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INTRODUCTION


THE FIRST MATHEMATICIAN KNOWN BY NAME is Ahmes, an Egyptian scribe who around 1650 BC copied out and studied a list of complex mathematical problems he called the ‘ancient writings’. Today, Ahmes’ text is known as the Rhind papyrus. From this, and older stone tablets, we know that the scholars of ancient Egypt and Babylon had sophisticated numerical notation and a taste for challenging problems in algebra, geometry and number theory.


The study of mathematics, then, is as ancient as civilization; but it also represents the modernity of today’s world. In the millennia since Ahmes’ work, we have seen scientific and technological progress of which he could not have dreamt. Central to this advance has been the march of mathematics, which has contributed the basic language used in all scientific contexts. Probably mathematics’ most fundamental contribution has been in the sphere of physics. Galileo’s revolutionary insight in the early 17th century that the universe might yield to a purely mathematical description set the direction towards the world-changing theories of quantum mechanics and relativity.


This reliance on mathematics is not confined to the physical sciences. The social sciences depend on techniques of probability and statistics to validate their theories, as indeed do the worlds of business and government. More recently, with the emergence of information technology, mathematics became entangled in another love-affair, with computer science. This too has had a profound impact on our world.


As its influence has broadened, the subject of mathematics itself has grown at a startling rate. One of history’s greatest mathematicians, Henri Poincaré, was described by Eric Temple Bell as ‘the last universalist’, the final person to have complete mastery of every mathematical discipline that existed during his lifetime. He died in 1912. Today, no-one can claim to have mastered the whole of topology, let alone geometry or logic, and these are just a fraction of the whole of mathematics.


Poincaré lived through a turbulent period in the history of mathematics. Old ideas had been blown away, and new seeds planted which flourished during the 20th century. The result is that the mathematical world we know today is rich and complex in ways that even the greatest visionaries of the past could not have imagined. My aim in this book is to give an overview of this world and how it came to be. I might have tried to sketch a low-resolution map of the entire mathematical landscape, but this would be neither useful nor entertaining. Instead, I have presented 1001 short ‘postcards’ from interesting landmarks around the mathematical world that nonetheless give a feel for the bigger picture of mathematics.


In the scheme of things, 1001 is a very small number (see the frivolous theorem of arithmetic). My challenge has been to select the real highlights: the truly great theorems, the outstanding open problems and the central ideas. I have also sought to represent the surprises and quirks that make the subject truly fascinating.


This book is organized thematically, on three levels. It is divided into ten chapters, each covering a broad subject, beginning with ‘Numbers’. Each chapter is subdivided into sections, which are more narrowly focused on a single topic, such as ‘Prime numbers’. Each section comprises a series of individual entries, such as the one on the Riemann hypothesis.


How you should read Mathematics 1001 depends on what you want from it. If you are interested in prime numbers you can read through that section. If you want a quick explanation of the Riemann hypothesis, you can jump straight there; but, because ‘a quick explanation of the Riemann hypothesis’ is an impossibility, you will then need to rewind a little, to take in the preceding few entries where the necessary prerequisites are laid out. Alternatively you can dip in and out, perhaps finding a new story by following the bold-cross-references to different entries in the book.


Who is this book aimed at? The answer is: anyone with a curiosity about mathematics, from the novice to the informed student or enthusiast. Whatever the reader’s current knowledge, I’m sure that there will be material here to enlighten and engage. Some parts of the book undoubtedly cover highly complex subjects. That is the nature of the subject; shying away from it would defeat the purpose. However, the book is structured so that the relevant basic concepts precede the complex ones, giving a foundation for understanding. My job in writing has been to discuss all ideas, from the basic to the most abstract, in as direct and focused a way as possible. I have done my best, and have certainly relished the challenge. Now I can only hope that you will enjoy it too.


Richard Okura Elwes










NUMBERS


WHAT IS MATHEMATICS? The ‘science of numbers’ would be many people’s first guess, and it is by no means wrong. However, our understanding of what numbers are has evolved over time. Today there are several different number systems which merit attention, each with its own characteristics and mysteries. The subject we call number theory concerns the most ancient of all: the natural numbers, comprising 0, 1, 2, 3, 4, 5, . . .


The first thing to do with these is combine them arithmetically, through addition, subtraction, multiplication and division. There are several time-honoured ways of calculating the results, which rely on our decimal place value notation.


At a deeper level, questions about the natural numbers fall into two main categories. The first concerns the prime numbers, the atoms from which all others are built. Even today, the primes guard their secrets. Major open questions include Landau’s problems and the Riemann hypothesis.


The second principal branch of number theory considers Diophantine equations. These encode the possible relationships between whole numbers. Catalan’s conjecture (Mihăilescu’s theorem), for example, says that 8 and 9 are the only two positive powers you will ever find sitting next to each other.



THE BASICS



Addition


Today, as for thousands of years, numbers are principally used for counting. Counting already involves addition: when you include a new item in your collection, you have to add one to your total.


More general addition extends this: what happens if you add three items to a collection of five? Efficient methods for adding larger numbers first required the development of numerical notation (see addition by hand). Mathematicians have many terms for addition. The sum of a collection is the total when everything is added together. As more and more numbers are added together, objects called series emerge. Today, addition extends beyond plain numbers to more colourful objects such as polynomials and vectors.


Subtraction


The mathematical perspective on subtraction may seem strange on first sight. Since the dawn of negative numbers, every number (such as 10) has an opposing additive inverse (−10). This is defined so that when you add the two together they completely cancel each other out, to leave 0. Subtraction is then a two-step process: to calculate ‘20 – 9’ first you replace 9 with its negative, and then you add the numbers 20 and −9. So ‘20 – 9’ is really short-hand for ‘20 + (−9)’.


This settles a matter which often troubles children: why does the order of addition not matter (3 + 7 = 7 + 3), but the order of subtraction does (3 − 7 ≠ 7 − 3)? When understood as addition, the order does not matter after all: 3 + (−7) = (−7) + 3.


So how do you subtract negative numbers such as −7 − (−4)? The same rules apply, first replace −4 with its inverse, 4, and then add: −7 + 4 = −3.


Multiplication


Multiplication’s first appearance is as repeated addition: if each member of a family has two beads, and there are four people in the family, how many beads are there altogether? The answer is 2 + 2 + 2 + 2, or 4 × 2 for short. From this definition, it is not immediately obvious that n × m should always equal m × n. This is true of course, as can be seen in a rectangular array of m columns and n rows. If you count this as n rows of m beads each, we get a total of n × m. But it is m × n when seen as m columns of n beads. Since the total cannot depend on our counting method, these must be equal.


There are several terms to describe multiplication, and several symbols. ‘Times’ is nicely descriptive. A more everyday term is the English word ‘of’: three sets of seven make 21, for example. This remains valid for fractions: half of six is three, which translates as 

  

    1

    2

  

  ×

  6

  =

  3

. (It is common to mistake ‘of’ as meaning division here.)


The most common symbol for multiplication is ‘×’, though mathematicians often prefer ‘·’, or even nothing at all: 3 · x and 3x mean the same as 3 × x. For multiplying lots of numbers together, we use the product notation (see sums and products).


Since 3 × 5 = 15, we say that 3 is a factor of 15, and 15 is a multiple of 3. The prime factors of a number are its basic building blocks, as affirmed by the fundamental theorem of arithmetic.


Sums and products


Suppose you want to add together the numbers 1 to 100. Writing out the whole list would take up too much time and paper, so mathematicians have devised a short-hand. A capital Greek sigma (standing for sum) is used:
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The numbers on top and bottom of the sigma show the range: j starts at 1 and takes each value successively up to 100. After the sigma comes the formula we are adding. Since in this case we are just adding the plain numbers, the formula is just j.


Instead if we wanted to add the first 100 square numbers, we would write:
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(These expressions have easily computable answers; see adding up 1 to 100 and adding the first hundred squares.)


If we want to multiply instead of add, we use a capital Greek pi (standing for product):






∏
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…

×

100






(This is also written as ‘100!’, that is 100 factorial.)


Powers


Just as multiplication is repeated addition (4 × 3 = 3 + 3 + 3 + 3), so exponentiation, or raising to a power, is repeated multiplication: 34 = 3 × 3 × 3 × 3. (Here 3 is the base and 4 is the exponent or power.) Some powers have their own names: raising to the power 2 is called squaring because a square with sides x cm long has area x2cm2 (16 is 4 squared for example). Similarly, raising to the third power is called cubing.


We can understand xn as meaning [image: Illustration]


This suggests that x1 = x and x0 = 1. (This is a useful convention rather than a profound theorem, and students are often resistant to it, insisting that x0 should mean 0.)



The laws of powers



What happens when we multiply powers together? If we unpack the calculation 23 × 24 it becomes [image: Illustration], which is 27.


It is no coincidence that 7 = 3 + 4. This is an example of the first law of powers:
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For the second law of powers, consider [image: Illustration].


The important observation is that 2 × 3 = 6. In general:
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Exponentiation can easily be extended to negative powers. It can also be extended to broader classes of number, such as complex numbers. This is subtler, and relies on the exponential function.


Negative powers


To give meaning to negative powers, such as 10−2, it makes sense to look at the pattern for positive powers first, and then try to extend it. The rule for getting larger positive powers of 10 is ‘keep multiplying by 10’. Starting with 101 (which is 10), multiplying by 10 tells us 102 = 10 × 10 = 100. Multiplying by 10 again gives 103 = 102 × 10 = 100 × 10 = 1,000, and so on.


We can turn this on its head. If we start with 106 (which is 1,000,000) and count down, to get to the next power down, we divide by 10. That is, 105 = 106 ÷ 10 = 1,000,000 ÷ 10 = 100,000. Then to get to 104 we divide by 10 again, and so on, until we get back to 101 (which equals 10).


But there is no reason to stop here. To reach the next power down, 100, we divide by 10 again, so 100 = 101 ÷ 10 = 1. If we continue, we arrive among the negative powers: 10−1 = 100 ÷ 10 = 1 ÷ 10 = 



1

10



. Then 



10



−

2





=



10



−

1





÷

10

=



1

10



÷

10

=



1

100



, and so on. The pattern is:


[image: Illustration]


What works for 10 works for every other number (other than 0). Negative powers of x are defined as the corresponding positive power of the reciprocal of x. That is 
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.


Roots


What number when squared gives 16? The answer of course is 4. To put it another way, 4 is the square root of 16. In the same way, 3 cubed is 27, so 3 is the cube root of 27. Similarly 25 = 32, so 2 is the fifth root of 32. The symbol we use to denote this is [image: Illustration]. So 325 and 



27

3



=

3

. For square roots the little 2 is usually omitted, and we just write 



16



=

4

. Roots can also be written as fractional powers.



Fractional powers



What might a fractional power mean? If 34 is ‘3 multiplied by itself 4 times’ then 



3





1

2







 should be ‘3 multiplied by itself 



1

2



 a time’, which does not seem very meaningful. Just as negative powers are made comprehensible by incorporating the reciprocal, fractional powers can make sense when interpreted as roots.


If notation such as 
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 is to mean anything at all, then it must satisfy the second law of powers: (xa)b = xa×b. In particular 
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. That is, 
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 should be a number which when raised to the fifth power gives 32. This must mean 



32





1

5







=



32

5



=

2

. Similarly we can write 



27





1

3







=



27

3



=

3

 and 



16





1

2







=



16



=

4

. In general, 
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What meaning can we give to notation like 
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5







?

 Again the second law of powers helps: it should be equal to 
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Logarithms


As subtraction is to addition, and division is to multiplication, so logarithms are to powers. 23 = 8 can be rephrased as log2 (8) = 3, where log2 (8) is pronounced ‘the logarithm of eight, to base 2’. To evaluate log3 (81) we need to answer 3? = 81 (the answer, of course, is 4).


You can take logarithms to any base number, as long as it is positive and not equal to 1. But two bases are particularly common. Because powers of 10 are such a convenient way to represent numbers, logarithms to base 10 are very useful for measuring the order of magnitude of a number: log10 N is approximately the number of digits in the decimal representation of N.


Logarithms to base e are called natural logarithms, and are the most commonly occurring within pure mathematics.


The laws of logarithms


The first law of powers says xa × xb = xa+b. Corresponding to this is the first law of logarithms, which states that, for any c and d:




log

⁡

(

c

d

)

=

log

⁡

c

+

log

⁡

d






(All the logarithms must be taken to the same base here, but every positive base works.) To see why this holds, define c = xa and d = xb in the first law of powers. Translating these, we get a = log c and b = log d. (Since all the logarithms are to base x, we take the x as read.) Now, cd = xa+b, and so a + b = log (cd), giving the result above.


The second law of logarithms corresponds to the second law of powers. It says that, for any c and d:
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Slide rules



A rudimentary slide rule for addition might work as follows: take two rulers marked in centimetres, and place them side by side. If you want to calculate 4 + 7, slide the top ruler so that its start aligns with the ‘4’ on the bottom ruler. Find the ‘7’ on the top ruler and read off the value aligned with it on the bottom. With a slight modification, this simple idea produces a logarithmic slide rule, which can manage multiplication instead of addition.


[image: Illustration]


Logarithmic slide rules


In the days before calculators, multiplying large numbers was time consuming and error-prone. A logarithmic slide rule is a device which uses logarithms to produce a quick and easy method. The crucial ingredient is the first law of logarithms:




log

⁡

(

c

d

)

=

log

⁡

c

+

log

⁡

d




This says that a logarithm converts multiplication into addition: if two numbers are multiplied (cd), then their logarithms are added: log c + log d.


A logarithmic slide rule works as an ordinary one, with one important difference. Instead of standard rulers where the ‘4’ is marked 4 cm from the end, it uses logarithmic rulers where the ‘4’ is marked log 4 cm from the end. (One consequence is that the logarithmic ruler starts at ‘1’ instead of ‘0’, because log 1 = 0.) Following exactly the same procedure as for an ordinary slide rule, you will have arrived at a point log 4 + log 7 cm along the bottom ruler, which will be marked 28.


Logarithmic slide rules will work to any base, but were first designed using natural logarithms, by William Oughtred in the 1620s.


[image: Illustration]


ARITHMETIC


Addition by hand


The advantage of a good system of numerical notation is that it allows shortcuts for arithmetic. To add 765 and 123, we can do a lot better than starting at 765 and counting up by one, 123 times. The basic idea is simple enough: write the two numbers one over the other, keeping the place values aligned, and then add up each column.








	   765
+ 123
    888











The difficulty arises when the numbers in a column add up to more than 9. Suppose we want to add 56 and 37. We always begin on the right, with the units column. This time, 6 and 7 give us 13.


The final number of units will certainly be 3, so we can write this as the answer in the units column. This leaves us with the extra 10 to cope with. Well, the next stage is to add up the tens column anyway, so we just need to add one more ten to the pile. So we carry the 1 to the top of the tens column before adding that up:








	1
   56
+ 37
    93











This method easily generalizes to adding more than two numbers:








	1 2 2
   339
   389
+ 273
 1001











Subtraction by hand


As with addition by hand, the basic idea for subtraction is to align the numbers in columns and proceed column by column, starting with the units:








	   96
− 34
    62











This time, we may encounter the problem that we need to take a larger digit from a smaller:








	   73
– 58
     ?











Here we seem to need to take 8 from 3, which we cannot do without heading into the negative numbers (which is best avoided until inevitable). The way around this is to split up 73 differently. Currently it is split into 7 tens (T), and 3 ones, or units (U), which is proving inconvenient. So instead we will write it as 6 tens, and 13 units. Essentially we are rewriting the calculation as:








	T


	U







	  6


	13







	−5


	 8







	 


	 











Now we can proceed as before. What this looks like when written normally is:








	6
   713
– 5 8
    1 5











This process of ‘borrowing 1’ from the next column might have to be repeated several times in one calculation.



Multiplication by hand, table method



If you know your times tables, then multiplying two single-digit numbers should be straightforward. Once we can do this, the decimal system makes it fairly simple to multiply larger numbers.


To calculate 53 × 7, as usual we split 53 into 5 tens and 3 units (ones). The key fact is that we can multiply each part separately. That is: (50 + 3) × 7 = (50 × 7) + (3 × 7). Some people use a grid method:








	 


	    7







	50
  3


	350
  21











To finish the calculation, we add up everything in the inner part of the table: 350 + 21 = 371.


This easily extends to calculations with more digits, such as 123 × 45:








	 


	   40


	   5







	100
  20
    3


	4000
  800
  120


	500
100
  15











To finish this calculation, we add up: 4000 + 800 + 120 + 500 + 100 + 15 = 5535.


Multiplication by hand, column method


An alternative method to the table method of multiplication (which uses less ink) is column by column, adding as we go along, instead of at the end:








	 13
×5











Starting with the units column, we get 15. So the answer’s digit in that column will be 5, and we have also gained an extra ten. So, after we perform the multiplication in the tens column, we need to add that on:








	1
 13
×5







	65











Multiplying by 40 just involves multiplying by 4, and then shunting everything one column to the left, suffixing with a zero:








	1
  13
×40







	520











To multiply 13 by 45, we multiply by 40 and 5 separately and then add up. Writing these two calculations one under the other makes this addition quicker to do:








	   13
×45







	  65
520







	585











Short division


Short division is a method for dividing a large number (the dividend) by a single-digit number (the divisor). The basic idea is to take the dividend digit by digit starting on the left. Above each digit we write the number of times the divisor fits in:




  

    

      

         

         

         

         

        1

        3

        2

      

    

    

      

        3

        

            3

            9

          6

        

      

    

  




The complication comes when the divisor does not fit exactly into one of the digits, but leaves a remainder. In the next example, 3 into 7 goes 2 times, with a remainder of 1. The 2 goes above the 7 as before, and the 1 is carried to the next step, placed before the 8, which is then considered as 18:




  

   

    

     

      

          2   6

     

    

    

     

      

       3

        

         7 

          8

          

          

          1

         

         

       

       

     

    

   




Often we will have to carry more than once:




  

   

    

     

      

           0   3   2

     

    

    

     

      

       9

        

         2 

          8

          

          

          2

         

          

          8

          

          

          1

         

         

       

       

     

    

   




Short division can work with small double-digit divisors such as 12 too (as long as you know their times table). In this example, 12 cannot go into 9, so the whole 9 is carried at the start:




  

   

    

     

      

           0   7   6

     

    

    

     

      

       12

        

         9 

          1

          

          

          9

         

          

          2

          

          

          7

         

         

       

       

     

    

   




Long division


Long division is essentially the same procedure as short division. As the divisors become larger, however, more digits have to be carried, and calculating the remainders becomes lengthier. Rather than cluttering up the division symbol with carried remainders, they are written out underneath. So instead of writing




  

   

    

     

      

           0   4   7

     

    

    

     

      

       18

        

         8 

          4

          

          

          8

         

          

          6

          

          

          

           12

         

         

       

       

     

    

   




we write them out underneath




  

    

      

        047

      

    

    

      

        1

        8

        

          8

          4

          6

        







        −72↓

      

    

    

      



 

 

 

 

 

        126



      

    

  




Since 18 cannot divide the 8 in the hundreds column, 84 is the first number to be divided by 18, corresponding to the tens column. It goes in four times since 4 × 18 = 72, but 5 × 18 = 90. 4 is written on top, and 72 is written below 84 and then subtracted from it to find the remainder, 12. If we were doing short division, this would be the number to carry to the next column. The equivalent here is to bring down the next digit from 846 (namely 6) and append it to the 12 to get 126, the next number to be divided by 18. This goes exactly 7 times, so we write 7 on the top and we have finished.


Divisibility tests


How can you tell when one whole number is divisible by another? In general there is no easy method. But for small numbers there are various tricks which exploit quirks in the decimal system, our ordinary method of writing numbers. Some are so easy that we do them without thinking:


• A number is divisible by 2 if it ends in 0, 2, 4, 6 or 8.


• A number is divisible by 5 if it ends in 0 or 5.


• A number is divisible by 10 if it ends in 0.


This last one easily extends to divisibility tests by 100, 1000, and so on.


Divisibility by 3 and 9


A whole number is divisible by 3 if its digits add up to a multiple of 3. So 123 is divisible by 3 because 1 + 2 + 3 = 6, and 6 is a multiple of 3. But 235 is not divisible by 3, as 2 + 3 + 5 = 10, which is not a multiple of 3.


This trick works because the number written as xyz is really 100x + 10y + z. This is equal to 99x + 9y + x + y + z. Now, 99x + 9y is certainly divisible by 3. So the whole thing is divisible by 3, if and only if x + y + z is divisible by 3. This proof also shows that the same trick works for 9. So 972 is divisible by 9, as 9 + 7 + 2 = 18, a multiple of 9. But 1001 is not divisible by 9, as 1 + 0 + 0 + 1 = 2.


Divisibility by 6


The test of divisibility by 6 simply amounts to applying the tests for both 2 and 3: a whole number is divisible by 6 if and only if it is even, and its digits add up to a multiple of 3. So 431 is not divisible by 6, as it is not even. Also 430 is not divisible by 6, as its digits add up to 7, not a multiple of 3. But 432 is divisible by 6 as it is even, and its digits add up to 9, a multiple of 3. (Notice that its digits do not have to add up to a multiple of 6.)


Divisibility by 2 and 4


We can tell whether a number is divisible by 2 just by looking at the last digit. The reason this works is that the number written as ‘xyz’ is really 100x + 10y + z. Now, 100x + 10y is always divisible by 2. So the answer depends only on z.


Similarly, we can tell whether a number is divisible by 4 just by looking at the last two digits. If they form a number divisible by 4, then the whole thing is divisible by 4. So 1924 is divisible by 4, because 24 is divisible by 4. On the other hand 846 is not divisible by 4, because 46 is not divisible by 4. Again, ‘wxyz’ is short-hand for 1000w + 100x + 10y + z. This time, 1000w + 100x is always divisible by 4, so whether the whole thing is divisible by 4 depends only on whether 10y + z is.


Divisibility by 8


The divisibility test for 4 easily extends to 8, 16, 32, and so on. Looking at the last three digits of a number is enough to determine divisibility by 8. So 7448 is divisible by 8, as 448 is.


Admittedly, this divisibility test relies on knowing your 8 times table up to 1000, but is still useful when analysing very large numbers. For smaller numbers, it may be more practical to divide by 2, and then apply the divisibility test for 4. Similarly the last four digits determine divisibility by 16, and so on.


Divisibility by 7


The trickiest of the numbers up to 10 for divisibility is 7. One test works as follows: chop off the final digit, and double it. Then subtract the result from the shortened number. If the result is divisible by 7 then so was the original number. For example, starting with 224, we remove the final 4 and double it to get 8. Then we subtract this from 22, to get 14. Since this is divisible by 7, so is 224.


For larger numbers, we might need to apply this trick more than once. Starting with 3028, remove the 8 and double it to get 16. Now subtract that from 302 to give 286, and we repeat. Remove the final 6, double it to get 12, and subtract that from 28 to leave 16. That is not divisible by 7, so neither is 286, and therefore neither is 3028. This works because every number can be written as 10x + y, where y is the last digit (and so between 0 and 9), and x is the result of chopping off y. In the example of 224, x = 22, and y = 4. Next, 10x + y is divisible by 7 if and only if 20x + 2y is divisible by 7 (multiplying by 2 does not affect divisibility by 7). Now, 20x + 2y = 21x − x + 2y. Of course 21x is always divisible by 7, so whether or not the original number is divisible by 7 depends on −x + 2y, or equivalently its negative x − 2y.


Divisibility by 11


11 has an elegant divisibility test. It works by taking the alternating sum of the digits: add the first, subtract the second, add the third, and so on. If the result is divisible by 11, then so is the original number. More precisely, taking a five-digit number ‘vwxyz’ as an example, this is divisible by 11 if and only if v − w + x − y + z is divisible by 11. (If v − w + x − y + z = 0, that is classed as divisible by 11.) So, to test 5893, we calculate 5 − 8 + 9 − 3 = 3, which is not divisible by 11.


This works because the following numbers are all divisible by 11: 99, 9999, 999999, and so on. On the other hand 9, 999, 99999, etc. are not, but 11, 1001, 100001 etc. are. Writing ‘vwxyz’ as 10000v + 1000w + 100x + 10y + z, this is equal to 9999v + 1001w + 99x + 11y + v − w + x − y + z


From the above observation 9999v + 1001w + 99x + 11y will always be divisible by 11. So whether or not the whole number is divisible by 11 depends on v − w + x − y + z.



Divisibility by other primes



For composite numbers the best approach to divisibility is to test for every constituent prime individually. Other prime numbers can all be tested in a way similar to 7. They involve chopping off the final digit, multiplying it by some suitable constant, and then adding or subtracting that from the curtailed number.


• To test for divisibility by 13, chop off the last digit, multiply it by 4, and add that to the shortened number. So, to test 197, chop off the 7, multiply by 4 to give 28, and add that to 19 to give 47. As this is not divisible by 13, neither is 197.


• For 17, chop off the final digit, multiply by 5, and subtract that from the curtailed number. For example, starting with 272, chop off the 2, multiply by 5 to get 10, and subtract that from 27 to leave 17, which is divisible by 17, so 272 is too.


• For 19, chop off the last digit, double it, and add that to the curtailed number.


Similar tests work for larger primes too.


Difference of two squares


One of the simplest and most useful algebraic identities is the difference of two squares. This says that for any numbers a and b, a 2 − b2 = (a + b)(a − b). The proof is simply a matter of expanding brackets:


(a + b)(a − b) = a 2 + ab − ab − b2


This works equally well with any combination of numbers and algebraic variables. For instance, 152 − 32 = (15 + 3)(15 − 3) and x2 − 16 = (x + 4)(x − 4), because 16 is 42. One of many uses for this identity is as a technique for speeding up mental arithmetic.


Arithmetic using squares


One of the first tasks for people training for speed arithmetic is to memorise the first 32 square numbers. As well as being useful on their own, they can be used to multiply other pairs of numbers. The trick is to exploit the difference of two squares.


If the two numbers are both odd or both even, then there will be another number directly in the middle of them. For example, if we want to multiply 14 × 18, we note that 16 is in the middle. So we can rewrite the problem as (16 − 2) × (16 + 2). This is now the difference of two squares: 162 − 22. Since we have memorized that 162 = 256, the answer is 252.


If the two numbers are not both odd or both even, we can do it in two steps. For example, to calculate 15 × 18, split it up as (14 × 18) + 18. We calculated 14 × 18 = 252 above, so 15 × 18 = 252 + 18 = 270.


Casting out nines


Casting out nines is a useful technique for checking for errors in arithmetic. The basic idea is to add up the digits of the number, and subtract 9 as many times as possible, to get an answer between 0 and 8. So starting with 16,987 we add 1 and 6 to get 7. We can ignore the next 9. Then add 8 to get 15, and subtract 9 to get 6, add 7 to get 13, and subtract 9 to get an answer of 4. We can write N(16,987) = 4.


The point of this is that if we have calculated 16,987 + 41,245 as 58,242, we can check it as follows: N(16,987) = 4 and N(41,245) = 7. Adding these together, and casting out nines again gives an N-value for the question of 4 + 7 − 9 = 2. However, our answer produces N(58,242) = 3. As these do not match, we know we have made a mistake. In fact, 16,987 + 41,245 = 58,232.


The same trick works for subtraction, multiplication and integer division. For example, if we have calculated 845 × 637 as 538,265, we work out N(845) = 8 and N(637) = 7. Multiplying these together gives 56. Repeating the process, we get a result for the left-hand side of N(56) = 5 + 6 − 9 = 2. Since N(538,265) = 2 too, the two sides match, and the test is passed.


This technique amounts to checking the answer in arithmetic modulo 9 (see modular arthmetic). It is useful for detecting errors, but also gives false negatives (for instance, it cannot detect swapping two digits in the answer).


Trachtenberg arithmetic


Jakow Trachtenberg was a Russian mathematician and engineer, who fled to Germany after the 1917 revolution. A Jew and an outspoken pacifist, after the rise of Nazism he was captured and imprisoned in a concentration camp. During his seven-year incarceration, he developed a new system for doing mental arithmetic, with an emphasis on speed. These techniques form the basis of modern speed arithmetic. An example is Trachtenberg multiplication by 11.


In 1944, aided by his wife, Trachtenberg evaded a death sentence by escaping to Switzerland. There he founded the Mathematical Institute in Zürich, and taught his methods to generations of students.


Trachtenberg multiplication by 11


An example of Trachtenberg arithmetic is in multiplying a large number, such as 726,154, by 11. We take the digits of 726,154 from right to left. To start with, copy down the first digit: 4. Next, we add the first two digits: 5 and 4, to get 9. So far we have 94. Next we add the second and third 1 and 5, to get 6. This takes us to 694. We carry on adding digits in pairs, until we reach 7 and 2 which make 9. This takes us to 987,694. The final step is to copy down the last number, 7. So the answer is 7,987,694.


The only complicating factor is when a pair of digits makes 10 or more. To multiply 87 by 11, for example, we first write down 7. Now, 8 and 7 sum to 15. So we write down 5, and carry 1 to the next step. So far we have 57. The final step is usually to write down the final digit: 8. But this time we must also add the carried 1, so the final answer is 957.


This method can be summarized as ‘add each digit to its neighbour’, where ‘neighbour’ means the digit to its right. With a little practice, this makes multiplying by 11 almost instantaneous. Jakow Trachtenberg devised similar methods for multiplying by all the numbers from 1 to 12. The corresponding rule for multiplying by 12, for example, is ‘double each digit and add its neighbour’.



NUMBER SYSTEMS



Number systems


The most ancient number system is the one that humans have used to count objects for millennia: the system N of natural numbers consisting of 0, 1, 2, 3, 4, 5, … As civilizations advanced, more sophisticated number systems became necessary. To measure profit and debt, we need to incorporate negative numbers, giving Z, the system of integers.


Not everything can be measured using whole numbers. Half a day, or two thirds of a metre, show the need for a system extending beyond the integers. Today, the system which unites the fractions and the integers is known as Q, the rational numbers. As the Pythagoreans discovered, the rational numbers are not adequate for measuring every length. By plugging the gaps between rational numbers, we arrive at the system R of real numbers. In the 16th century, Italian algebraists working on solving equations realized that this was still not enough. The system that results from introducing a square root of −1 is C, the complex numbers.


Mathematical disciplines


Each number system can be studied and investigated on its own terms, and mathematicians have come to know the characters and idiosyncrasies of each. N and Q seem straightforward and welcoming on first meeting, but are highly secretive, and downright awkward to work with. This is the realm of number theory.


At the other end of the spectrum, C perplexes those who see it from a distance, but rewards anyone brave enough to get to know it, with its incredible simplicity and power. Complex analysis was one of the triumphs of 19th-century mathematics.


In between, R is the right arena for understanding lengths, as the ancient Greeks first realized. Much of geometry and topology is built from R.


Natural numbers


In a cave among the Lebombo mountains of Swaziland, archaeologists in the 1970s found a baboon’s leg bone, with 29 notches carved into it. It had been used as a tally, and the number 29 suggests a lunar calendar. Dating from around 35,000 BC, the Lebombo bone is the oldest mathematical artifact that we have. It illustrates the first number system, the one that humans have used to count, for millennia: the natural numbers.


0, 1, 2, 3, 4, 5, …


The system of natural numbers is known as N. From a theoretical perspective, the defining feature of N is mathematical induction. This says, roughly, that by starting at 0 and repeatedly adding 1, every number will eventually be reached. In fact, mathematicians are divided on whether N comprises 0, 1, 2, 3, 4, 5, … or 1, 2, 3, 4, 5, …, The point at issue is the naturalness (or otherwise) of 0.



The prehistory of zero



The entity we know as zero took many years to be accepted as a number in its own right. It required a leap of imagination to start thinking of 0, which represents nothing, as being something. The trigger for the ascent of zero was the development of place value notation. There are, of course, infinitely many numbers. But we don’t want to have to invent ever more symbols to describe them. Today, we use only the symbols 1–9, as well as 0, to describe any number, with the place of the number imparting as much information as its value. So in ‘512’, the ‘5’ means ‘five hundreds’, while in ‘54’ it means ‘five tens’.


This is an ingenious system, but what happens when you have no tens, as in two hundred and three? The ancient Babylonians simply left gaps. So they might have written two hundred and three as ‘2 3’ (of course, they did not use Arabic numerals or a decimal base, nevertheless this illustrates the idea). The problem is obvious: this can be easily mistaken for 23. By the third century BC, the Babylonians, in common with other cultures, had got around this by using a place holding symbol to indicate an empty column. Ancient Chinese mathematicians had a mathematical concept of zero, and indeed negative numbers, but their primitive notation lagged behind this deeper understanding.


Brahmagupta’s zero


It was in India that the Babylonian notation and Chinese conception of zero finally came together, in the development of 0 as a full-blown number. In AD 628, Brahmagupta formally defined it as:


the result of subtracting any number from itself


His arithmetical insights may seem obvious today, but they represent a real breakthrough in the history of human thought: ‘When zero is added to a number or subtracted from a number, the number remains unchanged; and a number multiplied by zero becomes zero.’


Brahmagupta’s work also laid out the basic theory of negative numbers, though these took longer to gain widespread acceptance.


The naturalness of 0


The history of mathematics contains many notable disagreements. Gottfried Leibniz and Isaac Newton feuded bitterly over the development of calculus. One of the most enduring disputes, and also one of the most uninteresting, with least prospect of resolution, is whether or not 0 should be classed as a natural number. The carver of the Lebombo bone would not have thought so; modern mathematicians are split. This book generally adopts the Zen-like philosophy that 0 is the epitome of naturalness. In some contexts, however, this leads to the annoyance that 0 is the first natural number, 1 is the second, 2 the third, and so on. So, when working with sequences, for example, it is more convenient to exclude zero.



Profit and debt



If numbers are principally used for counting, then what do negative numbers mean? How can you have −3 apples? The likely origin of negative numbers is in trade, where positive numbers represent profit, and negative numbers debt. Ancient Chinese mathematicians represented numbers with counting rods, and used red and black rods respectively to distinguish between positive and negative numbers. (These colours have been reversed in the western world, with the phrases ‘in the black’ and ‘in the red’ meaning ‘in credit’ and ‘in debit’, or debt, respectively.)


Negative numbers


Despite their ancient pedigree, negative numbers were long viewed with suspicion, even until the early 19th century. Many saw them as short-hand for something else (a positive quantity of debt instead of a negative quantity of profit), rather than legitimate numbers in their own right. Many mathematicians were content to employ them as tools for calculating, but if the final answer came out negative, it would often be abandoned as invalid. (Complex numbers held a similarly indeterminate status for several years.) However, the direction had been set in 628, when the Indian mathematician Brahmagupta wrote his treatise on the combined arithmetic of positive and negative whole numbers, and 0. We now call this the system of integers.


Integers


The integers are the whole numbers: positive, negative and zero. The system of integers is known as Z, standing for Zahlen, meaning ‘numbers’ in German. The advantage of Z is that quantities, such as temperature, which naturally come either side of 0 can be measured. Similarly, profits and debts can be measured on a single scale.


From a mathematical perspective, Z is better behaved than the narrower system of natural numbers N. While natural numbers can be added without leaving N, they cannot always be subtracted. To solve 2 − 3 you have to leave the natural numbers. In the integers, however, we can subtract any two numbers, b − a.


This also allows more equations to be solved. For example, x + 3 = 2 is an equation built solely from natural numbers, but it has no solution in that system. In the integers, however, it does. Indeed any equation x + a = b, where a and b are integers, can now be solved without leaving Z.


Rational numbers


Any number which can be expressed as a fraction of integers (whole numbers) is rational (meaning that they are ratios, rather than that they are logical or cerebral). Examples are 2 (since it equals 



2

1



), 



17

8



 and 





−

3



4



. The reasons for the development of fractions are self-evident. For measuring time, distance or resources, quantities such as half a month, a third of a mile, or three-quarters of a gallon are obviously useful.


Mathematicians denote the system of all rational numbers by Q (standing for quotient). This system augments the integers, and also brings mathematical benefits. Among the whole numbers, division is not well-behaved. You can divide 8 by 2, but not by 3. The rational numbers form a system called a field, where any numbers can be divided, as well as added, subtracted or multiplied. The solitary exception is 0, by which you can never divide (see division by 0).


Real numbers


Integers are a fixed distance apart. From one integer to the next is always a distance of 1. For the rational numbers this is no longer true; they can measure shorter distances. Starting at 1, there is no ‘next’ rational number. There are 
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, and rational numbers as close to 1 as you like. It seems strange, then, to insist that there are nevertheless ‘gaps’ among the rational numbers. But this is true, as the irrationality of 



2



 demonstrates. Drawing the graph of y = x2 − 2, at the place where it should cross the x-axis, it sneaks through a gap in the rational numbers.


Filling in these gaps is a technical procedure, which results in R, the system of real numbers. Also known as the real line, R can be thought of as all the points on an infinite line, which is now complete, meaning that there are no gaps in it.


Another way to think of R is as the collection of all possible infinite decimal expansions. Start with an integer, such as −14, then put a decimal point, followed by any infinite string of digits: −14.6936027480… Beware, however: some numbers, such as 0. 99999999. . ., have more than one decimal expansion.


Imaginary numbers


In 16th-century Italy, the mathematical community was focused on solving cubic and quartic equations. An obstacle to this work was that some simpler equations such as x2 = −1, do not have any solutions among the real numbers. It is a consequence of the rules for multiplying negative numbers that no real number, when squared, produces a negative answer. However, the Italian algebraists discovered that if they simply imagined a solution to this equation, and called it ‘i’, they could then use this in their calculations, and it would produce accurate, real results for solving other equations.


Multiples of i by real numbers, such as 3i, πi and − 



1

2





i



, are called imaginary numbers. This terminology of imaginary numbers contrasting with real numbers is misleading and regrettable, if historically understandable. The home of imaginary numbers is the system of complex numbers, which was set on a firm foundation by Rafael Bombelli in 1572. In fact, we know that the system of complex numbers can be built from the real numbers in a straightforward and explicit way. In truth, i is no more imaginary than π or −3. Unfortunately, however, the name has stuck.


Complex numbers


The system (C) of complex numbers is constructed by formally adding the imaginary numbers to the real numbers. Indeed, an individual complex number is nothing more than a real number (such as 



1

2



) added to an imaginary number (such as 3i). So 



1

2



 + 3i is a complex number. These can then be added, subtracted, multiplied and divided according to the rules of complex arithmetic.


The Argand diagram is the standard way to represent complex numbers, as a 2-dimensional plane. Then complex numbers look like familiar Cartesian coordinates, with the real axis horizontal, and the imaginary axis vertical. This complex plane is a wonderful setting for geometry, as geometric and algebraic ideas mesh perfectly.


In many ways, the complex numbers form the endpoint for the evolution of the concept of number. For the purposes of solving polynomial equations, the fundamental theorem of algebra says that they do everything that could possibly be required.


[image: Illustration]


Quaternions


At key moments in history, mathematicians have reconsidered what it means to be a number. Important moments were the introduction of 0, negative numbers and irrational numbers. The complex numbers form a natural stopping point for this expansion. The fundamental theorem of algebra says that every equation that we would want to solve can indeed now be solved.


However, we do not have to stop there. It is possible to extend the complex numbers to a still larger system. The complex numbers are built from pairs of real numbers (a, b), with a new ingredient i, the square root of −1. Every complex number can be written in the form a + ib. In 1843, Sir William Hamilton discovered a system based on quadruples of real numbers (a, b, c, d) with three new ingredients: i, j, k. Every quaternion can be written as a + ib + jc + kd. The fundamental rule of the quaternions is i2 = j2 = k2 = ijk = −1. Hamilton was so excited with his discovery that he carved this equation onto Broom Bridge in Dublin. (A plaque still commemorates the spot.)


There is a cost to this expansion. Multiplication is now non-commutative: it is not always true that A × B = B × A. Technically, then, the quaternions do not form a field. Following their discovery, quaternions became a major topic in mathematics. Though their popularity later waned, they remain in use today as they neatly capture the behaviour of rotations of 3- and 4-dimensional spaces.


Octonions


When Sir William Hamilton had discovered his system of quaternions, he wrote to his friend John Graves explaining his breakthrough. Graves replied ‘If with your alchemy you can make three pounds of gold, why should you stop there?’ As good as his word, Graves came up with an even larger system, now known as the octonions. It is built from octuples of real numbers: (a0, a1, a2, a3, a4, a5, a6, a7) along with seven new ingredients: i1, i2, i3, i4, i5, i6, i7, each of which squares to −1. So a general octonion is of the form a0 + i1a1 + i2a2 + i3a3 + i4a4 + i5a5 + i6a6 + i7a7.



Hurwitz’s theorem



Hamilton produced the quaternions, and Graves the octonions; how much further can this generalization be pushed? In 1898, Adolf Hurwitz proved that this really is the limit now. The real and complex numbers, the quaternions and the octonions are the only four normed division algebras: structures containing the real numbers which allow multiplication and division in a geometrically sensible way. The mathematical physicist John Baez described this family in 2002:


The real numbers are the dependable breadwinner of the family, the complete ordered field we all rely on. The complex numbers are a slightly flashier but still respectable younger brother: not ordered, but algebraically complete. The quaternions, being non-commutative, are the eccentric cousin who is shunned at important family gatherings. But the octonions are the crazy old uncle nobody lets out of the attic: they are non-associative.


Non-associative means that, if you multiply octonions A, B and C, you might find A × (B × C) ≠ (A × B) × C. This is a violation of one of the most basic algebraic laws. Despite (or because of) their craziness, the quaternions and octonions are useful for explaining other mathematical anomalies, such as the exceptional Lie groups.


RATIONAL NUMBERS


Reciprocals


Also known as the multiplicative inverse, the reciprocal of a number is what you need to multiply it by to get 1. So the reciprocal of 2 is 



1

2



, and vice versa. The reciprocal of a fraction is easily found: just turn it upside down. So the reciprocal of 



5

7



 is 



7

5



.


The reciprocal of x is denoted 



1

x



 or x–1, although for mathematicians (if not historians) reciprocation is a more fundamental notion than either division or taking negative powers. Reciprocation also provides a mirror between large numbers and small numbers. The reciprocal of one million is one millionth, and vice versa. There is one number which, uniquely, has no reciprocal. There is no value of x which satisfies x × 0 = 1, so 0 does not have a reciprocal.


Division


Division measures how many times one number fits into another. So 15 ÷ 3 = 5 because 3 fits into 15 exactly 5 times: 5 × 3 = 15. This equally applies to fractions, so 



1

2



÷



1

4



=

2

 because 



1

4



 fits into 



1

2



 exactly 2 times: 2 × 



1

4



 = 



1

2



.


An alternative view is to see division as being built from the more basic operation of reciprocation. (Of course the notation of the reciprocal is already highly suggestive of 1 being divided by 4.)


We can then understand m ÷ n as meaning m multiplied by the reciprocal of n, that is m × 



1

n



. So 15 ÷ 3 = 15 × 
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3



 = 5, and 
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×

4

=

2

. This easily extends to more general fractions. So 
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÷
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=
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5



×



4

3



=



8
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.


Equivalent fractions


In the world of whole numbers, there is just one way to denote any number: 7 is 7, and you cannot write it in any other way. (James Bond might fairly object that it can be prefixed with zeroes, but this presents no real ambiguity.) When we enter the realm of the rational numbers, that is to say fractions, something inconvenient happens. There are now several genuinely different ways to write the same number. For instance, 



2

3



 represents the same number as 



4

6



,

 



6

9



,

 



14

21



, and a host of other fractions which do not immediately seem the same. These are called equivalent fractions. If you start with a number, multiply it by 2, and then divide the result by 2, you would expect to arrive back where you started. This leads to the rule for equivalent fractions: if you multiply the top by some number (not including zero) and you do the same to the bottom, you get an equivalent fraction. So 



4
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=



2

3



, because 



4

6



=
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×
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3

×

2





.


Taking this backwards, if the top and bottom of the fraction are each divisible by some number, you can always cancel down to produce an equivalent fraction: 



12

15



 can be cancelled down since 12 and 15 are both divisible by 3. This is called simplifying and gives the equivalent fraction 



4

5



. For most purposes, the best (simplest) representation of a fraction is when all possible cancelling has been done. So the top and bottom of the fraction have no common factors (or are coprime). It is a consequence of the fundamental theorem of arithmetic that such a representation always exists, and is unique.


Multiplying fractions


The basic rule for multiplying fractions is simple: multiply the top, and multiply the bottom. So 
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×
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=



8
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. A shortcut is to do any possible cancelling at the beginning, instead of the end. So instead of calculating 



2
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×
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 as 



42

120



 and then simplifying, we spot that the top and bottom are both divisible by 2 and 3. Cancelling these gives 
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×



7
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=



7

20



.


Adding fractions


One of the commonest mistakes young students make is to think 



1

4



+



2

3



=



3

7



. The reasoning here is obvious, but a little thought-experiment quickly dismisses it: 



1

2



 a cake with another 



1

4



 of a cake clearly amount to 



3

4



 of a cake, not 



2

6



.


Some fractions are easy to add: those which have the same number on the bottom, or a common denominator. It is intuitive enough that 



1

5



+



2

5



=



3

5



. To add other pairs of fractions we first have to find an equivalent pair with common denominator. When one denominator is a multiple of the other, this is straightforward. To evaluate 
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+
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, first convert 



3
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 into 14ths, namely 



6

14



. Then we can add: 



6

14



+



5

14



=



11

14



.


When faced with 



3

4



+



1

6



, we need to find a common multiple of the two denominators, that is, a number into which both 4 and 6 divide. One possibility is to multiply them: 4 × 6 = 24. This will work perfectly well. But it will reduce the cancelling later on if we use their lowest common multiple, 12, instead. Now we convert each into 12ths, and add: 
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+
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=
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+



2
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=
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12



.


Recurring decimals


Recurring decimals are decimal expansions which repeat for ever without end. For example 



1

12



=

0.083333333

…

 This is conventionally written as 

  0.08

  

    

      3

      ˙

    

  

. Others have longer repeating patterns: 



2

7



 = 0.285714285714285714…, which is written as 0.285714 (or 

  

   0.

    2

    ˙

   

   8571

    4

    ˙

   

   



). Recurring decimals can always be rewritten as exact fractions, and so represent rational numbers.


Irrational numbers such as 



2



 have decimal expansions which continue for ever without repeating, and so are not recurring decimals.


Some numbers have both terminating and recurring representations: the number 1 is an example.




  

   0.

    9

    ˙

   

   

 = 1


The fact that the recurring decimal 

  

   0.

    9

    ˙

   

   



 (that is, 0.99999999…) is equal to 1 is one of the most resisted facts in elementary mathematics. Students often insist that the two numbers are ‘next to each other’, but not the same. Or they say that something should happen ‘after all the 9s’. Here are three different proofs that the two are equal. (Of course any one of them is enough.)


1 Switching between fractions and decimals, 



1

3



 = 0.3˙ (that is, 0.333333…) Multiplying both sides by 3, we get 1 = 0.9˙.


21 − 0.9˙ = 0.0˙ Obviously, 0.0˙ = 0. In other words the distance between 1 and 0.9˙ is 0, so it must be that they are the same.


3 Let x = 0.9˙. Multiplying by 10, we get 10x = 9.9˙. Subtracting the first equation from the second shows that 9x = 9, and so x = 1.


The last of these is the template for converting any recurring decimal into a fraction. Let x = 0.4˙. Multiplying by 10, we get 10x = 4.4˙. Subtracting the first equation from the second shows that 9x = 4, and so x = 



4

9



.


Irrational numbers


‘Rational number’ is the mathematicians’ term for a fraction. Numbers, such as π, 



2



 and exponential e, which can never be written exactly as fractions, are therefore irrational. (Again this has nothing to do with being illogical or stupid.) The Pythagorean cult in ancient Greece attached mystical significance to the integers, and believed that all numbers were rational. According to legend, when Hippasus of Metapontum first proved the irrationality of 



2



 around 500 BC, he was drowned for heresy.



The irrationality of 



2







The fact that 



2



 is irrational is a famous example of proof by contradiction. Being irrational means that 



2



 can never be written exactly as a fraction. So the proof begins by assuming that it can, say 



2



=



a

b



. The aim is now to produce a contradiction from this assumption.


If a and b have any common factors then the fraction can be cancelled down: we will assume this has been done. So a and b have no common factors. Now, the definition of 



2



 means that when you multiply it by itself you get 2. So 



a

b



×



a

b



=

2

. That is, 

  

    

      a

      

        2

      

    

    

      b

      

        2

      

    

  

  =

  2

, and so a2 = 2b2. So a2 is even. Now it must be that a is itself even, because the square of any odd number is odd. So a is a multiple of 2. Say a = 2c. Then (2c)2 = 2b2, and 4c2 = 2b2. But then b2 = 2c2, and so b2 is even, and therefore b is even and so divisible by 2. But we assumed that a and b had no common factors, and now we have shown that they are both divisible by 2, which is the required contradiction.


This proof, often attributed to Hippasus of Metapontum around 500 BC, can be adapted to show that the square root of any prime number (in fact any non-square whole number) is irrational.


The problem of the ray


We work on the plane equipped with Cartestian coordinates, and we plant a flag at all the points with integer coordinates (1, 1), (2, 5), (−4, 7), and so on. Now imagine that a laser beam is fired from the origin out across the plane. Will it eventually hit a flagpole or not?


The answer depends on the gradient m of the straight line followed by the ray. The equation of this line is y = mx. If the ray hits the post at (p, q), then it must be that q = mp, and so m = 



q

p



. Since q and p are whole numbers, this means that m is a rational number. So the answer is that if m is rational the ray will hit a post, and if m is irrational it will not.


[image: Illustration]


The problem of the reflected ray


König and Szücs considered an interesting adaptation of the problem of the ray. Instead of posts, they imagine a square whose internal walls are mirrors. A laser is fired from one corner into this mirrored box. What sort of path will it follow? (If the ray ever hits a corner of the box, we assume it bounces back in the direction it came.)


Again the answer depends on the initial gradient m of the ray. If m is rational, then after some time the ray will start retracing its former path, and will then repeat the same loop over and over again. On the other hand, if m is irrational, then the ray never repeats itself. The resulting line will be dense inside the box. This does not mean that it will literally pass through every point of the interior of the box (so it is not quite a space-filling curve). But if you choose any point inside the box, and specify some distance, no matter how tiny, then eventually the ray will pass within that distance of your chosen point.


[image: Illustration]


FACTORS AND MULTIPLES


Multiplying negative numbers


Suppose Anna pays Bob $3 every day, and has been doing so for some time. So, each day, Bob’s balance changes by +3, and Anna’s by −3. In 2 days from now, Bob’s balance will be +6, compared with today, illustrating that 2 × 3 = 6. On the other hand −2 days from now (that is two days ago) Bob had $6 less, that is −6, relative to today.


Writing these in a table we get:








	   2 × 3 =   6







	   1  × 3 =  3







	   0 × 3 =  0







	– 1 × 3 = –3







	– 2 × 3 = –6











(The middle row reflects that we are comparing Bob’s balance to today’s level. After 0 days, of course it has changed by 0 dollars!)


Now consider Anna’s money, which changes by −3 dollars each day. So, in +2 days time, it will be −6, compared with today’s level, illustrating that 2 × −3 = −6. What about −2 days from now? Anna had $6 more, that is, a relative level of +6. Putting these in a table we get the multiplication table for −3:








	   2 × –3 =   –6







	   1  × –3 =  –3







	   0 × –3 =    0







	– 1 × –3 =    3







	– 2 ×   3 =    6











Another way to think of this is that multiplying something by a negative number always changes its sign between +/−, but multiplying by a positive number always leaves the sign unchanged. So, starting with 3 and multiplying by −2 changes its sign: +3 becomes −6. But this applies to negative numbers too: starting with −3 and multiplying by −2 changes its sign: −3 becomes +6.



Division by 0



Dividing by 0 is probably the commonest mathematical mistake of all. Even experienced researchers can tell horror stories of finding division by 0 lurking within their proofs. There is a good reason why division by 0 is forbidden, coming straight from the meaning of ‘divide’. We write that 8 ÷ 2 = 4 because 4 is the number which, when multiplied by 2, gives 8. So to calculate 8 ÷ 0 we would need to find a number which, when multiplied by 0 gives 8. Obviously, there is no such number. On the other hand, to calculate 0 ÷ 0, we would need a number which, when multiplied by 0, gives 0. But every number satisfies this!


Differential calculus studies fractions of the form 

  

    x

    y

  

 as x and y both get closer and closer to 0. Depending on the precise relationship between x and y, this fraction can approach any fixed number, or explode out to infinity, or cycle around seemingly at random.


A proof that 1 = 2


Let a = b. Multiplying both sides by b, we get ab = b 2. Subtracting a2 from both sides gives ab − a2 = b2 − a2. Factorizing each side gives a(b − a) = (b + a)(b − a). Cancelling (b − a) from both sides shows that a = b + a. But a = b, so this says that a = 2a, and so 1 = 2. The algebra here is pure camouflage, and endless variations are possible (the more apparently sophisticated, the better). The basic argument is 1 × 0 = 2 × 0 (which is undeniably true), therefore 1 = 2. The false step in the ‘proof’ is the cancellation of (b − a) from both sides, which amounts to hidden division by 0.


The fundamental theorem of arithmetic


In Proposition 7.30 of Euclid’s Elements, an important property of prime numbers is recognized: if a prime number p divides a × b, then it must also divide either a or b. This is not true of composite numbers such as 10, which divides 5 × 4, but neither 5 nor 4.


A consequence of this, also known to the ancient Greeks, is the fundamental theorem of arithmetic, which says two things:


1 Every positive whole number can be broken up into prime factors.


2 This can happen in only one way.


So, 308 can be broken down into 2 × 2 × 7 × 11, and the only other ways of writing 308 as a multiple of primes are re-orderings of this (such as 11 × 2 × 7 × 2). So we know immediately, without checking, that 308 ≠ 2 × 2 × 2 × 3 × 13.


As its name suggests, this fact is a foundation for the whole of mathematics. It is peculiar to the system of natural numbers, however. In the rational numbers, nothing similar holds, as there are many different ways to divide up a number. For example 

2

=



4

3



×



3

2



 and 

2

=



7

8



×



16

7



.


Highest common factor


The highest common factor (or greatest common divisor) of two natural numbers is the largest number which divides each of them. For example, the highest common factor of 18 and 24 is 6: there is nothing bigger which divides both.


The hcf of two numbers can be found by dividing them up into primes, and multiplying together all their common prime factors (including any repetitions). For example, 60 = 2 × 2 × 3 × 5 and 84 = 2 × 2 × 3 × 7. So the hcf of 60 and 84 is 2 × 2 × 3 = 12. The same method extends to finding the hcf of more than two numbers. Numbers like 8 and 9, whose highest common factor is 1, are called co-prime.


Lowest common multiple


The lowest common multiple of two natural numbers is the smallest number into which they both divide. So the lowest common multiple of 4 and 6 is 12, since this is the first number appearing in both the 4 and 6 times tables. The lcm of two numbers can be found by multiplying them together, and then dividing by their highest common factor. So the lcm of 60 and 84 is 60 × 84 is 





60

×

84



12



=

420

.


Perfect numbers


A whole number is perfect if all its factors (including 1 but not the number itself) add together to make the original number. The first perfect number is 6: its factors are 1, 2 and 3. The next is 28 whose factors are 1, 2, 4, 7 and 14. Perfect numbers have aroused curiosity since the Pythagoreans, who attached a mystical significance to this balancing out of additive and multiplicative components. Perfect numbers continue to attract the attentions of mathematicians today, and their study is divided between the even perfect numbers and the odd perfect numbers.


[image: Illustration]


Even perfect numbers


It was around 300 BC, in Euclid’s Elements, that the first important result on perfect numbers was proved. Proposition 9.36 proved that if 2k − 1 is prime, then 



  

    

      

        (

        

          2

          

            k

          

        

        −

        1

        )

      

      

        (

        

          2

          

            k

          

        

        )

      

    

    2

  



 is perfect. Centuries later this result would be revisited, once prime numbers of the form 2k – 1 had come to be known as Mersenne primes. So, to rephrase Euclid’s result, if M is a Mersenne prime, then 





M

(

M

+

1

)



2



 is an even perfect number.


The converse to Euclid’s theorem is also true, as the 10th-century scientist Ibn al-Haytham noticed. If an even number is perfect, then it must be of the form 





M

(

M

+

1

)



2



 where M is a Mersenne prime. For example, 

6

=





3

×

4



2



 and 

28

=





7

×

8



2



. However Ibn al-Haytham was not able to prove this result fully. That had to wait for Leonhard Euler, around 800 years later.


This result, sometimes known as the Euclid–Euler theorem, establishes a one-to-one correspondence between even perfect numbers and Mersenne primes. So discoveries of new Mersenne primes immediately give new even perfect numbers. Similarly, questions on one side translate to questions on the other. In particular, this holds for the biggest question in the area: whether the list of even perfect numbers is finite or infinite.


Odd perfect numbers


No-one has yet found an odd perfect number and most experts today doubt their existence. However, no-one has managed to prove that such a creature cannot exist either. In any case, their likely non-existence is no obstacle for mathematicians to study them in depth. By investigating what an odd perfect number will look like if it does exist, mathematicians hope either to pin down where one might be found, or gather ammunition for an eventual proof by contradiction.


In the 19th century, James Sylvester identified numerous conditions which will have to be met by any odd perfect number. Sylvester believed that for such a number to exist ‘would be little short of a miracle’. Certainly, if there are any, they will have to be extremely large. In 1991, Brent, Cohen and te Riele used a computer to rule out the existence of any odd perfect number shorter than 300 digits long.


Amicable pairs


Most numbers are not perfect. When you add up their factors you are likely either to come up short (in the case of a deficient number) or overshoot (for an abundant number). But sometimes abundant and deficient numbers can balance each other out. For example, 220 is abundant: its factors are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110, which sum to 284. The factors of 284 are 1, 2, 4, 71 and 142, which total not to 284, but back to 220.


[image: Illustration]


Mathematicians of the classical and Islamic worlds were fascinated by amicable pairs of numbers such as this. In the 10th century, Thâbit ibn Kurrah discovered a rule for producing amicable pairs, which was later improved by Leonhard Euler.


At the time of writing, 11,994,387 different amicable pairs are known, the largest being 24,073 digits long. As with perfect numbers, it remains an open question whether there are really infinitely many of them. Every known pair consists either of two odd or two even numbers, but it has never been proved that this must always be the case.


Sociable numbers


An amicable pair consists of two numbers where the process of adding up all the factors for each number takes you from one to the other. But longer cycles can exist too: adding up the factors of 12,496 gives 14,288. Next we get 15,472, then 14,536 and 14,264, before getting back to 12,496. So these form a cycle of length 5. Numbers like this are known as sociable. At the time of writing, the longest known cycle of sociable numbers has length 28. It is: 14316, 19116, 31704, 47616, 83328, 177792, 295488, 629072, 589786, 294896, 358336, 418904, 366556, 274924, 275444, 243760, 376736, 381028, 285778, 152990, 122410, 97946, 48976, 45946, 22976, 22744, 19916, 17716.


[image: Illustration]


Aliquot sequences


Start with any number S1, and add up all its proper factors to get a new number S2. If S1 = S2, then we have a perfect number. Otherwise, repeat the process: add up all the proper factors of S2, to get a new number S3. If S1 = S3, then S1 and S2 form an amicable pair. Otherwise we can continue, to get S4, S5, S6 and so on. This is called an aliquot sequence (aliquot is the Latin word for ‘several’). The aliquot sequence of 95 is 95, 25, 6, 6, 6, … This has landed on a perfect number, where it stays. Similarly, if an aliquot sequence ever lands on a member of an amicable pair, or any sociable number, then it will simply cycle around for ever.


[image: Illustration]


An alternative is for the sequence to hit a prime number, which marks its death. The sequence starting with 49, for example, proceeds next to 8, and then to 7. But the next number must be 1 (since 7 has no other factors), and after that 0.


In 1888, Eugène Catalan conjectured that every aliquot sequence will end in one of these ways. But some numbers are throwing this conjecture into serious doubt: 276 is the first of many numbers whose eventual fate is unknown. Around 2000 terms of its aliquot sequence have been calculated to date and so far it is simply growing and growing. After 1500 terms, the numbers are over 150 digits long.


INDUCTION


Proof by induction


How can you prove infinitely many things in one go? One prized technique is mathematical induction, which is used to prove results involving natural numbers. Suppose I want to prove that every number satisfies some property, call it X. Induction attacks the natural numbers in order. The base case of the argument is to show that 0 is an X-number. The inductive step is to show that if 0, …, k are all X-numbers, then k + 1 must be one too. If this can be done, then no number can ever be the first non-X-number, so there cannot be any non-X-numbers at all. So all numbers are X-numbers.


Induction resembles a mathematical domino-effect: the base case pushes over the first domino. Then the inductive step shows that the first domino must knock over the second, and the second will knock over the third, and so on, until no domino is left standing. Induction is a defining feature of the natural numbers: it does not apply directly to the real numbers for example. Adding the numbers 1 to 100 is an example of induction in use, and light-hearted takes on it include the bald man paradox, and the proof that every number is interesting.


1729 is interesting


1729 = 13 + 123 = 93 + 103


When G.H.Hardy visited the extraordinary mathematical virtuoso Srinivasa Ramanujan, he had travelled in a taxi numbered 1729. He remarked to his friend that the number seemed rather a dull one. ‘No,’ replied Ramanujan immediately, ‘it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways’. A lesser mind than Ramanujan’s could instead have argued that every natural number is interesting, a fact for which there is a famous light-hearted ‘proof’ by induction.



A proof that every number is interesting



The base case is the number 0: unquestionably among the most interesting of all numbers. The inductive step assumes that the numbers 0, 1, 2, …, k are all interesting. The next one is k + 1 which must be either interesting or not. If not, then it is the first non-interesting number, but this would make it of unique interest: a contradiction. So, it must be interesting. This completes the inductive step, and so by induction, every number is interesting.


This is, of course, a parody of a proof, rather than the real thing. Interestingness is not rigorously defined, and more accurately operates on a subjective sliding-scale. In reality some numbers are more interesting than others (and it depends on who you ask). This ‘proof’ requires an artificial inflexibility whereby every number is deemed either absolutely interesting or not.


Adding up 1 to 100


In a classroom in 18th-century Germany, primary school teacher Herr Büttner set his class the task of adding up all the numbers from 1 to 100. Hoping for a nice, quiet lesson, he was surprised when a boy put up his hand within seconds, to give the answer: 5050. The boy grew up to become a towering figure in the history of mathematics: Carl Friedrich Gauss. The young Gauss must have worked out the formula for adding up successive numbers: 

1

+

2
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⋯
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n
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n

×

(

n

+

1

)



2



. For n = 3, we add up the first three numbers: 1 + 2 + 3 = 6: the same answer given by 
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1

)



2



. Gauss realized that all he needed to do was substitute n = 100 into this formula to get his answer: 





100
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+

1

)



2






There is a geometric way to see this, by considering the nth triangular number. It can be proved more rigorously by induction.


Adding 1 up to n, proof by induction


We shall prove by induction that 

1

+

2

+

⋯

+

n

=





n
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2



. The base case involves adding up the first zero numbers. Obviously the answer is 0. The right-hand side is 





0
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1
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2



, so the formula holds for n = 0. Now, the inductive step: we suppose that the formula holds for some particular value of n, say k. So 
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. We want to deduce that the corresponding thing holds for the next term, n = k + 1. It follows that 
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. After a little algebraic sleight of hand, the right-hand side comes out as 
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, which is the correct formula for n = k + 1.


Adding the first hundred squares


The formula for adding up 1 to n can be written neatly in sum notation as:
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There is a similar formula for the sum of the first n square numbers, which can also be proved by induction:
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So if we want to know 12 + 22 + 32 + … + 1002, all we have to do is put in n = 100 into this formula: 
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×
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×

201



6



, which is 338,350.


To sum cubes, we have the formula:




  

    ∑

    

      j

      =

      1

    

    

      n

    

  

  

    j

    

      3

    

  

  =

  

    

      

        n

        

          2

        

      

      (

      n

      +

      1

      

        )

        

          2

        

      

    

    4

  




(Notice that this is just the first formula squared.) For higher powers, we get:
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To give a general formula for higher powers requires more work, and involves the Bernoulli numbers, an important sequence in number theory.


REPRESENTATIONS OF NUMBERS


Place value and decimal notation


Counting from 1 to 9 is easy; all we need to do is remember the correct symbols. But something strange happens when we arrive at 10. Instead of a new symbol, we start recycling the old ones. This is a deceptively sophisticated system, which took many centuries to evolve. A crucial moment was the arrival of a symbol for 0.


In place value notation, the symbol ‘3’ does not just represent the number 3. It can also stand for 30, 300 or 0.3. The position of the symbol carries as much meaning as the symbol itself. Whole numbers are represented as digits arranged in columns. On the right are the units (ones), and with each step left we go up a power of 10. In a place value table, the number 1001 is shown as:






	
Thousands



	Hundreds


	Tens


	Units







	1


	0


	0


	1








This is called the decimal system, because 10 is its base. Other choices of base are perfectly possible.


Bases


The fact that 10 is the base of our counting system is surely due in part to evolution gifting us 10 fingers rather than 8 or 12. From a mathematical perspective, it is an arbitrary choice. You can form an equally good counting system based on any number. Indeed a binary system, that is base 2, has some advantages (at least in the computer age). It should be stressed that this discussion is only concerned with how to represent numbers using symbols. Whether written as 11 in decimal notation, 1011 in binary, B in hexadecimal, or 10 in base 11, the fundamental object is the same throughout. It is no more affected by these cosmetic alterations than a human is by a change of hat.


Today we mostly work with decimals, but not entirely. Telling the time is not decimal: there are 60 seconds in a minute, 60 minutes in an hour. This is a hangover from ancient Babylon, whose mathematicians and bureaucrats worked in base 60. The ancient Chinese divided the day into 100 ke (around 

  

    1

    4

  

 of an hour), until the adoption of the western system in the 17th century. Plans to replace hours and minutes with a decimal system have come and gone several times since then, only ever meeting with fleeting success, such as during the French revolution.


Binary


Binary means ‘base 2’. So, counting from the right, the place values represent units (or ones), twos, fours, eights, sixteens, etc. (powers of 2). To translate a decimal number into binary, we break it down into these pieces. For example, 45 = (1 × 32) + (1 × 8) + (1 × 4) + (1 × 1), giving a binary representation of 101101. Going the other way, we translate binary to decimal as follows: 11001 has 1 in the units column, 0 in the twos column, 0 in the fours, 1 in the eights, and 1 in the sixteens. So it represents 1 + 8 + 16 = 25.


[image: Illustration]


Binary is the most convenient base for computers, since the 1 and 0 can be stored as the ‘on’ and ‘off’ settings of a basic component. These binary digits are known as bits. Eight bits make a byte, which is used to measure computer memory. The way in which strings of bits can carry data is the subject of information theory. Like so much of modern mathematics, binary was first conceived by Gottfried Leibniz in the 17th century.


Binary is not only useful for computers. Using your fingers to represent bits, it is possible to count to 31 on one hand, or 1023 on two.



Hexadecimals



Binary may be the easiest numerical representation for a computer but, to the human eye, a long string of 1s and 0s is not easy to decipher. For the most part, we deal in decimals instead. These have the disadvantage of not being easy to convert into binary. For this reason, some computer scientists prefer to work in hexadecimals, base 16. The digits 0–9 have their ordinary meanings, and A, B, C, D, E, F stand for 10, 11, 12, 13, 14 and 15 respectively. The decimal ‘441’ would be written in hexadecimals as ‘1B9’.


Translating between binary and hexadecimals is much easier than between binary and decimals. We just group the binary expression into clumps of four digits, and translate each in turn. So 1111001011 gets grouped as ‘(00)11 1100 1011’, which translates to hexadecimals as 3CB.


Standard form


Thanks to our decimal system, the number 10 has several uniquely useful properties. Multiplying or dividing by 10 has the effect of sliding the digits one place left or right, relative to the decimal point. For example, 47 ÷ 10 = 4.7, and 0.89 × 10 = 8.9. Exploiting this, every number can be expressed as a number between 1 and 10, multiplied or divided by some number of 10s, which can be written as a positive or negative power of 10. This is called standard form. For example, 3.14 × 106 and 2.71 × 10−5 are both written in standard form.


To convert an ordinary number, such as 14,100, into standard form, first slide the decimal point so that it gives a number between 1 and 10. In this case it gives 1.41. To get back to 14,100 we need to multiply by 10 four times. So in standard form 14100 becomes 1.41 × 104. For small numbers such as 0.00173, the procedure is the same. First slide the decimal point (right this time) to give 1.73. This time, to get back to the original number, we need to divide by 10 three times. So we get a negative power: 1.73 × 10−3.


Standard form is useful as it allows the order of magnitude of the number to be gauged quickly (by the power of 10), and meshes well with the metric system.


Surds


Because 



2



 is an irrational number, it cannot be written exactly as a fraction. Worse, because its decimal expansion goes on for ever and never repeats it cannot be written down exactly as a terminating or recurring decimal. In fact, the best way to write 



2



 exactly is as ‘



2



 ’. So when the result of a calculation involves 



2



, there is a good argument for maintaining precision by keeping it in this form, as for example in 3 + 



2



. Expressions like this are called surds. (This word comes from the Latin surdus, meaning ‘voiceless’ reflecting al Al-Khwarizmi’s take on irrational numbers, against the more ‘audible’ rationals.)


What goes for 



2



 applies equally to the square root of any non-square natural number. Although it makes sense to keep these expressions as surds rather than approximating them with decimals or fractions, we usually want to simplify these expressions as far as possible. The key mathematical ingredient in working with surds is the observation that 
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 we simplify it: 
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Rationalizing the denominator



If we have an expression like 
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, we often want to simplify to it a form where the square roots occur only on the top of the fraction. To achieve this, we can always multiply the top and bottom of any fraction by the same thing without changing its value. This trick is in choosing the right multiplier. In this case choose 
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In general, if 

a

+



b



 is the denominator of a fraction, it can be rationalized by multiplying top and bottom by 

a
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b



. This will transform the denominator into the whole number 
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-

b

 (see difference of two squares).


Large numbers


Large numbers have always held a great fascination for humans (or at least humans of a certain disposition). Jaina mathematicians of ancient India attached deep mystical significance to enormous numbers. They defined a rajju as the distance a God travels in six months. (Gods travel a million kilometres in every blink of the eye.) Building on this, they imagined a cubic box whose sides are one rajju long, filled with wool. A palya is then the time it will take to empty the box, removing one strand per century. The Jains also developed a theory of different denominations of infinity, anticipating Georg Cantor’s set theory by over 2000 years.


Archimedes’ Sand Reckoner


In his work the Sand Reckoner of around 250 BC, Archimedes estimated the number of grains of sand needed to fill the universe. His solution was that no more than 1063 grains should be required. This number is of no great interest, marred as it is by the heliocentric cosmology of Archimedes’ time, where the stars were assumed a fixed distance from the sun. Nevertheless the text marks an important conceptual distinction: that between very large natural numbers and infinity.


The Sand Reckoner was no idle game. Archimedes was correcting a common misconception of his time: that there is no number which can measure anything so huge, that sand is essentially an infinite quantity. To do this, he had to invent a whole system of notation for large numbers. He got as far as ‘a myriad myriad units of a myriad myriad numbers of the myriad myriadth period’ or, as we would write it, 108 × 1016. Modern notation, such as taller towers of exponentials, can take us far beyond this.


Towers of exponentials


How can large numbers best be described, using modern mathematics? We could start by trying to write them down in ordinary decimal place value notation. Following this strategy, a googol is:


10, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000


It is much easier to say ‘1 followed by a hundred zeroes’, or 10100. This illustrates that exponentiation (raising to a power) is excellent at capturing large numbers. (The term ‘googol’ was coined by Milton Sirotta, aged 9, in 1938.)


For most purposes, exponentiation is all we need. The number of atoms in the universe is around 1080, and the number of possible games of chess is estimated at 10123. But we can always concoct larger numbers. A googolplex is 1 followed by a googol zeroes. In exponential notation that is:


1010, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000


It is more satisfactory to write 
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. (The term ‘googolplex’ was chosen by Milton Sirotta’s uncle, the mathematician Edward Kasner.) This suggests how to extend the system, by building ever taller towers of exponentials, such as 101010101010. To build larger numbers than towers can give us, we need Knuth’s arrow notation.


Knuth’s arrows


Donald Knuth occupies a place in every mathematician’s heart. As the creator of the typesetting programming TeX, he is largely responsible for what modern mathematics looks like, in the pages of countless books and journals. In 1976, Knuth also devised an efficient notation for writing down very large numbers. It is based on iteration. To start with, multiplication is iterated (repeated) addition: 4 × 3 = 4 + 4 + 4. Then exponentiation is iterated multiplication: 43 = 4 × 4 × 4. Exponentiation is the first arrow, so 
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↑

3

 means 43 = 64. The second arrow is the first arrow iterated: 
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, which means 
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. This is considerably more than a googol, while 
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, which dwarfs a googolplex.


Similarly the third arrow is the second iterated: 
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, which is 
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 where the tower is 
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 storeys high. This is a stupendously large number, which is already almost impossible to express in any other way. We continue by defining the fourth arrow as the third iterated, and so on. The next problem is that the number of arrows might grow unmanageable. To counter this, we may write 4{n}3 as short-hand for 

4

↑↑↑

…

↑

3

 where there are n arrows. For still larger numbers, we need more powerful notation, such as Bowers’ operators.


Bowers’ operators


The Texan amateur mathematician Jonathan Bowers has devoted a great deal of time into finding and naming ever larger numbers. At time of writing, his largest is a colossus he has called meameamealokkapoowa oompa. Bowers’ basic idea is a process to far extend Knuth’s arrows. His first operator is {{1}} defined by:
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and so on. This is enough to locate one of the largest of all mathematical constants, Graham’s number. But we can continue with a second operator {{2}} defined by:










m

{

{

2

}

}

2

=

m

{

{

1

}

}

m









m

{

{

2

}

}

3

=

m

{

{

1

}

}

(

m

{

{

2

}

}

2

)









m

{

{

2

}

}

4

=

m

{

{

1

}

}

(

m

{

{

2

}

}

3

)










and so on. Then the operators {{3}}, {{4}}, etc. can all be defined analogously.


We begin the next level with {{{1}}}, which behaves in relation to {{·}} as {{·}} does to {·}, and so on. We can press on, with a new function which counts the brackets: we write [m, n, p, q] to mean m{{ … {p}… }}n where there are q sets of brackets. Of course, Bowers does not stop here, pushing this line of thought to ever more outrageous heights. But some numbers will always remain out of reach, such as Friedman’s TREE(3).


Graham’s number


Graham’s number is often cited as the largest number ever put to practical use. The previous record holder was Skewe’s number, a puny 
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. (Whether Graham’s number still holds the crown depends on whether you class the likes of TREE(3) as useful.) While Skewes’ number can easily be written as a short tower of exponentials, it is impossible to describe Graham’s number without the aid of some heavy machinery, such as Bowers’ operators. In these terms, Graham’s number lies between 3{{1}}63 and 3{{1}}64.


To give some idea of its magnitude, we start with 333 (which is 7,625,597,484,987). Next, we build a new tower of threes, 333 storeys high. Call this number A1 (this is already unimaginably large). Then we build A2 as a tower of 3s with A1 many storeys, and A3 a tower of 3s with A2 many storeys. We keep repeating this process, all the way to AA1. This number is B1 (in Knuth arrow notation it is 3↑↑↑↑3). Then we form B2 as 3↑↑…↑3 where there are B1 arrows. In short-hand that is B2 = 3{B1}3. Next, B3 = 3{B2}3, B4 = 3{B3}3, and so on. Graham’s number lies between B63 and B64. Employed by Ronald Graham in 1977, it is an upper bound for a problem in Ramsey theory, for which a conjectured true solution is 12.


Friedman’s TREE sequence


In the 1980s, the logician Harvey Friedman discovered a rapidly growing sequence he dubbed TREE, deriving from a problem in Ramsey theory. At first glance, the problem does not seem too troublesome, and the sequence starts innocuously enough with TREE(1) = 1, TREE(2) = 3. But then comes TREE(3), where we hit a wall. TREE(3) renders even Bowers’ operators powerless. Friedman realized that any attempt to describe TREE(3) in ordinary mathematical language would necessarily involve ‘incomprehensibly many symbols’ (e.g more than Graham’s number). Essentially, it is indescribable. You could write out Bowers’ operators at higher and higher levels until the end of the universe, without making the slightest impact on it.


Friedman’s TREE sequence grows so fast that ordinary mathematics (as formalized in Peano arithmetic) simply cannot cope, making this one of the most concrete established examples of Gödelian incompleteness.



Continued fractions



A continued fraction is an object such as:
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This can be written more briefly as: 

  

   a+

    b

    

     c+

   

    

    d

    

     e+

   

    

    f

    

     g+

   

   


Usually, a, b, c, d, e, f, g … are integers. It is a difficult problem to decide whether a sequence a, b, c, d … produces a continued fraction which converges to some fixed number or one which diverges to infinity.


However, plenty of examples of convergent continued fractions are known. The simplest infinite continued fraction is that for the golden section:
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Another nice example is that for the square root of 2:
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Leonhard Euler showed that if a continued fraction continues for ever and converges, it must represent an irrational number. He then deduced for the first time that the number e is irrational by showing that it is equal to:
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These are all simple continued fractions, because their numerators (top rows) are all 1.


Non-simple continued fractions


A non-simple continued fraction for e is:
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One of the earliest continued fractions was discovered by Lord William Brouncker, in the early 17th century:
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This can be manipulated to produce a continued fraction for π. But π’s simple continued fraction remains mysterious. Ramanujan’s continued fractions are not only non-simple, but are not even built from whole numbers.



Ramanujan’s continued fractions



According to his friend and mentor G.H.Hardy, the Indian virtuoso Srinivasa Ramanujan, had ‘mastery of continued fractions … beyond that of any mathematician in the world’. Ramanujan discovered numerous spectacular formulas involving continued fractions, many of which were discovered in unorganized notebooks after his death. Not only did Ramanujan not provide proofs of his formulas, often he did not even leave hints as to how he performed these astonishing feats of mental acrobatics. It was left to later mathematicians to verify his formulas, and some of his highly individual notation remains undeciphered to this day.


An example of his work on continued fractions is this, involving the golden section ϕ:
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(The numerical value of this is around 0.999999, which may be why Ramanujan found it intriguing.) This is a special case of the celebrated Rogers–Ramanujan fraction. Discovered independently by Leonard Rogers, this is an ingenious system for calculating the value of
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for different values of q.


Forming continued fractions


Suppose we want to convert the ordinary fraction 



43

30



 into a simple continued fraction. There are two basic steps: first we separate the integer part from the fractional part, which means splitting 



43

30



 into 1 + 
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30



. Next we turn the fractional part upside down, below a 1. So our fraction becomes:
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Now we repeat the process with 
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. First separate out the integer part: 
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. Then turn the fractional part upside down, 
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. Putting this together with the previous step takes us to:
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Separating out the integer part of 
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 produces the final result:
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Because we started with a rational number, the process ended after finitely many steps. For an irrational number, this process will produce an infinitely long continued fraction. This is a simple continued fraction, because all the components are whole numbers, and all the numerators are 1. Every real number can be expressed as a simple continued fraction, and this can be done in exactly one way.


π’s simple continued fraction


A simple continued fraction looks like this:
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We can write the resulting sequence as (a, b, c, d, …).


A perplexing question involves the simple continued fraction for π. The sequence begins: 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, … and has been calculated to 100 million terms by Eric Weisstein, in 2003. The underlying pattern, however, remains mysterious. By truncating the sequence after a few steps, good fractional approximations to π can be found: 
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, etc.


Khinchin’s constant


Here is a recipe for producing a new number K from any real number x.


1 x can be expressed as a simple continued fraction, in a unique way. So, just as for π, we get a sequence (a, b, c, d, e …) which encapsulates x.


2 Next we can write a new sequence: 
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3 This sequence will get closer and closer to some fixed number. This is K, the geometric mean of the sequence (a, b, c, d, e, f, …).


This may seem a convoluted process, but the punch-line is truly astounding: almost every value of x produces the same value of K. This amazing number is approximately 2.685452… and is known as Khinchin’s constant, after its discoverer Aleksandr Khinchin, in 1936.


It is not true that literally every value of x reveals the same value. Rational numbers do not produce K, for example, and neither does e. However, these exceptions are infinitely outnumbered by those which do have Khinchin’s constant hiding behind them. If we were able to pick a real number at random, the probability that it would yield K would be 100% (exactly). It is all the more surprising then, that no-one has yet managed to prove that any individual value of x does produce K. π appears to (as does K itself), but no full proofs have yet been found. K itself is very secretive and is not even known to be irrational.



TRANSCENDENTAL NUMBERS



Transcendental numbers


An irrational number is one which cannot be written as a fraction of whole numbers. 



2



 is an example. Although 



2



 is irrational, there is a sense in which it is not too far away from the safety of the whole numbers. There is a quick route back from 



2



, using only multiplication: 



2



 × 



2



 = 2, a whole number.


Transcendental numbers such as π are not like this. π × π is not a whole number, and neither is 3π × π × π, or 1001π5 + 64π. In fact, there is no route from a transcendental number back to the whole numbers, using addition, subtraction, multiplication and division. The technical definition is that a number a is transcendental if there is no polynomial built from integers which produces an integer when a is substituted in. Every transcendental number is irrational. However, many irrational numbers, such as 



2



 and indeed all roots and powers of rational numbers, are non-transcendental. Non-transcendental numbers are called algebraic.


The transcendence of π and e


The first transcendental numbers were discovered by Joseph Liouville in 1844. The most famous of his numbers is 0.110001000000000000000001000… The 1s appear in the 1st, 2nd, 6th, 24th digit, and so on, in the sequence of factorials. The appearance of transcendental numbers was certainly striking, although Liouville’s numbers seemed more like artificial curiosities than objects of any profound importance.


However, in 1873 Charles Hermite cemented the importance of transcendence within mathematics by showing that e is transcendental. In 1882 Ferdinand von Lindemann added π to the list. This was enough to settle the ancient problem of squaring the circle. The importance of transcendental numbers was established, but no-one could have predicted Georg Cantor’s revelation of just how many they are.


Cantor’s uncountability of transcendental numbers


Georg Cantor’s set theory split open the old notion of infinity as a single entity. His contrasting proofs of the uncountability of the real numbers and the countability of the rational numbers showed that the irrational numbers infinitely outnumber their rational cousins.


Cantor went beyond this, however. The algebraic numbers include the rational numbers but also many of the more common irrational numbers, such as 



2



. Cantor proved that, as well as all the rational numbers, the algebraic numbers are also countable. This had a stunning consequence: transcendental numbers, rather than being exotic anomalies, are the norm. In fact, almost every real number is transcendental. The familiar numbers that we use the most, the integers, rationals and algebraic numbers, are just a tiny sliver in a universe of transcendence.



Transcendental number theory



Georg Cantor had shown that almost all real numbers are transcendental. It is all the more surprising then that specific examples are hard to find. Liouville’s numbers, e, and π were for some time the only known examples. Hilbert’s 7th problem of 1900 first addressed the core of the difficulty: the way that transcendence and exponentiation interact.


In answer, the Gelfond–Schneider theorem of 1934 provided the first solid rule of transcendence: it said that if a is an algebraic number (not 0 or 1), and b is an irrational algebraic number, then ab is always transcendental. So 
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 are transcendental, for example. Over the 20th century this beginning was built upon, notably in results such as the six exponentials theorem, and Alan Baker’s pioneering work in the 1960s, for which he won the Fields medal.


Baker’s work investigated sums of numbers of the form b ln a. His results extended the Gelfond–Schneider theorem to products of numbers of the form ab (where a and and b are both algebraic, a is not 0 or 1, and b is irrational). This hugely increased the stock of known examples of transcendental numbers, by including the likes of 
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. However, the phenomenon of transcendence remains extremely difficult to pin down. Even today, the status of many numbers, including ee and e + π, is unknown. Most of these unresolved questions would follow from Schanuel’s conjecture.


Six exponentials theorem


The six exponentials theorem was proved by Siegel, Schneider, Lang and Ramachandra. It attacks the central problem of transcendental number theory: how often exponentiation produces a transcendental result. It states that if a and b are complex numbers, and x, y and z are complex numbers, then at least one of eax, ebx, eay, eby, eaz and ebz is transcendental. The caveats are that a and b must be linearly independent, meaning that neither is a multiple of the other by a rational number (so a ≠ 



3

4



 b, for example). Similarly none of x, y and z can be reached by multiplying the other two by rational numbers and adding the results together (so x ≠ 



1

3



 y + 



2

5



 z, for example).


It is an open question, known as the four exponentials conjecture, whether the same holds when z is omitted. This would follow from Schanuel’s conjecture.


Schanuel’s conjecture


Since the beginning of transcendental number theory, a critical problem has always been how transcendence behaves under exponentiation. In 1960, Stephen Schanuel made a sweeping conjecture which, if proved, would transform our understanding of the whole phenomenon. In fact Schanuel’s conjecture would subsume almost every known theorem about transcendental numbers, and at the same time settle hundreds of open questions, including the four exponentials conjecture, and the transcendence of ee and e + π.


Schanuel’s conjecture is phrased in the technical language of Galois theory, and says, in essence, that there are no nasty surprises in store: transcendence and exponentiation interact in as simple a fashion as could be hoped. According to the number theorist David Masser, Schanuel’s conjecture ‘is generally regarded as impossibly difficult to prove’. However, in 2004 Boris Zilber applied techniques of model theory to provide strong, indirect evidence that Schanuel’s conjecture should be true. It remains to be seen whether this insight can be captured as a proof of this momentous conjecture.


RULER AND COMPASS CONSTRUCTIONS


Ruler and compass constructions


The world of geometry is filled with exotic figures and shapes. Mostly we consider them from a lofty theoretical perspective, but how can we actually construct them? Taking this question to its limit, which of these shapes can be constructed using just the simplest of tools: a ruler to draw a straight line, and a compass (pair of compasses) to draw a circle? This was a question which fascinated ancient Greek mathematicians.


Sometimes this process is called straight-edge and compass construction to make clear that the ruler is not to be used for measuring: it is just a tool for drawing straight lines. Similarly, the compass can only be set to the length of any line which has already been constructed (or to a randomly chosen length).


As specific examples were conquered (such as the construction of Gauss’ heptadecagon), the underlying algebraic principles began to become clear. It was the work of Pierre Wantzel in the 19th century, and the development of constructible numbers, which removed this question entirely from geometry, and placed it in the realm of algebraic number theory.


Bisecting a line


We are presented with two points on a page: the challenge is to find the point exactly half way between them, using only a ruler and compass. The solution, provided as Proposition 1.10 of Euclid’s Elements is as follows:


1 Join the two points with a straight line (A).


2 Next, set the compass to more than half the distance between the points. Putting the pin in one of the points, draw an arc crossing the line. Keeping the compass at the same setting, do the same thing at the other point.


3 The two arcs should meet at two places (as long as you drew them large enough). Join these with a straight line (B).


4 The place where the line A and line B meet is the midpoint we want.


In fact this construction does a little more than just find the midpoint: line B is the perpendicular bisector of line A.


[image: Illustration]



Constructing parallel lines



A basic axiom of Euclidean geometry is the parallel postulate, which says that, for any line L, and any point A not on L, there is another line through A, parallel to L. Can this be constructed by a ruler and compass?


Proposition 1.31 of Elements shows that it can. First set your compass to any length greater than that from A to L, and keep it at this setting throughout the whole construction.


1 Draw a circle (X) centred at A. This will cross L at two places; pick one and call it B.


2 Draw another circle (Y) centred at B. This will cross L at two places too. Pick one and call it C.


3 Draw a third circle (Z) centred at C. This will cross the circle X at B, and at a second point. Call this D.


4 The line AD is parallel to L, as we wanted.


[image: Illustration]


Trisecting a line


Since a line can be bisected using only a ruler and compass, it can also be divided into four, eight or sixteen equal parts, just by repeating that procedure. But can a line be divided into three equal parts? In Proposition 6.9 of his Elements, Euclid shows that it can:


1 To divide the line AB into three, first draw any other line (L) through A.


2 Pick any point (C) on L, and then use the compass to find another point D on L so that the distance from A to C is the same as that from C to D.


3 Repeat this, to find a third point E on L so that the distance from A to C is the same as that from D to E, so that C is one third of the way from A to E.


4 Now join E to B with a new line M.


5 Draw a line N through C, parallel to M.


6 The point where N crosses AB is one third of the distance from A to B.


Step 5 requires use of the construction of parallel lines.


[image: Illustration]


Lines of rational length


The method for trisecting a line easily generalizes to allow a segment to be divided into as many pieces as you like. If we begin with a line of length 1, we can now create a line of length 



x

y



, where 



x

y



 is any rational number. First divide the line into y equal pieces. Next place x such pieces end to end (by measuring off chunks of a long line with the compass). This shows that all rational numbers are constructible. Some, but not all, irrational numbers are constructible too, since the square root is a constructible operation.



Bisecting an angle



We are given a sheet of paper containing two lines meeting at an angle: the challenge is to divide that angle in half, using only a ruler and compass.


The solution, supplied as Proposition 1.9 of Euclid’s Elements, is as follows:


1 Position the compass at the vertex (V) of the angle, set to any length. Draw an arc which crosses the two lines, say at points A and B.


2 Ensuring that the compass is set large enough, put the compass at A and draw circle.


3 Keeping the compass at the same setting, draw another circle centred at B.


4 The two circles should meet; call this point C.


5 Join V to C with a straight line: this bisects the angle.


[image: Illustration]


Trisecting an angle


The procedure for bisecting an angle is not especially complicated. Altogether harder is the question of whether a general angle can be trisected: divided into three equal angles. This was a problem tackled by Archimedes, among others. He discovered how to do it using an extra tool which allowed him to draw an Archimidean spiral. Neither he nor anyone else could manage the task exactly using just a ruler and compass, however. Approximate methods were found: one such is to draw a chord across the angle, and trisect that line.


The conundrum remained unsettled until 1836 when Pierre Wantzel finally proved algebraically that, in general, angles cannot be trisected using only a ruler and compass. Some specific angles, such as right angles, are trisectable however.


Trisecting an angle using a ruler, compass, and Archimedean spiral


Suppose the angle is centred at the origin O, and is formed by a horizontal line and an inclined line. Draw the spiral centred at O. At some point, call it A, the curve will cross the inclined line.


By definition, at every point on the spiral, the distance to the origin is equal to the angle formed, since r = θ. At this stage, trisecting the angle becomes equivalent to trisecting the distance from A to O. Of course this is a problem which can be solved. Say the resulting distance is X. We set our compass to X, and use this to find a point B on the spiral which is a distance X from the origin. This solves the original problem.


[image: Illustration]



Constructing an equilateral triangle



The very first proposition, 1.1, of Euclid’s Elements shows that an equilateral triangle can be constructed with ruler and compass. We assume that we are given a segment of straight line (say with ends at A and B). The challenge is to find another point C so that ABC is an equilateral triangle. Euclid’s solution is as follows:


1 Set the compass to the distance from A to B. Draw an arc centred at A, passing through B.


2 Without changing the compass setting, draw and arc centred at B passing through A.


3 The two arcs should meet: that place is C.


[image: Illustration]


Constructing squares and pentagons


The first regular polygon is an equilateral triangle, which is constructible. The second is a square. Proposition 1.46 of Euclid’s Elements shows that this is constructible too. The procedure hinges on being able to create a right angle at a point A on a line L. This can be done by taking points B and C an equal distance on either side of A, and then bisecting the segment BC.


The Elements also contains instructions for constructing a regular pentagon (see illustration), as well as a hexagon and pentadecagon (15-gon).


[image: Illustration]


Gauss’ heptadecagon


Euclid’s methods for constructing regular polygons could be extended to other polygons. Altogether mathematicians were able to construct a regular n-gon, where n was one of 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, … This situation remained essentially unchanged for 2000 years. It was highly unsatisfactory: could 7, 9 and 11-sided polygons not be constructed? If not, what was the meaning of this sequence? Or had the right methods simply not yet been found?


In 1796, Carl Friedrich Gauss stunned the mathematical community by announcing that he could construct a regular heptadecagon (or 17-gon). The explanation lay in his analysis of constructible polygons via Fermat primes. Gauss was so thrilled with his discovery that he requested the shape be carved on his tombstone. The stonemason refused, protesting that it would look like a circle. In his home town of Braunschweig in Germany, Gauss’ beloved heptadecagon is represented in a statue to his honour.



Constructible polygons



Gauss’ construction of the heptadecagon may make the sequence of constructible polygons seem even more impenetrable: 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 40, 48, 60, 64, … However, he had not simply stumbled upon the fact that a 17-sided polygon is constructible, he had shown that if a number n is of a specific form, then a regular n-gon is constructible. The form depended on the prime factorization of n: if n is a power of 2, then the n-gon is certainly constructible. Otherwise, for n to be constructible, the only other primes allowed to occur in the factorization of n are Fermat primes: those of the form 22m + 1, such as 3 (= 2 20 + 1) and 5 (= 221 + 1), and of course 17 (= 222 + 1). What’s more, each of these could only appear once in the factorization of n.


So Gauss’ criterion guaranteeing constructability is that n = 2k × p × q … × s, where k is any natural number, and p, q, …, s are distinct Fermat primes. Gauss conjectured that this condition was also necessary: an n-gon is only constructible if this condition holds. This was proved in 1836 by Pierre Wantzel. Whether more constructible polygons will be found depends only on whether there are any more Fermat primes.


Constructing a square root


In 2.14 of Euclid’s Elements, he showed how to construct a square root, using just a ruler and compass. Suppose we are given two lengths 1 and x. (For convenience we’ll suppose that x > 1, but the method can easily be adapted if x < 1.) The challenge is to construct a new line, of length 



x



.


1 First put these two lengths end to end, to give a line AC of length x + 1. This can be done with the compass. Mark the point B where the two segments meet.


2 Bisect AC, to give a point D.


3 Set the compass to the length AD, and draw a circle centred at D.


4 Next, draw a straight line L through B, perpendicular to AC.


5 Mark a point E where L crosses the circle.


6 The line EB has length 



x



.


The reason this works is that DE has the same length as DC, namely half that of AC, so 





x

+

1



2



. Also DB has length 
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2



. So, by Pythagoras’ theorem in DBE, if y is the length of EB, then 
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. A little algebra completes the argument.
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Squaring the circle


The challenge is as follows: we are given a circle, and required to construct a square of the same area, using only a ruler and compass. Also known as the quadrature of the circle, this problem has baffled mathematicians since the time of the ancient Greeks. It is intimately tied to an even older problem: the value of π.


Suppose the circle has radius of 1. Then its area is π × 12 = π. So the sides of our square need to have length 



π



. Once we have a line of this length, building the square is straightforward. So the nub of the problem is to construct this length.


Since square roots are constructible, it is enough to construct a line of length π. The key to the problem then is whether or not π is constructible. In 1836, Pierre Wantzel showed that if π is a transcendental number, then it is not a constructible number. The final piece of the puzzle arrived in 1882, when the Lindemann–Weierstrass theorem implied that π is indeed transcendental, and so squaring the circle is impossible.


Ramanujan’s approximate circle-squaring


In 1914, Srinivasa Ramanujan found a very accurate approximate method for squaring the circle. Although π is not constructible, he found an extraordinary constructible approximation to it, namely 





2143

22



4



, accurate to eight decimal places. The number 



2143

22



 can be constructed as a rational length, and then the procedure for constructing a square root can be applied twice to give 





2143

22





 and then 





2143

22



4



. If the original circle has a radius of 1 metre, the resulting square will have sides accurate to the nearest nanometre.


Doubling the cube


In around 430 BC, Athens suffered a terrible plague. The Athenians consulted the Oracle of Apollo, on the island of Delos. To cure the plague, the Oracle said they must construct a new altar, double the size of the present one. When they consulted Plato, his response was that the Oracle intended to shame the Greeks for their neglect of geometry. So goes the tale of the origin of the problem of doubling the cube. Whatever the truth of the story, this problem did indeed preoccupy ancient mathematicians. Essentially it is a problem of a ruler and compass construction (albeit in three dimensions): we are given a cube and challenged to construct a new one of double the volume.


Suppose that the original cube has sides of 1 unit. Then it has volume 1, and so the new cube should have volume 2. This means that it must have sides of length 



2

3



. Constructing this length is core of the problem. Plato’s friend Menaechmus managed to solve it, with extra tools beyond simple ruler and compass: essentially, he realized that the parabolas y2 = 2x and y = x2 would intersect at the point whose x-coordinate was 



2

3



 (an astonishing insight since Cartesian coordinates were still thousands of years away). The problem was eventually proved impossible in 1836 by Pierre Wantzel, who demonstrated that 



2

3



 is not a constructible number.


Constructible numbers


Many problems of ruler and compass construction boil down to this: given a line of length 1, and a number r, is it possible to construct a line of length r? If so, we say that r is constructible. Obviously integers, such as 4, are constructible: draw a long line, and then use the compass to measure off four successive segments of length 1. Numbers of the form 



m

n



 are also constructible: the method of trisecting a line easily extends to give lines of rational length.


So far, this shows that every rational number is constructible. This is not all however: taking square roots is also a constructible procedure. Pierre Waltzel proved that this is now everything we can do: the only constructible numbers are those obtainable from the rational numbers by adding, subtracting, multiplying, dividing, and taking square roots. As this suggests, the constructible numbers form a field.


In particular, all constructible numbers are algebraic, meaning that no transcendental number, such as π, is constructible. But not every algebraic number is constructible: 



2

3



 is not, (although 



2

4



 is constructible, since it equals 





2





)

. This insight handed Wantzel the solutions to several problems which had been outstanding for thousands of years: the trisection of the angle, and doubling the cube. He completed Gauss’ work on constructible polygons, and made major inroads into the question of squaring the circle.


DIOPHANTINE EQUATIONS


Number theory


The term number theory might seem a good description of the whole of mathematics, but the focus of this subject is the system of ordinary whole numbers (or integers) rather than the more rarefied real numbers or complex numbers. The whole numbers are the most ancient and fundamental of all mathematical structures. But, below their surface, lie some of the deepest questions in mathematics, including the Riemann hypothesis and Fermat’s last theorem.


The ancient Babylonians were interested in number theory, as is evidenced by tablets such as Plimpton 322, dating from around 1800 BC. An important development in the classical period was Diophantus of Alexandria’s 13-volume Arithmetica, around AD 250. Modern number theory began in the works of the 17th-century French magistrate Pierre de Fermat.


Algebraic and analytic number theory


The two major concerns of contemporary number thoery are the behaviour of the prime numbers and the study of Diophantine equations: the formulas which describe relationships between whole numbers. These two topics roughly correspond to the two principal branches of the subject: algebraic number theory and analytic number theory.


The tools of the two subjects are different. The algebraic approach studies numbers via objects such as groups and elliptic curves, while analytic number theory uses techniques from complex analysis, such as L-functions. Langland’s program provides the tantalizing suggestion that these two great subjects may be different perspectives on the same underlying objects.


Modular arithmetic


Modular arithmetic is the arithmetic of remainders. Saying ‘11 is congruent to 1 modulo 5’, written ‘11 ≡ 1 (mod 5)’, means that 11 leaves a remainder of 1 when divided by 5, because 11 = 2 × 5 + 1. It is only the remainder (1) which matters here, not the number of times that 5 goes into 11 (in this case 2). Similarly, we could write ‘6 + 6 ≡ 0 (mod 4)’ or ‘8 × 3 ≡ 2 (mod 11)’.


Modular arithmetic is widespread not just within mathematics, but in daily life. The 12-hour clock relies on our ability to do arithmetic modulo 12, and if you work out what day of the week it will be in nine days’ time, you are doing arithmetic mod 7. Modular arithmetic is useful in number theory for providing information on numbers whose exact values are unknown, through powerful results such as Fermat’s little theorem, and Gauss’ quadratic reciprocity law.


Chinese remainder theorem


Some time between the third and fifth centuries AD, the Chinese mathematician Sun Zi wrote: ‘Suppose we have an unknown number of objects. When counted in threes, two are left over. When counted in fives, three are left over. When counted in sevens, two are left over. How many objects are there?’ In modern terms, this is a problem in modular arithmetic: what is needed is a number n, where n ≡ 2 (mod 3), n ≡ 3 (mod 5), and n ≡ 2 (mod 7).


The Chinese remainder theorem states that this type of problem always has a solution. The simplest case involves just two congruences: if a, b, r and s are any numbers, then there is always a number n where n ≡ a (mod r), and n ≡ b (mod s). The caveat is that r and s must be coprime, meaning they have no common factors. This immediately extends to solving any number of congruences (again providing the moduli are all coprime). The solution n is not quite unique: 23 and 128 both solve Sun Zi’s original problem. In general there will be exactly one solution which is at most the product of all the moduli, in this case 105 (3 × 5 × 7).


Fermat’s little theorem


A cornerstone of elementary number theory, Fermat’s little theorem comes from noticing that 152 − 15 is divisible by 2, and 1017 − 101 is divisible by 7. In 1640 Pierre de Fermat wrote to Bernard Frénicle de Bessy with the statement of his little theorem: if p is any prime, and n is any whole number, then n p − n must be divisible by p.


Writing this using modular arithmetic, we get:


n p − n ≡ 0 (mod p) or n p ≡ n (mod p)


If n itself is not divisible by p, this is equivalent to:






n



p

−

1





≡

1







(

mod

p

)




Fermat added the characteristic comment ‘I would send you the proof, if I did not fear its being too long’. The first known proofs are due to Gottfried Leibniz, in unpublished work around 1683, and Leonhard Euler in 1736.



Quadratic reciprocity law



The great German mathematician Carl Friedrich Gauss loved this result, which he called the ‘Golden Theorem’. First stated by Leonhard Euler in 1783, Gauss published its first complete proof in 1796.


For two odd primes p and q, this law describes an elegant symmetry between two questions: whether p is a square modulo q, and whether q is a square modulo p. It asserts that these questions always have the same answer, except when p ≡ q ≡ 3(mod 4) when they have opposite answers. Take 5 and 11, for example. Firstly 11 ≡ 1 (mod 5), and 1 is a square. So the theorem predicts that 5 mod 11 should also be a square. This is not immediately obvious, but on closer inspection, 42 ≡ 16 ≡ 5 (mod 11).


Along with Pythagoras’ theorem, the quadratic reciprocity law is one of the most profusely proved results in mathematics. Gauss alone produced eight proofs during his life, and over 200 more now exist, employing a wide variety of techniques.


Diophantus’ Arithmetica


Known as ‘the Father of Algebra’, Diophantus of Alexandria lived around AD 250. Although the ancient Babylonians had begun probing integer solutions to quadratic equations, it was in Diophantus’ thirteen volume Arithmetica that the study of Diophantine equations, named in his honour, was begun in earnest. This work marked a milestone in the history of number theory, but was believed to have been lost in the destruction of the great library at Alexandria. However in 1464 six of the books resurfaced and became a major focus for European mathematicians, most notably Pierre de Fermat.


Diophantine equations


A Diophantine equation is a polynomial much like any other. The difference is that we are only interested in whole numbers, or integers. Only integers can appear in the polynomial (although it makes no difference if we also allow fractions). Most importantly, we are only interested in integer solutions to the equation.


So, instead of analysing the real or complex numbers x, y, z which satisfy x3 + y3 = z3, we ask whether there are any whole numbers which satisfy it. (In this case, the answer is no, as follows from the most famous of all Diophantine problems, Fermat’s Last Theorem.) The reason for their enduring interest is that polynomials are the right way to express possible (or impossible) relationships between integers. For instance, Catalan’s conjecture says that 8 and 9 are the only pair of integer powers next to each other.


Egyptian fractions


A unit fraction is one whose numerator is 1: such as 



1

2



, 



1

3



, or 



1

4



 (but not 



3

4



). Of course, any rational number can be written as unit fractions added together: for example 



3

4



=



1

4



+



1

4



+



1

4



. A more interesting question is which rational numbers can be arrived at by adding unit fractions together, using only ones which are different.


For instance, 



1

2



+



1

4



 is a representation of 



3

4



 as an Egyptian fraction, so-called because this problem intrigued ancient Egyptian mathematicians. The Rhind papyrus dating from around 1650 BC includes a list of fractions of the form 



2

n



 written in this form.


In 1202 Leonardo of Pisa (better known as Fibonacci) wrote his book Liber Abaci, in which he proved that every fraction can be split up in this way. He also provided an algorithm for finding this representation. But this has not completely settled the matter: questions still remain about how many unit fractions are needed to represent a particular number, which include the Erdős-Straus conjecture.


Erdős–Straus conjecture


Every known fraction of the form 



4

n



 (with n at least 2) can be written as the sum of three unit fractions (that is, fractions whose numerator is 1). So, for every such n, there are three whole numbers x, y, z where 



4

n



=



1

x



+



1

y



+



1

z



. For example, for n = 5, a solution is 



4

5



=



1

2



+



1

5



+



1

10



. The claim that this is always true, formulated by Paul Erdős and Ernst Straus in 1948, has so far resisted all attempts at proof and counterexample.


Bézout’s lemma


The highest common factor (highest common denominator) of 36 and 60 is 12. Named after Étienne Bézout, Bézout’s lemma says that there are integers x and y where 36x + 60y = 12. On closer inspection, one solution is x = 2 and y = −1. But there will be infinitely many others too, such as x = 7 and y = −4. This can be rephrased as a statement about Diophantine equations: if a and b have highest common factor d, then Bézout’s lemma guarantees that the linear equation ax + by = d has infinitely many integer solutions. Bézout’s lemma is the key to understanding all linear Diophantine equations.


Linear Diophantine equations


The simplest Diophantine equations are ones which just involve plain x and y (no x2 or xy or higher powers): linear equations, such as 6x + 8y = 11. Any such equation defines a straight line on the plane. So asking whether it has integer solutions is the equivalent to looking for points on this line which have integer co-ordinates.
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Bézout’s lemma deals with the most important case: it says ax + by = d has a solution when d is the highest common factor (highest common denominator) of a and b (and in this case it has infinitely many solutions). In fact, the equation ax + by = d only has solutions when d is a multiple of the hcf of a and b. So the equation 6x + 8y = 11 has no integer solutions, since the hcf of 6 and 8 is 2, and 11 is not a multiple of 2.


If a linear equation has any integer solutions, then it will have infinitely many. This result extends to equations in more variables, such as 3x + 4y + 5z = 8. Here, the highest common factor of 3, 4 and 5 is 1. Since 8 is a multiple of 1, this equation will have infinitely many integer solutions.



Archimedes’ cattle



Around 250 BC, Archimedes sent a letter to his friend Eratosthenes, containing a challenge for the mathematicians of Alexandria. It concerned the Sicilian ‘cattle of the Sun’, a herd consisting of cows and bulls of various colours. We will write W for the number of white bulls and w for the number of white cows, and similarly X and x for the black ones, Y and y for the dappled, and Z and z for the brown.


Archimedes described the herd through a system of linear Diophantine equations:
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The challenge was to find the make-up of the herd by solving the equations. We do not know how the Alexandrians fared. The first known solution is due to the European mathematicians who rediscovered it in the 18th century: W = 10,366,482, X = 7,460,514, Y = 7,358,060, Z = 4,149,387, w = 7,206,360, x = 4,893,246, y = 3,515,820, z = 5,439,213, a total of 50,389,082 head of cattle.


However, Archimedes warned that anyone who solved this problem ‘would not be called unskilled or ignorant of numbers, but nor shall you yet be numbered among the wise’. In order to attain perfect wisdom, the problem had to be solved with two extra conditions included: W + X should be a square number, and Y + Z should be a triangular number. This removes the problem from the sphere of linear equations, and makes it substantially harder. In 1880 A. Amthor described a solution, based on reducing the problem to the Pell equation, a2 − 4729494b2 = 1. With the dawn of the computer age this was fleshed out to give the full 206,545-digit answer: incomparably more cattle than there are atoms in the universe.


Pell equations


The easiest Diophantine equations to manage are the linear ones, where there is a straightforward procedure to determine whether or not there are any integer solutions. The picture becomes much murkier once squares are introduced, as the unknown status of perfect cuboids demonstrates.


Around 800 BC the Hindu scholar Baudhayana gave 



577

408



 as an approximation to 



2



. It is likely that this came from studying the equation x2 − 2y2 = 1, which has x = 577 and y = 408 as a solution (as well as x = 17, y = 12). This, x2 − 2y2 = 1, is the first example of a Pell equation. Another is x2 − 3y2 = 1, and generally x2 − ny2 = 1, where n is any non-square natural number. (In fact they have little to do with John Pell, but Leonhard Euler confused him with William Brouncker, and the name stuck.)
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Pell equations were studied much earlier in India, notably by Brahmagupta in AD 628. The chakravala method, attributed to Bhāskara II in the 12th century, is a procedure for solving Pell equations by continued fractions. It was spectacularly deployed to solve the awkward case x2 − 61y2 = 1, to find minimum solutions of x = 1,766,319,049 and y = 226,153,980. Hermann Hankel called chakravala ‘the finest thing achieved in the theory of numbers before Lagrange’. It was Joseph Louis Lagrange who gave the first rigorous proof that x2 − ny2 = 1 must have infinitely many integer solutions for any non-square number n.


Euler bricks


Pythagorean triples allow us to construct a rectangle whose sides and diagonals are all whole numbers. For instance, a rectangle with sides of 3 and 4 units will, by Pythagoras’ theorem, have diagonals of length 5. An Euler brick generalizes this to three-dimensions: it is a cuboid (see irregular polyhedra) all of whose lengths are whole numbers, as are the diagonals of each face. The smallest Euler brick has sides of lengths 44, 117 and 240 units, and was discovered in 1719 by Paul Halcke. In 1740, the blind mathematician Nicholas Saunderson discovered a method to produce infinitely many Euler bricks. This approach was later augmented by Leonhard Euler himself. However, no way of listing every possible Euler brick is yet known.
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We can translate the geometry into algebra using Pythagoras’ theorem. An Euler brick with sides a, b, c and face diagonals d, e, f must satisfy the Diophantine equations:


a2 + b2 = d 2, b2 + c2 = e2 and c2 + a2 = f 2


The most sought after Euler bricks are the elusive perfect cuboids.


Perfect cuboids


Euler bricks have intrigued mathematicians since the 18th century: they are cuboids where the edges and face-diagonals all have integer lengths. A natural extension is to require that the cuboid’s body-diagonal should also be a whole number. This describes a perfect cuboid. The problem is that no-one has ever seen one: whether or not they exist is a significant open problem.


In terms of Diophantine equations, what is required are integers a, b, c (representing the cuboid’s edges), d, e, f (representing its face-diagonals), and g (representing its body-diagonal) which satisfy
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a2 + b2 = d 2, b2 + c2 = e2 and c2 + a2 = f 2,


as well as


a2 + b2 + c2 = g2


No perfect cuboid has ever been found. It is known that if one does exist one of its sides must be at least 9 billion units long. However in 2009, Jorge Sawyer and Clifford Reiter discovered the existence of perfect parallelepipeds (see irregular polyhedra). The smallest has edges of 271, 106, 103, parallelogram faces with diagonals of 101 and 183, 266 and 312, 255 and 323, and body-diagonals of 374, 300, 278 and 272.
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Sums of two squares


An ancient mathematical question asks: which natural numbers can be written as two square numbers added together? Fermat’s two square theorem answered this for prime numbers: the only ones which can are those of the form 4m + 1 (as well as 2 = 12 + 12). But what happens for composite numbers? 6 and 14 cannot, but 45 can: 45 = 32 + 62. For large numbers like 6615, finding the answer could require a lot of experimentation.


Fermat’s result suggests that prime numbers are especially important, and the main obstacle are the (4 m + 3)-primes: 3, 7, 11, 19, 23, 31, etc. The solution (which can be deduced from Fermat’s theorem) first breaks a whole number n into primes using the Fundamental theorem of arithmetic. Then the theorem states that n can be written as the sum of two squares if each (4 m + 3)-prime appears in this break-down an even number of times. So 6 = 2 × 3 fails, since 3 appears once (an odd number of times). But 45 = 32 × 5 can be written as a sum of two squares, since 3 appears twice (an even number of times). With no further need for experiment, we now know that 6615 can never be written as a sum of two squares, because 6615 = 33 × 5 × 72, where 3 appears three times.


Lagrange’s four square theorem


In 1621, Claude Bachet translated the six surviving books of Diophantus’ Arithmetica (dating from around AD 250) from ancient Greek into Latin. These volumes would play an important role in the development of modern number theory, most notably in the hands of Pierre de Fermat. Bachet was also a mathematician in his own right. He noticed that implicit in Diophantus’ work was a remarkable claim: that every whole number could be written as the sum of four square numbers. For example, 11 = 32 + 12 + 12 + 02 and 1001 = 302 + 82 + 62 + 12.


Fermat later made the same observation, known as Bachet’s conjecture. But the first published proof for all natural numbers was by Joseph-Louis Lagrange in 1770. This important theorem is generalized further by Fermat’s polygonal number theorem and Waring’s problem.


Legendre’s three square theorem


Leonhard Euler published the first proof of Fermat’s two square theorem in 1749, essentially settling the question of which numbers could be written as sums of two squares. In 1770, Joseph-Louis Lagrange proved his four square theorem, showing that every natural number can be written as the sum of four squares.


A puzzle remained: which numbers can be written as the sum of three squares? Most numbers can. The first which cannot are 7, 15, 23, 28, 31, 39, 47, 55, 60, …


In 1798, Adrien-Marie Legendre unravelled this sequence. It consists of numbers one less than a multiple of 8: 7, 15, 23, 31… along with this sequence repeatedly multiplied by four: 28, 60, 92, 124,… and 112, 240, 368, 496,… and so on. In short, Legendre’s result is that every number can be written as the sum of three squares, except for those of the form 4n(8k − 1).


Triangular numbers


In cue-sports such as billiards and pool, the pack comprises 15 balls arranged as an equilateral triangle at the start of the game. It is not fanciful to imagine that the number 15 was chosen because it is a triangular number : 14 or 16 balls cannot form an equilateral triangle. The smallest triangular number is 1, then 3, then 6. Looking at the corresponding packs of balls, in each case the first row contains 1 ball, the next 2, then 3 and so on. So triangular numbers are those of the form 1 + 2 + 3 + 4 + … + n, for some n. The formula for summing the numbers 1 to n (see adding up the numbers 1 to 100) gives a formula for the nth triangular number: 
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This is also the formula for the binomial coefficient 
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n









2







)



. In this guise, triangular numbers give the solution to the handshaking problem: how many handshakes take place when n people all shake hands with each other? Triangular numbers are the first of the polygonal numbers.


Polygonal numbers


Triangular numbers are those which count the number of balls which can be arranged in an equilateral triangle. Square numbers are the corresponding numbers for squares. Can this be extended to regular pentagons and other polygons? The answer is that it can, though care is needed since it is not immediately obvious how to arrange balls into pentagonal arrays. The convention is that the first pentagonal number is 1, the second is 5, and subsequent numbers are found by picking one corner, extending its two sides each by one ball, and completing the pentagon (enclosing all previous balls). See diagrams. This gives the next pentagonal numbers as 12, 22, 35, 51, etc.


A similar process works for hexagonal numbers (the first few of which are 1, 6, 15, 28, 45, 66), heptagonal numbers, and indeed n-agonal numbers for any n.
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The formula for the mth triangular number is 
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 or to put it another way, 
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 The formula for the mth square number is, of course, m2. For the mth pentagonal number, it is 
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. The general pattern might be visible now: the formula for the mth n-agonal number is 
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. The fact that these numbers have genuine number theoretic significance is proved in Fermat’s polygonal number theorem.



Fermat’s polygonal number theorem



In 1796 Carl Friedrich Gauss proved that every number can be written as the sum of three triangular numbers. Echoing Archimedes, he wrote:
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In 1770 Lagrange had already proved his four square theorem: that every number can be written as the sum of four square numbers (or, as Gauss might have put it, ‘num = □ + □ + □ + □’).


Together these two results formed the first two cases of Fermat’s polygonal number theorem. The next says that any number should be expressible as the sum of five pentagonal numbers. In general, the theorem asserts that any number can be obtained by adding together n n-agonal numbers. In his customary fashion, Pierre de Fermat claimed to have a proof, but did not apparently communicate it to anyone. The first known complete proof is due to Augustin Louis Cauchy in 1813.


Fermat’s last theorem


The numbers 3, 4 and 5 form a Pythagorean triple because 32 + 42 = 52 (that is 9 + 16 = 25). Around 300 BC, Euclid realized that there must be infinitely many triples of whole numbers like this which satisfy x2 + y2 = z2. In 1637, Pierre de Fermat contemplated what would happen if these squares were replaced with higher powers. In his copy of Diophantus’ Arithmetica, he wrote ‘It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or any power higher than the second into two like powers.’ Fermat was claiming that, for any value of n larger than 2, it would never be possible to find whole numbers x, y and z satisfying xn + yn = zn. Infamously, he went on ‘I have discovered a truly marvellous proof of this which this margin is too narrow to contain’.


Wiles’ theorem


Fermat’s famous claim became known as his last theorem, not because it was the last he wrote, but because it was the last to be proved. Despite his claim, most experts today do not believe that Fermat could possibly have had a complete proof (although he did prove the particular case of n = 4). Nor did he or anyone else find a counterexample.


It would more accurately have been called Fermat’s conjecture, and remained unresolved over the centuries, despite the attentions of many of mathematics’ greatest thinkers. In 1995, Andrew Wiles and his former research student Richard Taylor completed a proof which established Fermat’s last theorem as a consequence of the modularity theorem for elliptic curves.


Beal’s conjecture


Best known as a self-made billionaire, and for playing poker for the highest stakes in history, the Texas-based businessman Andrew Beal is also an enthusiastic amateur number theorist. In 1993, he was investigating Fermat’s last theorem, which says that xn + yn = zn has no integer solutions when n > 2. Beal’s idea was to alter the formula by allowing the exponents to differ: so, instead of xn + y n = zn, he considered xr + ys = zt, where r, s and t are allowed to be different (but all must be bigger than 2). Similar situations had been studied by Viggo Brun at the beginning of the 20th century.


The new formula does have solutions: for example, 33 + 63 = 35, and 76 + 77 = 983. However Beal noticed that, in every solution he found, the base numbers x, y and z all had a common factor (in the first example 3, and in the second 7). Beal’s conjecture is the assertion that this must always be true. In 1997 the American Mathematical Society announced that Beal was offering a prize of $50,000, now raised to $100,000, for a proof or counterexample to his conjecture.


Catalan’s conjecture (Mihăilescu’s theorem)


The numbers 8 and 9 make strange neighbours: both are powers of other whole numbers: 8 = 23 and 9 = 32. The Belgian mathematician Eugène Catalan realized that there were no other examples of consecutive powers among the integers (0 and 1 excepted). Catalan’s conjecture of 1844 was that this was indeed the only occurrence, but he wrote that he ‘could not prove it completely so far’. In fact the problem predated him: around 1320 the rabbi and scholar Levi ben Gerson had already proved that there were no other instances of a power of 2 sitting next to a power of 3. The full conjecture stood open until 2002 when Preda Mihăilescu provided the long-sought proof. More formally, the statement is that the only solution to the Diophantine equation xa − yb = 1 (where a and b are both greater than 1) is x = 3, y = 2, a = 2, b = 3.


Waring’s problem


By Lagrange’s four square theorem, we know that every positive whole number can be written as the sum of four squares. What about writing numbers as sums of higher powers? In 1909, Arthur Wieferich showed that every number can be written as the sum of nine cubes. In 1986, Balasubramanian, Deshouillers, and Dress showed that 19 fourth powers are also enough. These results had been conjectured by Edward Waring in 1770. Waring had further suggested that this problem must have a solution for every positive power. That is, for every whole number n, there must be some other number g, so that any number can be written as the sum of at most g nth powers.
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