a line, the segments AB and BC of length a and 1, respectively. The next step is to draw a circle with diameter AC. The third and last step is to draw the perpendicular to the line through the point B. It intersects the circle in a point D. All this can be done with ruler and compass. The triangle ADC is a right triangle. Let x be the length of DB. From the similarity of the right triangles ABD and DBC follows that [image: image] = [image: image], so that x2 = a. Thus, x is the square root of a.






[image: image]

Figure 2.10. Constructing x = √a by ruler and compass.









How should one construct a cube root via ruler and compass? [image: image] resisted all efforts. Yet, it is needed for doubling the volume of a cube. This was one of the top challenges of Greek geometry. Two others were to construct the cosine of an angle of 20 degrees and to construct the number π. The ancients handed these problems, unsolved, to posterity.






[image: image]

Figure 2.11. Archimedes proposed to trisect the angle POQ.









The problem of constructing the cosine arises from that of trisecting an angle. Some angles, such as the right angle, 90 degrees, are easy to trisect. Others, such as the angle of an equilateral triangle, 60 degrees, are not. How does one construct an angle of 20 degrees, or (what amounts to the same) its cosine?


Archimedes proposed a clever solution (Figure 2.11). If O is the vertex of the given angle, draw a circle of arbitrary radius around O. It intersects the angle in points P and Q. Mark two points A and B on the ruler, such that their distance is equal to the radius of the circle, and then move the ruler, keeping all the while the mark A on the line through OP, and the mark B on the circle. For some position, the point Q will be on the ruler, too. In that position, the angle x between the ruler and the line through OP will be half as large as the angle AQO. Can you see it? The two triangles ABO and BOQ are isosceles. Hence, x is one third as large as the initial angle with vertex O. The trisection is solved. Archimedes, however, has violated the rules, by using not just a ruler, but marks on the ruler—namely, the points A and B. Thus, the trisection remains unsolved.


Here is another attempt: Because it is easy to bisect an angle with ruler and compass, it is just as easy to construct [image: image] of that angle, and [image: image] of that in turn, which is [image: image] of the original angle, and then [image: image], and so on. Add all these angles. Since


[image: image]


this yields one third of the original angle. You have trisected the angle with ruler and compass. But Greek geometers would never accept that: they allowed only a finite number of steps, and shunned sums with infinitely many terms. They merely forgot to mention it, because they took it for granted.






[image: image]

Figure 2.12. The circle squares itself by doing a half-roll. The square has the same area (although it looks larger).









The third problem is squaring the circle, which means to construct, for a given circle of radius r, the square with the same area, namely πr2. Again, there exist “solutions” that seem almost to work by themselves. For instance (Figure 2.12), place the circle on a point A of some arbitrary line, and let it roll along that line for half a circumference, thus covering distance πr. The circle, after this half-turn, will touch the line at some point B, and the length of AB is πr. Draw the perpendicular to the line through point B, and construct a circle through A having radius πr + r, centered on the line. The perpendicular intersects the circle in a point C. The square with side BC has area πr2, as did the original circle. The circle has squared itself, in a way. But alas, rolling a circle along a line is not an approved construction step.




After Descartes had introduced his coordinates, it became clear that the Greek problems amounted to solving linear and quadratic equations. The formulas for the solutions of such equations involve five operations: addition, subtraction, multiplication, division, and taking square roots. Only those numbers are constructible that can be reached by these operations, possibly by means of several intermediate steps, starting out from a given unit length. This condition seriously restricts the set of constructible numbers: they have to be algebraic—in other words, the roots of polynomials with rational coefficients—and moreover, these polynomials have to obey certain algebraic properties.


In the year 1837, the young French mathematician Pierre Wantzel proved that the polynomial x3 − 2 does not satisfy the required algebraic property. Hence, its root [image: image] is not a constructible number, and the Delian problem is unsolvable. Wantzel went on to prove that trisecting certain angles is also unsolvable. Few people took note of his work, and Wantzel died soon after. Mathematicians decided eventually that the lion’s share of the credit was due to Carl Friedrich Gauss, anyway.


As to squaring the circle, this required an additional effort. Eventually, the German mathematician Ferdinand Lindemann proved that the number π is transcendental, which means that it is not algebraic. And thus, in the nineteenth century, all three famous problems were shown to be unsolvable.


Counterfactuals in history are always of dubious value, particularly so in the history of science. It seems certain, however, that if the three construction problems had been solvable, they would have been of minor importance—an extra handful of geometric constructions, among thousands. Showing that the problems could not be solved yielded much more—a vast algebraic theory dealing with so-called field extensions. The pedantry of Greek geometers bore rich fruits.


Less than a hundred years ago, an analogous but more modern concern with getting a handle on numbers led to the notion of computable numbers. They were defined by Alan Turing, the genius of the “hands-on” approach, as those real numbers whose decimal expansions are calculable by finite means, or more precisely those that can be computed to any arbitrary precision by a systematic procedure. What is a systematic procedure? Answer: Whatever can be done by a computer. This seems a silly way of defining computable, and needs some explanation, which will be given in Chapter 5.


The computable numbers include all rational and constructible numbers, all algebraic numbers, and also many transcendental numbers, such as π. All the numbers that so vexed the Greek geometers are computable. The set of computable numbers is closed in the sense that if you add, subtract, multiply, and divide any two of them (avoiding division by zero), then you always get computable numbers. The same, by the way, holds for the constructible numbers. Both these sets, however, are only a small part of the real numbers. In a sense that can be made precise, if you pick a real number at random, it is highly unlikely to be computable.


Both concepts of constructible and computable numbers rely on a convention: it is curious that in both cases, mathematicians reached unanimity without much debate. There is nothing God-given about compass and ruler. Why exclude, for instance, the use of threads of a given length? Ancient geometers used them to construct ellipses, for instance, but felt that they were overstepping the bounds of propriety. In a similar vein, one can conceive machines more powerful than our digital computers, having for instance a continuous set of states; one even can build them, and use them for approximating numbers. Nevertheless, such “analogous” computers were not considered as serious rivals of the digital computer conceived by Alan Turing. Numbers are abstract entities, yet mathematical self-discipline restricted the concrete tools to construct or to compute them.


Naturalizing Amphibians


During the Renaissance, the imaginary unit perked up: a number √−1 whose square is −1. Fittingly enough, it was discovered by two notorious fortune hunters, Niccolò Tartaglia and Girolamo Cardano. A hundred years later, the faked-up number received its name from Descartes: it was called i as in imaginary. Descartes claimed that we can imagine as many solutions to a polynomial equation as its degree indicates: two solutions for x2 + ax + b = 0, three for x3 + ax2 + bx + c = 0, and so on. The trick is to accept that some of these solutions are not real numbers. This was a breathtaking leap of faith.


Descartes guessed the true miracle behind the mysterious magnitude i. Indeed, at first glance, the solution of x2 = −1 seems not much different from that of x2 = 2. A new object is introduced, a kind of placeholder for what is missing. One might at first suspect déjà vu.


There is in fact a world of difference. For the equations x2 = 3, x2 = 5, etc., the square root of 2 is of no help at all. In each case a new irrational number has to be introduced, namely √3, √5, etc. By contrast, this one ominous number i proves the key to solving all polynomial equations. All such solutions are sums of the form a + bi, with a and b plain real numbers. Just this one i is needed. It does the job for all polynomials. The first truly convincing proof of this fundamental theorem of algebra was due to Gauss. Before him, generations of mathematicians had vainly tried to make sense of Descartes’s divination, but failed to come up with a satisfying demonstration.


It is about here that the view that the new numbers are inventions of the human mind begins to look preposterous. The imaginary unit does things nobody could ever have dreamed of. Not only does it provide the solutions to all polynomial equations. Not only does it open new worlds. It transfigures the old world!


And yet complex numbers a + bi are nothing but points (a, b) in the familiar Euclidean plane, with a and b real numbers; and the strange-looking multiplication is nothing but a dilation in the plane, followed by a rotation. This was realized, almost at the same time, by Gauss and (independently of each other) by two little-known dilettantes, almost hobby mathematicians: Jean-Robert Argand and Caspar Wessel.


As Gauss commented, the complex numbers (this name is due to him) had previously not enjoyed citizenship rights, but had been merely tolerated. “They had looked more like a content-free play with symbols, devoid of meaningful substance.” Now what has seemed to Leibniz to be “amphibians between being and not-being” had been naturalized, and endowed with a passport. In a sense, what Gauss had brought along was confidence. Charisma plays an essential role in the history of mathematics, no doubt.


As Gauss wrote:


If one formerly contemplated this subject from a false point of view and therefore found a mysterious darkness, this is in large part attributable to clumsy terminology. Had one not called 1, −1, √−1 positive, negative, or imaginary (or even impossible) units, but instead, for example, direct, inverse, or lateral units, then there could scarcely have been talk of such darkness.


This is almost language philosophy.


Admittedly, something had been given up when extending the real numbers to complex numbers (and thus when passing from the number line to the complex plane). Indeed, reals are ordered by size. By contrast, complex numbers aren’t. More precisely, one can order complex numbers in many ways, but not without getting into trouble with the usual rules of arithmetic. These rules imply that squares cannot be negative—but the square of √−1 is.


Ending on an Octave


If real numbers are points on a line, and complex numbers points on a plane, the next question is obviously: which numbers belong to three-dimensional space? Its points have three coordinates, and are thus triplets of real numbers. How to add them is obvious. Yet how should we multiply triplets in a way that makes sense?


For reasons that became clear only much later, all attempts failed. It simply would not work. But after years of effort, William Hamilton succeeded, to everyone’s surprise (including his own), in multiplying quadruples. He called them quaternions. The only fly in the ointment was that commutativity had to go: it is no longer true, in general, that a × b = b × a. Later another extension was found, from quaternions to octaves (tuples of eight real numbers). Again, it came at some cost: associativity fell by the wayside. With octaves, it is no longer true, in general, that (a × b) × c = a × (b × c).


Today we know that if we insist on dividing numbers as we are wont to do, these numbers must correspond to points in one-, two-, four-, or eight-dimensional space. Dimensions 20, 21, 22, 23, and nothing else. It is like with the five Platonic solids: with such a result, the game is over. But there are many other number games left.


If mathematicians are asked “what is a number?” they are likely to reply (as do many philosophers) that “what is?” questions make little sense. If questioners persist, nevertheless, then they will probably receive as answer: a number is an element of a number system. There are many such systems, catalogued as rings, division algebras, ordered fields, and so on. A number by itself is nothing. It is much the same if you ask “what is a vector?” You will be told: it is an element of a vector space. “What is a symmetry?” An element of a symmetry group. It is the structure that counts.


This kind of answer is possibly frustrating, but it agrees with Ludwig Wittgenstein’s view that the meaning of a word is given by its use. We use numbers for various things, and adapt them when the need arises. There need not even be a single concept “number.” Number systems, said Wittgenstein, are like threads that make up a rope. The rope can have traction even if none of the threads reach all the way from one end to the other.
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