





  

    [image: image]


  














A STRANGE WILDERNESS














[image: image]














[image: image]














[image: image]


STERLING and the distinctive Sterling logo are registered trademarks of Sterling Publishing Co., Inc.


© 2011 by Amir D. Aczel


All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher.


ISBN 978-1-4027-8584-9 (hardcover)
ISBN 978-1-4027-9085-0 (ebook)


Book design by Level C
Please see photo credits for image copyright information


For information about custom editions, special sales, and premium and corporate purchases, please contact Sterling Special Sales at 800-805-5489 or specialsales@sterlingpublishing.com.


2  4  6  8  10  9  7  5  3  1


www.sterlingpublishing.com


Frontispiece: The wilderness of the Pyrenees lies just beyond
the Aralar mountain range in northern Spain.
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Les fleuves lavent l’Histoire.


—J. M. G. LE CLÉZIO 


Mathematics is not a careful march down a well-
cleared highway, but a journey into a strange
wilderness, where the explorers often get lost.


—W. S. ANGLIN 














CONTENTS

















	   

	   

	Preface






	   

	   

	Introduction






	   

	   

	   






	PART I

	

	HELLENIC FOUNDATIONS






	ONE 

	

	God Is Number






	TWO 

	

	Plato’s Academy






	THREE 

	

	Alexandria








	   

	   

	   








	PART II

	

	THE EAST






	FOUR 

	

	The House of Wisdom






	FIVE 

	

	Medieval China








	   

	   

	   








	PART III

	

	RENAISSANCE MATHEMATICS






	SIX 

	

	Italian Shenanigans






	SEVEN 

	

	Heresy








	   

	   

	   








	PART IV

	

	TO CALCULUS AND BEYOND






	EIGHT 

	

	The Gentleman Soldier






	NINE 

	

	The Greatest Rivalry






	TEN 

	

	Geniuses of the Enlightenment








	   

	   

	   








	PART V

	

	UPHEAVAL IN FRANCE






	ELEVEN 

	

	Napoleon’s Mathematicians






	TWELVE 

	

	Duel at Dawn








	   

	   

	   








	PART VI

	

	TOWARD A NEW MATHEMATICS






	THIRTEEN 

	

	Infinity and Mental Illness






	FOURTEEN 

	

	Unlikely Heroes






	FIFTEEN 

	

	The Strangest Wilderness








	   

	   

	   








	

	

	Notes






	

	

	Bibliography






	

	

	Photo Credits






	

	

	Index





















PREFACE


I fell in love with the history of mathematics and the life stories of mathematicians when I took my first “pure math” course as a mathematics undergraduate at the University of California at Berkeley in the mid-1970s. My professor for a course in real analysis (the theoretical basis of calculus) was the noted French mathematician Michel Loève. A Polish Jew who by chance was born in Jaffa, in Turkish Palestine, he then moved to France, survived the dreaded concentration camp at Drancy (just outside Paris), and after the war immigrated to America. Loève was a walking encyclopedia of the rich intellectual life of mathematicians living in Paris in the period between the two world wars. He peppered his difficult lectures—which he delivered in abstract mathematical spaces, rarely deigning to “dirty our hands,” as he put it, “in the real line,” where all the applications were—with fascinating stories about the lives of famous mathematicians he had known and worked with. “We were all sitting at a café on the Boulevard Saint-Michel on the Left Bank, overlooking the beautiful Luxembourg Gardens, on a sunny day, when Paul Lévy brought up the mysterious conjecture by …” was how he would start a new topic.


So besides real analysis, Loève also taught us that mathematicians can live exciting lives, that they like to congregate in cafés—just as Sartre, de Beauvoir, and Hemingway did—and that they form an integral part of the general culture, or, rather, a fascinating subculture with its own peculiarities and idiosyncrasies. My interest was so piqued that later, also at Berkeley, I took a course dedicated to the history of mathematics, taught by the renowned logician Jack Silver. There I learned that the lives of mathematicians can at times be downright weird: they can get absurdly involved in grandiose political intrigue, become delusional, falsify documents, steal from each other, lead daring military strikes, carry on affairs, die in duels, and even perform the ultimate trick: disappearing completely off the face of the earth so that no one could ever find them. Silver himself was a bit of a strange mathematician: he dressed carelessly, was always disheveled, and when he finished what he wanted to say, he simply turned around and walked out of the classroom—never a “Good-bye,” “See you next time,” “I will be in my office from two to four,” or any indication at all that class was over. We all sat there, looking at each other, until one intrepid soul or another would conclude that class was over and lead the way out. Presumably, Silver simply walked over to his office to continue working on his major theorem in the foundations of mathematics, Silver’s theorem, which he proved that very same year.


As my mathematical career matured, I began to realize that behavior that may seem unusual elsewhere in society is often taken as “normal” in mathematical circles, where no one dares complain about it. My undergraduate adviser at Berkeley was the well-known topologist John Kelley. I loved Kelley so much as a professor that I ended up taking most of the courses he offered. But although he had a gift for making everything seem easier than it was, other things about his classes were hard to take—today, he would not be allowed to do many of the things he did in class. Kelley was never without a lit pipe in his mouth, and his syllabus read: “I smoke constantly in class, so if you worry about getting nicotine poisoning, don’t take my course.” He often brought into class his two huge dogs (apparently immune to nicotine), and they would plunk themselves down in front of him, blocking the aisle; when they scratched themselves, it was like a drumroll or a minor earthquake. Kelley’s red or pink shirt was usually covered with political buttons, and he would admonish us to vote for his candidates or get involved in the political issues he favored.


After graduating, earning a doctorate some years later, and spending a dozen years teaching and doing research in mathematics and statistics as a professor, I returned to my early passion for the history of mathematics. And over the last decade and a half I have authored numerous popular books about the history of mathematics and the lives of mathematicians, from Fermat and Descartes to Cantor, Grothendieck, and the mysterious Bourbaki group. What I tried to do with all these books was to show how mathematics is entwined with the general culture, to point to what makes it unique and hence different from other disciplines, to expose how mathematicians think, and to showcase the kinds of exciting, interesting, and adventurous lives some mathematicians lead. I was greatly encouraged in this pursuit when Richard Bernstein, then a book critic at The New York Times, described in a book review the Parisian café scene presented in my 1996 book, Fermat’s Last Theorem: “The scene … reminds us that the world has many worlds, with the priestly cult of mathematicians, so mystifying and inaccessible to most people, among the more esoterically interesting of them.”


The realization of just how interesting the lives of mathematicians can be then caught the attention of a number of writers of both nonfiction and fiction. My friend Simon Winchester, author of superb works of nonfiction and acclaimed biographies, approached me at an international conference in Vancouver in 2001 and, in front of a crowd of three hundred people, suggested that we cowrite a biography of the nineteenth-century French genius Évariste Galois, who derived a remarkable theory in algebra and then died in a senseless duel at age twenty. The audience clapped enthusiastically as we shook hands in agreement. That book hasn’t become a reality—at least not yet—but I am immensely grateful to Simon for encouraging my research into the life of Galois, which is discussed at length in one chapter in this present book.


Famous novelists, too, were attracted to the rich content and texture of the lives of major mathematicians. When my book Descartes’s Secret Notebook appeared in Italian translation in 2006, Umberto Eco devoted his weekly column in the Italian news magazine L’Espresso to a thorough review of it and raised a number of interesting issues. After I responded in a letter, Eco invited me to visit him in Milan to discuss the life of Descartes. I will never forget the experience of standing with him in his thirty-thousand-volume library, which takes up much of the space of his apartment, browsing through original seventeenth-century manuscripts about the life of Descartes while sipping Calvados. I thank Umberto warmly for sharing with me his extensive knowledge of Descartes and his work, and for his enduring friendship. Descartes is the subject of one of the chapters in this book.


Three years after my book The Mystery of the Aleph, about the life of the tormented German mathematician Georg Cantor and his stunning discovery that there are various levels of infinity, was published in 2000, the novelist David Foster Wallace wrote his own account of the life of this great mathematician. Cantor often worked in a frenzied state and suffered frequent periods of depression. These dark moods, in fact, may not have been too different from Wallace’s own bouts of depression, which reportedly may have been the cause of his tragic suicide. But in an interview for the Boston Globe in 2003, Wallace dismissed any connection between genius and madness and distanced himself from Cantor’s mental problems, saying that he did not want to follow my approach of looking jointly at Cantor’s mathematics and psychology; his book explored other directions, he said. But when Cantor died in 1918 in an asylum in Halle, Germany, he had been working on a mathematically impossible problem called the continuum hypothesis. His psychology, in fact, could not be separated from his mathematical work: late in life, Cantor made the continuum hypothesis a matter of personal dogma, “decreed by God.” Some years ago, I visited the mental health facility in which Cantor spent years trying to recover, and where he ultimately died. A century later, the building is still a functioning hospital in an economically depressed part of Germany. I stood in the very room in which Cantor had worked on mathematics. I saw the claw-footed bathtub in which he was forced to immerse himself for hours as “treatment” for his depression, and I read the hospital’s records of his repeated admissions and discharges from the late 1800s to 1918, when he died of starvation inside this facility. The life of Georg Cantor is covered in another chapter in this book, and I am grateful to the late David Foster Wallace for highlighting the question of the relation between psychology and our attempts to tackle the immense complexity of the infinite.


Sometime after my book The Artist and the Mathematician, about the lives of the mathematicians André Weil and Alexander Grothendieck, as well as the secret mathematical group called Bourbaki, was published in 2006, Sylvie Weil, André’s daughter, published a poignant memoir about her life with her famous father and aunt. Her aunt was the philosopher Simone Weil, who often accompanied her brother to mathematical conferences of the Bourbaki group and became affectionately known as Bourbaki’s “mother.” Visiting Boston in 2011, Sylvie graciously shared with me many of the details I had not known about her father’s life, and I am indebted to her for her kindness. André Weil is discussed in the last chapter of this book.


This chapter, fittingly entitled “The Strangest Wilderness,” also deals with the life of Alexander Grothendieck—the mathematician who managed to completely disappear from our world, hiding somewhere in the forests or foothills of the high Pyrenees, which separate France from Spain. I am grateful to Pierre Cartier, a leading French mathematician and member of the Bourbaki group, for sharing with me his knowledge of the life of Grothendieck as well as fascinating stories about the founding and collective work of Bourbaki. Two mathematicians working in Paris, who insist on anonymity, also provided details about the life of Grothendieck.


Researching this book has been one of the greatest adventures of my life as an author. It took me to faraway corners of the world, from the island of Samos, where Pythagoras was born, to southern Italy, to Beijing and Delhi, and to countless locations in Europe—all in search of intricate details of the lives of our greatest mathematicians. I thank the mathematicians Marina Ville and Scott Petrack, my good friends, for their help and for discussing with me mathematics and the life stories of some of the mathematicians described in this book. I am indebted to Barry Mazur of Harvard, Akihiro Kanamori of Boston University, Goro Shimura of Princeton, Ken Ribet of Berkeley, and Saharon Shelah of Hebrew University for fascinating details of mathematics and its history.


My warm thanks go to my friend and agent, Albert Zuckerman, president of Writers House, for his encouragement, direction, and support throughout the process of writing this book. I am immensely grateful to my editors at Sterling, Michael Fragnito and Melanie Madden, who first suggested that I write a book about the lives of the great mathematicians. Melanie’s superb editing of the manuscript in all its stages turned a rough draft into a complete book. She possessed the right vision of how to organize the complex material into parts, chapters, and sidebars, making the stories come alive and their heroes shine. Melanie wisely made me see what needed further explanation or expansion and what could well be omitted, and I am deeply indebted to her for her great insight and talent. I am also grateful to Barbara Clark for her excellent copyediting, and to Joseph Rutt of Level C for his beautiful design.


Finally, I thank my wife, Debra, and my daughter, Miriam, for their enthusiasm for this project and for their many helpful suggestions and ideas. I hope the reader will enjoy the life stories of the great men and women that are the subject of this book: history’s greatest mathematicians.
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The Greek philosopher Thales proposed the first known mathematical theorem in history during his visit to the Pyramids of Giza in Egypt in the seventh century BCE. 





INTRODUCTION


Our story begins around five thousand years ago in the civilizations of Egypt and Mesopotamia. These two ancient centers of human habitation are called potamic—from the Greek word for “river” (potamos)—because they developed in major river valleys: the great Nile in the case of Egypt, and the Tigris and Euphrates in the case of Mesopotamia. These valleys provided fertile ground for the development of agriculture—a key technological advance that had originated in the Jordan River Valley some eleven thousand years ago. The first mathematicians—people who performed rudimentary estimation work—were the “rope pullers” of the Nile Valley, assigned to demarcate the boundaries between the fields of various owners after the waters of the Nile receded every year following the annual inundation. Early geometrical ideas were developed in response to these problems. Pulling ropes in a flat terrain such as the Nile Valley led to the very first ideas in what is now called Euclidean geometry, named after Euclid of Alexandria, who lived much later. It is the geometry of straight lines that we study in school today.


Equally, astronomical observations of stars and planets carried out in Egypt and in Mesopotamia led to developments in mathematics. The Babylonians, Assyrians, and other inhabitants of the Fertile Crescent of Mesopotamia kept voluminous records of astronomical phenomena, such as solar eclipses, movements of planets, and locations of stars. The analyses of these data led to basic advances in calculation. Trade and finance, along with astronomy, brought about the use of a sexigesimal (base-60) number system in Mesopotamia. Though much more complicated than our current decimal (base-10) number system, we still see remnants of the Mesopotamian number system today in our clocks and geometrical and trigonometric calculations (e.g., an hour is composed of 60 minutes, a minute of 60 seconds, and a circle has 360 [6 × 60] degrees). The cumbersome base-60 number system of the Mesopotamians still enabled them to understand squares, square roots, and other concepts thousands of years ago.
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The Plimpton 322 cuneiform tablet, which contains fifteen Pythagorean triples, was discovered near Sankarah, Iraq. Scholars estimate it was written around 1800 BCE. 


Babylonian and Assyrian clay tablets contain an abundance of early mathematical discoveries. For example, the celebrated Plimpton 322 tablet has a list of 15 “Pythagorean triples”—sets of three squared numbers where two of them added equal the third (e.g., 9 + 16 = 25, which, as we know, is 32 + 42 = 52). This tablet and others—including one displayed in the Louvre in Paris with a geometrical design that looks uncannily like a graphic depiction of what we call the Pythagorean theorem—have led many historians of mathematics to conclude that the ancient Mesopotamians may have developed the theorem we now attribute to Pythagoras, who lived at least twelve centuries later.


While the Babylonians and Mesopotamians impressed cuneiform signs into wet clay that they later baked in the sun, the Egyptians developed another technology for keeping records. By cutting reeds found along the Nile into strips, laying them side by side in two layers, and then mashing the layers into a sheet, they made papyrus, which they wrote on using a reed pen and carbon-based ink. The Ahmes Papyrus, named after the scribe who wrote it (it is also known as the Rhind Mathematical Papyrus, named after the Scottish collector who bought it from an Egyptian antiquarian in the nineteenth century), contains many examples of arithmetic, algebra, and geometry, including ways of solving equations and elementary mathematical problems arising from commerce and other areas of life.
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The Ahmes Papyrus was written in Thebes during the Second Intermediate Period of Egypt (ca. 1650–1550 BCE). Its introductory paragraph says that the papyrus presents an “accurate reckoning for inquiring into things, and the knowledge of all things.”


Ancient India also had a thriving mathematical community that studied rudimentary computations relevant to everyday life and astronomy. The numerals we use today evolved from early Hindu numerals developed by Indian mathematicians. But the first mathematicians we know anything about—and the ones who made mathematics into an abstract, powerful science and art—were the ancient Greeks.














PART I


HELLENIC FOUNDATIONS
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Miletus, in present-day Turkey, is the birthplace of the great Greek mathematician and philosopher Thales. The ancient theater in this photograph was built during the fourth century BCE and expanded during the Roman period.
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GOD IS NUMBER


Through the work of the Greeks, the early mathematics of the Babylonians and Egyptians changed its character and became an abstract discipline rather than a field mostly dedicated to the solution of practical problems arising in astronomy or in everyday life. In creating pure mathematics—mathematics divorced from any necessary applications and constituting sheer knowledge—the Greeks had achieved an intellectual advance of great power and beauty.


THALES OF MILETUS


Mathematics as we know it today, with theorems and proofs, began with the great Greek mathematician Thales of Miletus (ca. 624–548 BCE). Miletus was among the first free city-states within the larger Greek empire, which spanned much of the eastern Mediterranean from Anatolia to the south of Italy and Egypt, including the islands in between. Lying on the coast of Anatolia, Miletus was one of the oldest and most prosperous Greek settlements of the time.


Thales is often called the first philosopher. He is also known for his famous saying “Know thyself,” which was even engraved on the stone entrance to the cave of the Oracle of Delphi, a sacred site where the Greeks sought counsel from their gods. Additionally, Thales was one of the Seven Sages of Greece, though according to the historian Plutarch, he surpassed the others. In his book on Solon, another of the Seven Sages, Plutarch says this about Thales: “He was apparently the only one of these whose wisdom stepped, in speculation, beyond the limits of practical utility: the rest acquired the reputation of wisdom in politics.”1


It is easy to forget just how ancient the Egyptian and Mesopotamian civilizations are, even as compared to Greece, which is to us an ancient civilization. By the time of Thales, who lived during the seventh century BCE, Egypt and Mesopotamia were already two millennia old. In the way a modern tourist may travel to Rome or Athens to view the magnificent ruins of the Roman Forum and Colosseum, or the Parthenon on the Acropolis, the Romans and Greeks who were contemporary with these monuments traveled to Egypt to view the pyramids and to absorb Egyptian culture. For example, the obelisks we see in Rome attest to how much the Romans loved Egyptian artifacts—so much so that they decided to bring some of them home. The obelisk at the Place de la Concorde in Paris attests to the greed of a far more recent visitor to Egypt: the French emperor Napoleon, who arrived on a voyage of conquest in 1798 (with two mathematicians, as we will later see) and plundered the land.


Like other young Greeks interested in philosophy and culture, Thales headed for Egypt, and when he arrived there, “he spent his time with the priests,” as Plutarch tells us.2 The priests taught him about Egyptian religion and philosophy, but he was also given the opportunity to practice some ingenious mathematics and subsequently to propose the first known theorem in history while visiting the pyramids.


Thales stood in the desert plain west of the Nile at Giza and looked up at the imposing Great Pyramid of Cheops, named after the Egyptian pharaoh Khufu (known as Cheops in Greece), for whose burial it was constructed. The colossal tomb was completed around 2560 BCE, so when Thales visited this huge edifice—still the most massive monument on earth and, over much of history, the tallest—the pyramid was two thousand years old. The Great Pyramid was one of the Seven Wonders of the Ancient World and is the only one still standing today.


Thales was awed by this pyramid, the largest and tallest—and, as we now know, also the oldest—of the three pyramids of Giza. Like any curious onlooker, he asked his Egyptian guides how high the pyramid was, but no one knew. When he asked the priests, they hadn’t any idea, either. So Thales decided to measure the height of the pyramid without having to climb it—something that seemed impossible at the time. How could such a measurement be made from ground level?


The great pyramid is square-based, and each of its four sides lines up perfectly with the cardinal directions: north, south, east, and west. Hieronymus, a student of the Greek philosopher Aristotle, who lived two centuries after Thales, described what happened next. As quoted by the third-century-CE historian Diogenes Laertius: “Hieronymus says that he [Thales] even succeeded in measuring the pyramids by observation of the length of their shadow at the moment when our shadows are equal to our own height.”3 Thales knew how tall he was, so he waited for the moment in which his shadow was exactly the same length as his height, and he measured the length of the shadow cast by the Great Pyramid at that moment. The logic seems straightforward, but there are obstacles to take into account. Unlike a pole, or for that matter an obelisk of the kind Thales undoubtedly saw many times, a pyramid has bulk. Because it has a wide, square base, when the sun is high in the sky, the pyramid leaves no shadow along the ground but instead casts a shadow along its own slopes. However, being perfectly aligned with cardinal north, its shadow will exceed the extent of its base when the sun is low enough over the southern horizon. And when the sun is at the zenith—the highest point of its path through the sky—it will be perpendicular to the side of the base that faces north. But when will these conditions allow the shadow of an object to equal its height? This will happen when the sun’s rays are at 45 degrees, twice a year—on November 21 and January 20 in Giza.


But did a great mathematician such as Thales have to wait for one of these two days? Not likely. A more probable scenario is described by the first-century historian Plutarch. In a fictionalized conversation between a Greek scholar named Niloxenus and Thales, the former says, referencing the Pharaoh Amasis II, who ruled Egypt at the time: “Among other feats of yours, [the pharaoh] was particularly pleased with your measurement of the pyramid, when, without trouble or the assistance of any instrument, you merely set up a stick at the extremity of the shadow cast by the pyramid and, having thus made two triangles by the impact of the sun’s rays, you showed that the pyramid has to the stick the same ratio which the shadow has to the shadow.”4 This calculation obviates the need to have the shadow equal the height of an object—i.e., the sun doesn’t have to make an angle of 45 degrees—but the shadow must be longer than the half-length of the base. Half the length of the base must be added to the length of the pyramid’s shadow, and a multiplicative ratio factor must be used. For example, if a yardstick’s shadow is two yards long, then the length of the shadow of the pyramid (plus half the length of the base) must be halved to determine the height of the pyramid. When Thales implemented his method, he found a height of 280 Egyptian cubits, equivalent to 480.6 feet (though erosion has likely reduced the height of the pyramid slightly since that time). If Thales had used the former method on one of the two dates in which the angle of the sun’s rays is 45 degrees, however, then for a pyramid with a base length of 756 feet, half of which is 378 feet, the length of the shadow beyond the base would have been 102.6 feet.
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This diagram illustrates how Thales may have computed the height of the Great Pyramid using a stick of height a, which casts a shadow of length b. After computing the ratio A/B, he could then measure the length of the shadow plus half the length of the base of the pyramid (collectively, c). In order to find the height of the pyramid, d, all he has to do is multiply c by the ratio A/B.
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This illustration of Thales’ intercept theorem contains a generalization of his pyramid-height calculation method, d/c = a/b. We have DE/BC = AE/AC = AD/AB.


But it is the ability to do the calculation on any day in which there is a shadow longer than half the base length by using a common proportionality factor that brought Thales to his beautiful theorem—the first theorem in history. This theorem, motivated by a real-world problem, is an abstract mathematical statement. In the figure at the bottom of page, two parallel lines intersected by two arbitrary lines cut segments according to the same proportion, illustrating Thales’ theorem.


Thales’ other theorems include the statement that the base angles of an isosceles triangle are equal and that a circle is bisected by a diameter. Until then, length, breadth, and volume were considered the key elements of geometry. Thales, however, was more concerned with beautiful geometrical theorems than the study of numbers, and he was the first mathematician to consider angles as important in the study of geometry. He provided a key link between triangles and circles by showing that every triangle corresponds to a circumscribing circle that touches all three points of the triangle. Thus he demonstrated that only one circle passes through any three points that are not all on the same straight line, and that the diameter of such a circle corresponds to the circumscribed triangle’s hypotenuse. Additionally, he showed that an angle formed by the extension of two segments from the two endpoints of a diameter to any point on a semicircle is a right angle.


In addition to being the first “pure” mathematician, in the sense that he proposed and proved abstract theorems, Thales was also the first Greek astronomer. One day Thales was so engrossed in observing the stars that he moved forward a few steps without looking and fell into a well. “A clever and pretty maidservant from Thrace” who passed by and helped him out of the well chastised him for “being so eager to know what goes on in the heavens that he could not see what was straight in front of him, nay, at his very feet!”5
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Thales’ theorem shows that, if A, B, and C are points on a circle, where segment AC is its diameter, then AC also represents the hypotenuse of a right triangle.


As an astronomer, Thales was so competent that he could predict solar eclipses. In fact, he is credited with predicting the total solar eclipse that took place in his part of Greece on May 28, 585 BCE. Greek mathematics historian Sir Thomas Heath explained that Thales’ prediction was probably based on the fact that the Babylonians, who had been recording solar eclipses for centuries, knew that eclipses recur after a period of 223 new moons. Presumably, there had been a record of an eclipse in that area that had taken place 223 moons, or about eighteen years, earlier. This piece of information was probably transmitted to Thales through his intellectual connections in Egypt. He is also known to have studied the equinoxes and the solstices.6


PYTHAGORAS OF SAMOS


The next great Greek mathematician is the renowned Pythagoras of Samos (ca. 580–500 BCE). As a young man, he was coached by the aging Thales, and he would continue the Greek quest to turn the mathematics of the Egyptians, Babylonians, and early Indians from a practical computational discipline into a beautiful, abstract philosophy. It was Pythagoras who gave us the ubiquitous Pythagorean theorem, which allows us to determine the length of a right triangle’s hypotenuse. Today GPS and maps use this theorem—as well as our very early understanding of numbers and of geometry—to compute distances between two locations.


Pythagoras was born on the Greek island of Samos, a stone’s throw from the Anatolian Plateau of Asia Minor, which at that time was also part of greater Greece. The island is home to the Temple of Hera, one of the Seven Wonders of the Ancient World (although, unlike the almost-intact Great Pyramid, this temple has only one marble column still standing). Today the main town on the island is called Pythagoreion in honor of the island’s native son.


Pythagoras began his life as a precocious intellectual adventurer, curious about nature, life, philosophy, religion, and mathematics. As a young man, he traveled extensively. In Egypt he met with priests in temples to learn about their religion, their knowledge of the world, and their mathematics. In Mesopotamia he visited astronomers to learn how they observed celestial bodies, and he studied their mathematical and scientific methods. Did he learn about the theorem he is now credited with developing, or did he simply absorb related concepts in Mesopotamia? This we do not know. Because mathematics had roots in India as well, and because some Pythagorean ideas appear to be related to Indian mathematical principles, some historians have surmised that Pythagoras may have traveled as far as India. We have no confirmation of this conjecture, however.
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The Greek philosopher and mathematician Pythagoras is depicted in this undated illustration.


Neither do we know how the great Thales met the young Pythagoras. We do know that the two men knew each other and that Thales recognized Pythagoras’s budding intellect and encouraged him to expand his horizons. According to the third-century philosopher Iamblichus, who wrote a biography of Pythagoras, “Thales, admiring his remarkable ability, communicated to him all that he knew, but, pleading his own age and failing strength, advised him for his better instruction to go and study with the Egyptian priests.”7


Pythagoras wanted to see much more than Egypt, so he first traveled east to Phoenicia, visiting Byblos, Tyre, and Sidon, where he met with priests and learned about Phoenician rites and customs. He is also reputed to have met with the descendants of the mysterious Mochus, a natural philosopher and prophet credited by some historians as proposing an atomic theory before Democritus. There Pythagoras is said to have been initiated into a strange regimen “to which he submitted, not out of religious enthusiasm, as you might think, but much more through love and desire for philosophic inquiry, and in order to secure that he should not overlook any fragment of knowledge.”8


Pythagoras suspected that the rites and rituals he was observing and learning in Phoenicia had Egyptian roots, and he proceeded to Egypt to find their origin, just as Thales had encouraged him to do.




There, he studied with the priests and prophets and instructed himself on every possible topic … and so he spent 22 years in the shrines throughout Egypt, pursuing astronomy and geometry and, of set purpose and not by fits and starts or casually, entering into all the rites of divine worship, until he was taken captive by Cambyses’ force and carried off to Babylon, where again he consorted with the Magi, a willing pupil of willing masters. By them he was fully instructed in their solemn rites and religious worship, and in their midst he attained to the highest eminence in arithmetic, music, and the other branches of learning. After twelve years more thus spent he returned to Samos, being then about 56 years old.9





When he returned to his native island, Pythagoras was steeped in exotic ideas that he had absorbed during his travels. He developed a religious belief that the soul never dies but rather transmigrates to other living things. Hence, if a person kills another living thing—even a small insect—he could be killing a being with the soul of a deceased friend. This idea, which bears a strong resemblance to the Indian notion of reincarnation, led Pythagoras to a strictly vegetarian lifestyle. He also developed an aversion to eating beans—perhaps another fetish acquired as a result of his travels.


Pythagoras began to think about how he could combine the science of numbers and measurement that he absorbed in Egypt and Mesopotamia with the theorems of his Greek predecessor, Thales. Numbers fascinated him, so much so that eventually he and his followers would come to believe that “God is number.” Further, Pythagoras transformed mathematics into the abstract philosophical discipline we see in pure mathematics today.


Pythagoras’s notion that numbers held powers led to a kind of number mysticism, and he became a sort of guru. A growing group of disciples who adhered to his strict lifestyle principles and devoted their time to studying the abstract concepts of the new discipline of mathematics gathered around him. At some point a fearful island leader who worried that the group might someday vie for political power and unseat him applied political pressure on the Pythagoreans, and they were forced to leave Samos. Pythagoras and his followers moved to a place called Crotona, in the center of the bottom of the Italian “boot,” which was also part of Magna Graecea (greater Greece). Isolated from the surrounding population, members of the secret society dedicated themselves to their religion—number mysticism—and the study of mathematics.


The Pythagoreans considered mathematics a moral beacon that helped them lead a righteous life. In addition to the word philosophy (love of wisdom), the word mathematics, which comes from the Greek phrase meaning “that which is learned,” is believed to have been coined by Pythagoras.10 He used both terms to describe the intellectual activity in which he and his followers were engaged. Pythagoras continued the work of Thales in pure mathematics and is seen to have transformed the discipline into “a liberal form of education, examining its principles from the beginning and probing the theorems in an immaterial and intellectual manner.”11 The “educational” aspect of mathematics was pursued in lectures that Pythagoras delivered to the members of his sect. These talks consisted of theorems, results, and discoveries about numbers and their meaning. As a form of public service to the outside community that surrounded the sect’s compound—and, perhaps, to avoid being chased away, as had happened at Samos—Pythagoras gave public lectures to the entire community living in the area. The talks within the sect were strictly confidential, however. Most of the discoveries Pythagoras and his followers made about numbers were kept secret, with only select facts released to the outside world.


Mathematics historian Carl Boyer states, “The Pythagoreans played an important role—possibly the crucial role—in the history of mathematics.”12 What achievements by Pythagoras and his sect merit such an assessment? According to mathematics scholar Sir Thomas Heath, it was probably Pythagoras who discovered that the sum of successive natural numbers (i.e., 1, 2, 3, 4, 5 …) beginning with 1 makes a triangular number—that is, a number that can be drawn as a triangle. For example, 1 + 2 = 3; 1 + 2 + 3 = 6; 1 + 2 + 3 + 4 = 10; 1 + 2 + 3 + 4 + 5 = 15, and so on. Written algebraically, Tn = 1 + 2 + 3 + 4 +…+ n = (½)n(n + 1), where Tn is a triangular number and n is the number of units on a side.
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Pythagoras’s triangular numbers.
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DIVINE PROPERTIES OF NUMBERS


The second-century historian Lucian recounts how Pythagoras connected this property of the natural numbers with the Pythagoreans’ number worship. One day he asked a member of his sect to count. The man began: 1, 2, 3 … When he reached 4, Pythagoras interrupted him and said, “Do you see? What you take for 4 is 10, a perfect triangle, and our oath.”13 Indeed, to the Pythagoreans 10 was a very special number.


Pythagoras and his followers saw the number 1 as the generator of all other numbers and the embodiment of reason. Two, the first even number, was considered female, representing opinion. Three was the first “true male” number, representing harmony because it incorporated both unity (1) and diversity (2). Four represented justice or retribution, since it was associated with the “squaring of accounts.” Being the union of the first true male number (3) and the first female number (2), 5 represented marriage. The number 6 represented creation (and is the first “perfect number,” as we will soon see), and 7 was the number of the Wandering Stars. (In addition to the sun and moon, the Pythagoreans knew of only five planets—Mars, Mercury, Jupiter, Venus, and Saturn—for which the days of the week are named. Sunday, Monday, and Saturday are obvious; for Tuesday through Friday, you can see the correspondence to the planets in their French forms: Mardi, Mercredi, Jeudi, and Vendredi.)


The number 10 was considered the holiest of holies—hence, Pythagoras’s statement in the story above. It even had a special name, tetractys, from the Greek word for four (tetra), in reference to the number of dots to a side in the number’s triangular form. Ten represented the universe as a whole, as well as the sum of the numbers that generate all the possible dimensions of the space we live in. (The number 1 generates all dimensions; 2 generates a line, since a line is created by the joining of two points; 3 generates a plane, since three points not all on a line determine a triangle—i.e., a two-dimensional figure—when joined together; four points, not all on a plane, generate a three-dimensional figure and, hence, three-dimensional space. And 1 + 2 + 3 + 4 = 10.) Pythagoras and his followers called the number 10 their “greatest oath,” as well as “the principle of health.”14 Of course, 10 is also the number of fingers and toes we have, from which fact our entire 10-based number system evolved and eventually superseded the base-60 system of the Babylonians and Assyrians. Equally, vestiges of a base-20 system (presumably emerging from the fact that, together, we have 20 fingers and toes) are still evident in the French language, where the word for 80 is quatre-vingt (four twenties).


Pythagoras was also interested in square numbers—like the triangular numbers, another set of “geometrical” numbers. As triangular numbers form triangles, square numbers can similarly be arranged to form squares. The first square number is 1 (by default, assuming it forms a square rather than a circle; indeed, 12 = 1). The next square number is 4, then 9, then 16, and so on. If we draw these numbers as a two-dimensional figure, as the Pythagoreans did, we see the pattern in the figure.


To proceed from one square number to the next, we add the two sides of a square and add one. For example, to proceed from 42 to 52, we need to add (2 × 4) + 1 to 42 (16). Indeed, 52 (25) is equal to 16 + (2 × 4) + 1. Therefore, we can represent every square number as a sum of odd numbers: (n + 1)2 = 1 + 3 + 5 + … + (2n + 1), where n is an integer.
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Pythagoras’s square numbers.


In their search for mystical properties of numbers, the Pythagoreans defined a perfect number as a number that is “equal to [the sum of] its own parts.” In other words, a perfect number is equal to the sum of all its multiplicative factors, excluding itself but including 1. The first perfect number is 6, because 6 = 6 × 1 and 2 × 3. As it happens: 6 = 1 + 2 + 3. The next perfect number is 28, since 28 = 1 + 2 + 4 + 7 + 14. The number 496 is also perfect. How do we know?


A few centuries later Euclid, the famous Greek mathematician, proved that if the sum of any number of terms of the series 1, 2, 22, 23 … 2n-1 is a prime number, then that sum multiplied by 2n-1 is a perfect number. For example, for n = 3: 20 + 21 + 22 = 1 + 2 + 4 = 7, a prime number. Therefore, 7 multiplied by 2(3-1) must be a perfect number. It is, as 7 × 4 = 28. For n = 4, 1 + 2 + 4 + 8 = 15, which is not prime. For n = 5, however, 1 + 2 + 4 + 8 + 16 = 31, a prime number, so 31 × 16 should equal the next perfect number, 496.


The ancient Greeks also determined the following perfect number, 8,128, and began to notice a pattern: a perfect number always ends either in a 6 or in an 8. But further perfect numbers were beyond their computational ability—the fifth perfect number, 33,350,336, is very large, and the next one, 8,589,869,056, is in the billions. The ninth perfect number has 37 digits!


Pythagoras was once asked by a disciple, “What is a friend?” He replied, “A friend is an alter ego.” This led him to define the concept of friendship for numbers as well, defining two numbers as being “friends” if each one is the sum of the multiplicative factor of the other number. Hence, the numbers 284 and 220 are friends. Why? 284 = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110, which are all of the factors of 220, while 220 = 1 + 2 + 4 + 71 + 142, which are all of the factors of 284.
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Pythagoras and his followers also understood fractions, such as 2/7 or 31/77. We call such numbers rational numbers, perhaps because they make sense to us. A pie can be divided into seven pieces, each being 1/7 of the whole, and you can give someone two pieces—a fraction of the entire pie represented by the number 2/7. But when the Pythagoreans went further in their mathematical and mystical exploration of numbers and their properties, they ran into a conundrum that stunned them and perhaps even brought on their demise. This paradox—which came about in the interface between geometry and arithmetic—would come to a head with the work of Georg Cantor in the nineteenth century, and it continues to haunt us even today.
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Raphael’s famous fresco The School of Athens (1510–11) echoes the notion of Plato’s Academy as an intellectual community of learned scholars. Among the thinkers depicted in the painting is Plato himself, who stands at the center of the image, pointing upward.





TWO
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PLATO’S ACADEMY


Despite having so little foundational work to build on, the mathematicians of ancient Greece were able to make advances in mathematics that stun us today. Thanks to the pioneering work of Thales and Pythagoras, abstract mathematics became what we know it to be: a science—and, in many ways, an art—based on pure logic and consisting of results we call theorems (and lemmas and corollaries that precede and follow them, respectively), which must be proved. Many of their discoveries were so fundamental that they seem “modern” in their depth of meaning and influence, and as mathematics became interlinked with philosophy, it attracted the attention of the greatest philosopher of the time: Plato.


HIPPASUS OF METAPONTUM


Plato’s dialogues show that he and the members of his Academy in Athens had been stunned by a discovery about the nature of numbers that made their philosophical view that “God is number”—where “number” means a whole number or a fraction made of two integers—shaky. The discovery was made by members of the Pythagorean order sometime before 410 BCE. Some early historians attribute this shocking discovery to the Pythagorean mathematician Hippasus of Metapontum (another name for Crotona, the Pythagoreans’ centuries-long abode). Hippasus was reportedly expelled from the order—or worse—because of what happened next.1


In addition to the study of numbers, the Pythagoreans did much work on pure geometry, as initiated by the work of the great Thales and pursued very actively by Pythagoras himself. Hoping to associate numbers with lengths in geometry, an objective that seemed simple enough, Hippasus drew a square in the sand. As soon as a diagonal was drawn inside the square, however, the question arose: If the length of the side of the square is one unit, what is the length of the diagonal? The result of this elementary investigation would, in fact, change the world of mathematics.


Today nearly every schoolchild knows the famous Pythagorean theorem, which states that the sums of the squares of the two sides of a triangle that share a right angle between them is equal to the square of the hypotenuse.


So when Hippasus drew a square in the sand and added the diagonal, it was clear to all witnesses that the diagonal was the hypotenuse of a right triangle, with opposite sides equal to one unit each. Based on the Pythagorean theorem, the length of the hypotenuse must be the square root of 2.


But what is the square root of 2? We know that the square root of a square number is an integer (e.g., the square root of 4 is 2, the square root of 9 is 3, and so on). Two is not a square number—so what is its square root? Until that point, the Pythagoreans knew of only (positive) integers and what we call rational numbers: fractions made of two integers—a numerator and a denominator. The square root of 2 is clearly not an integer, since 2 is not a square number, so the Pythagoreans assumed that it was a rational number. They searched in vain for the two integers that made up the numerator and denominator of the fraction but came up empty-handed. It can be proved mathematically that such integers do not exist.2


It is believed that Hippasus broke the Pythagoreans’ code of secrecy by revealing to the outside world the existence of numbers that could not be written as fractions of integers. One story has him simply expelled from the order for this crime, but according to another story, the Pythagoreans erected a tombstone with his name on it and presumably killed him. According to yet another version, he was forced on a sea voyage from which he did not return. All this for revealing the existence of irrational numbers, which comprise many other square roots, higher-order roots (e.g., the cube root of 2), the natural numbers π and e, and infinitely many others. We will learn about these numbers in detail when we arrive at the nineteenth century.


ANAXAGORAS OF CLAZOMENAE


Anaxagoras of Clazomenae lived in the fifth century BCE. At the beginning of this century, the Persian invaders of Greece were defeated, and at the end of the century, Athens was defeated by Sparta. The period between these two key events is called the Age of Pericles. Known for its great achievements in art and literature—including the amazing statues and plays that form much of the foundation of Western composition—it was an age of peace and prosperity, as well as flourishing intellectual activity.


Athens attracted the greatest mathematicians of its vast dominion. Zeno of Elea (in southern Italy) gave us the famous paradoxes about time, space, and infinity, including the notable one about Achilles and the tortoise, in which Achilles races against the tortoise but cannot win because each time he covers half the distance to the tortoise, the tortoise has already advanced farther, and when Achilles has covered half that distance, the tortoise has advanced again, and so on. This period was also the era of Democritus, who proposed that the universe is made of atoms—something that would be proved by scientists almost two and a half millennia later.


A deep thinker who concerned himself with uncovering the structure of the cosmos, Anaxagoras could well be called one of the earliest natural philosophers in history. His birth date is unknown, but we know that he died in the year 428 BCE and that he came from Clazomenae in Ionia, a region of western Greece that includes the islands of Corfu and Ithaca. After acquiring a degree of fame for his novel views about nature and the universe, Anaxagoras became a tutor to the great leader Pericles, but his ideas were so ahead of his time that he was frequently imprisoned for heresy.
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Anaxagoras, perhaps the first mathematician to tackle one of the three classical problems of antiquity, is portrayed in this detail from the 1888 fresco Philosophers of Athens.


Anaxagoras shocked many Athenians by publicizing his view that the sun was not a god but rather a flaming rock in the sky that was as large as the entire Peloponnesian peninsula. He contended that the moon was another planet, like Earth, and that it had its own population and reflected light from the sun. Many people took offense at his unprecedented theories, and accusations of heresy led to his imprisonment. Anaxagoras’s friend and protector Pericles eventually forced his release from prison, but the more he spouted his ideas, the longer he found himself behind bars.


During his imprisonment, Anaxagoras used to while away the time by working on a mathematical problem that no one could solve. According to Plutarch, he was trying to square the circle. Plutarch’s account is the first mention in history of a problem that would consume the time and effort of many a mathematician until proved impossible in the nineteenth century. What is so beautiful about this problem is that it is a purely intellectual one—as was most of Greek mathematics.
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THE THREE CLASSICAL
PROBLEMS OF ANTIQUITY


Squaring the circle is the first of the celebrated “three classical problems of antiquity.” All three problems are now known to be impossible, thanks to the work of Évariste Galois (1811–32), whose genius and tragic life are discussed later in this book. The problem of squaring the circle presented the challenge of constructing a square with the same area as the area of a given circle. Later sources than Plutarch tell us that only a straightedge and a compass—the two tools that Greek construction employed—were allowed to be used in this effort. Although Anaxagoras is best known for his work in natural philosophy, he is credited with the first known attempt to solve this problem.


The second of the three famous problems is called doubling the cube. Also known as the Delian problem, the story of its genesis is both stirring and sinister. In 429 BCE a great plague raged in Athens, killing a quarter of the city’s population. Persistent and recurring, the scourge is believed to have claimed the life of Pericles, and as we will see, it formed the basis from which the famous second classical problem of antiquity emerged.


The island of Delos lies in the Aegean Sea, a body of water in the eastern Mediterranean that stretches from mainland Greece down to Crete. A small, now arid island, it is the navel of the Cyclades, a chain of islands that appears to form a “cycle” around it. Because of its special position in the center of the islands, the ancient Greeks considered Delos to be a holy place, and each of the Greek city-states built temples dedicated to their gods on the tiny landmass. Ruins of the many temples built on this island can still be seen today. (The island is easily accessible by boat from nearby Mykonos.)


When the plague first began to spread in Athens around 430 BCE, the Athenians scrambled to try to save themselves from what they viewed as the wrath of the gods. They sent a delegation to Delphi, located on the Greek mainland not far from Athens, to ask the oracle to intercede with the gods on their behalf. The oracle came back with the pronouncement: “Apollo wants you to double his temple on Delos.”


The Athenians frantically set to work. They doubled the length, width, and height of the Athenian temple to Apollo on Delos. But the plague continued to rage. So again the Athenians sent a delegation to the Delphic oracle to find out why Apollo was still angry with them and to plead for an end to the plague—after all, they had done exactly what he had asked them to do. “No,” replied the oracle. “You haven’t done as the god had instructed you to do. Go back to Delos and do as he has commanded you!”


The Athenian masons and engineers soon realized why they had failed: Apollo wanted the volume of his cubic temple doubled—not all its dimensions. By doubling each side of this cube-shaped temple, what they had inadvertently done was to increase the volume eightfold (2 × 2 × 2 = 23 = 8). What they needed to do in order to double the volume of the temple while maintaining its cubic dimensions was to increase the length, width, and height of the cube by a factor equal to the third root of 2. Only this way could a cubic volume be doubled, since (21/3)3 = 2. The engineers, masons, and builders realized that they needed to go back to the original cubic temple and, using the only tools of their trade—a straightedge and a compass—expand each of the three dimensions so that its length would increase by a factor of exactly the cube root of 2. But it couldn’t be done, and the plague raged on. As we will see, the work of Évariste Galois in the nineteenth century also proved that the Delian problem inspired by this story—the problem of doubling the volume of a given cube using only a straightedge and a compass; i.e., to construct, geometrically, a length that is the cube root of 2 times as large as a given length—is impossible.


The third of the so-called classical problems of antiquity is a problem that, like the two discussed above, was circulating in intellectual circles in Athens at that time. It is the problem of trisecting an arbitrary angle using only a straightedge and a compass. With these tools, some angles can be trisected, meaning that given an angle, one can sometimes construct an angle that is a third as large. But the problem is to be able to do this trisection with any given angle. Archimedes, discussed later in this chapter, was able to use the famous Archimedean spiral to trisect angles, but his method required more than just a straightedge and compass, so he failed to solve the original problem.
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