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Introduction





Welcome to the third edition of Cambridge International AS & A Level Physics. This textbook has been revised to comprehensively cover the Cambridge International AS & A Level Physics syllabus (9702) for first examination in 2022.


This textbook is part of a suite of resources, which includes a Practical Skills Workbook, Teacher’s Resources and a Study and Revision Guide.




How to use this book


This textbook, endorsed by Cambridge Assessment International Education, has been designed to make your study of Physics as successful and rewarding as possible.




Organisation


The book is divided into two parts. Topics 1–11 cover the Cambridge International AS Level Physics syllabus content and Topics 12–25 cover the extra content required by students studying the full Cambridge International A Level Physics course. The titles of the topics in this book exactly match those in the syllabus. In almost all cases, the subheadings within the topics also match those used in the syllabus. Topic 26 is a standalone chapter and provides information about practical work.


Numerical answers to questions are included at the back of the book.







Features to help you learn


Each topic contains a number of features designed to help you effectively navigate the syllabus content.


At the start of each topic, there is a blue box that provides a summary of the syllabus points to be covered in that topic. These are the exact learning outcomes listed in the syllabus.
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Learning outcomes


By the end of this topic, you will be able to:




	
1.1 Physical quantities



	
1  understand that all physical quantities consist of a numerical magnitude and a unit


	
2  make reasonable estimates of physical quantities included within the syllabus







	
1.2 SI units



	
1  recall the following SI base quantities and their units: mass (kg), length (m), time (s), current (A), temperature (K)


	
2  express derived units as products or quotients of the SI base units and use the derived units for quantities listed in this syllabus as appropriate


	
3  use SI base units to check the homogeneity of physical equations


	
4  recall and use the following prefixes and their symbols to indicate decimal submultiples or multiples of both base and derived units: pico (p), nano (n), micro (μ), milli (m), centi (c), deci (d), kilo (k), mega (M), giga (G), tera (T)







	
1.3 Errors and uncertainties



	
1  understand and explain the effects of systematic errors (including zero errors) and random errors in measurements


	
2  understand the distinction between precision and accuracy


	
3  assess the uncertainty in a derived quantity by simple addition of absolute or percentage uncertainties







	
1.4 Scalars and vectors



	
1  understand the difference between scalar and vector quantities and give examples of scalar and vector quantities included in the syllabus


	
2  add and subtract coplanar vectors


	
3  represent a vector as two perpendicular components
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Each topic also has a number of Starting points, key bits of information that it may be useful to remind yourself of before you begin to read.
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Starting points




	
•  Accurate measurement is very important in the development of physics.


	
•  Physicists begin by observing, measuring and collecting data.


	
•  The data items are analysed to discover whether they fit into a pattern.


	
•  If there is a pattern and this pattern can be used to explain other events, it becomes a theory.


	
•  The process is known as the scientific method (see Figure 1.1).





[image: ]








Key points and definitions are highlighted in blue panels throughout the book so that they can be easily identified and referred back to.
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Every object continues in its state of rest, or with uniform velocity, unless acted on by a resultant force.
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There are also a number of boxes labelled Maths Note to guide you through some of the mathematical skills required.
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MATHS NOTE


There are actually two solutions to the defining equation of simple harmonic motion, a = −ω 2x, depending on whether the timing of the oscillation starts when the particle has zero displacement or is at its maximum displacement. If at time t = 0 the particle is at its maximum displacement, x = x0, the solution is x = x0 cos ω t (not shown in Figure 17.5). The two solutions are identical apart from the fact that they are out of phase with each other by one quarter of a cycle or π/2 radians.


The variation of velocity with time is sinusoidal if the cosinusoidal displacement solution is taken:
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Each topic features a number of Worked Examples, which show you how to answer the kinds of questions you may be asked about the content contained within that topic.
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WORKED EXAMPLE 1A


Calculate the number of micrograms in 1.0 milligram.


Answer
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Practice questions are included to give you opportunities to test your understanding of the topic and to use the skills and techniques demonstrated in the Worked Examples.
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Questions


Use the information in Tables 1.1 and 1.6 to determine the base units of the following quantities.




	
8  density = mass/volume


	
9  pressure = force/area





[image: ]








Material that goes beyond the requirements of the Cambridge International AS & A Level Physics syllabus, but which may be of interest, especially to those of you planning to study Physics at a higher level, is clearly labelled in Extension boxes.
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EXTENSION


In astronomy, the wavelength tends to be measured rather than the frequency. If the measured wavelength of the emitted light (see Topic 25) is less than that measured for a stationary source, then the distance between the source (star) and detector is decreasing (blue shift). If the measured wavelength is greater than the value of a stationary source, then the source is moving away from the detector (red shift). The blue and red shifts are referred to in this way as red has the longest wavelength in the visible spectrum and blue the shortest.
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At the end of each topic, there is a SUMMARY of the key points that have been covered.
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SUMMARY




	
•  When a force moves its point of application in the direction of the force, work is done.


	
•  Work done = Fx cos θ, where θ is the angle between the direction of the force F and the displacement x.


	
•  Energy is needed to do work; energy is the ability to do work.


	
•  Energy cannot be created or destroyed. It can only be converted from one form to another.


	
•  Efficiency = useful energy output/total energy input


	
•  Power is defined as the rate of doing work or work done per unit time:

power = work done/time taken, P = W/t.




	
•  The unit of power is the watt (W).

1 watt = 1 joule per second




	
•  Power = force × velocity


	
•  Potential energy is the energy stored in an object due to its position or shape; examples are elastic potential energy and gravitational potential energy.


	
•  When an object of mass m moves vertically through a distance ∆h in a uniform gravitational field, then the change in gravitational potential energy is given by: ∆Ep = mg∆h where g is the acceleration of free fall.


	
•  Kinetic energy is the energy stored in an object due to its motion.


	
•  For an object of mass m moving with speed v, the kinetic energy is given by: [image: ].
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Finally, each topic ends with a set of End of topic questions, some are exam-style questions written by the authors, others are taken from Cambridge International AS & A Level Physics (9702) past examination papers.
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END OF TOPIC QUESTIONS




	
1  State how the centripetal force is provided in the following examples:



	
a  a planet orbiting the Sun,


	
b  a child on a playground roundabout,


	
c  a train on a curved track,


	
d  a passenger in a car going round a corner.







	
2  NASA’s 20-G centrifuge is used for testing space equipment and the effect of acceleration on humans. The centrifuge consists of an arm of length 17.8 m, rotating at constant speed and producing an acceleration equal to 20 times the acceleration of free fall. Calculate:



	
a  the angular speed required to produce a centripetal acceleration of 20g,


	
b  the rate of rotation of the arm (g = 9.81 m s–2).
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Assessment


If you are following the Cambridge International AS Level Physics course, you will take three examination papers:




	
•  Paper 1 Multiple-choice (1 hour 15 minutes)


	
•  Paper 2 AS Level Structured Questions (1 hour 15 minutes)


	
•  Paper 3 Advanced Practical Skills (2 hours)





If you are studying the Cambridge International A Level Physics course, you will take five examination papers: Papers 1, 2 and 3 and also:




	
•  Paper 4 A Level Structured Questions (2 hours)


	
•  Paper 5 Planning, Analysis and Evaluation (1 hour 15 minutes)







Command words


The table below, taken from the syllabus, includes command words used in the assessment for this syllabus. The use of the command word will relate to the subject context. Make sure you are familiar with these.








	command word

	what it means










	calculate

	work out from given facts, figures or information






	comment

	give an informed opinion






	compare

	identify/comment on similarities and/or differences






	define

	give precise meaning






	determine

	establish an answer using the information available






	explain

	set out purposes or reasons/make the relationships between things evident/provide why and/or how and support with relevant evidence






	give

	produce an answer from a given source or recall/memory






	identify

	name/select/recognise






	justify

	support a case with evidence/argument






	predict

	suggest what may happen based on available information






	show (that)

	provide structured evidence that leads to a given result






	sketch

	make a simple freehand drawing showing the key features






	state

	express in clear terms






	suggest

	apply knowledge and understanding to situations where there are a range of valid responses in order to make proposals


















Notes for teachers




Key concepts


These are the essential ideas that help learners to develop a deep understanding of the subject and to make links between the different topics. Although teachers are likely to have these in mind at all times when they are teaching the syllabus, the following icons are included in the textbook at points where the key concepts particularly relate to the text:
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Models of physical systems


Physics is the science that seeks to understand the behaviour of the Universe. The development of models of physical systems is central to physics. Models simplify, explain and predict how physical systems behave.
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Testing predictions against evidence


Physical models are usually based on prior observations, and their predictions are tested to check that they are consistent with the behaviour of the real world. This testing requires evidence, often obtained from experiments.
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Mathematics as a language and problem-solving tool


Mathematics is integral to physics, as it is the language that is used to express physical principles and models. It is also a tool to analyse theoretical models, solve quantitative problems and produce predictions.


[image: ]







Matter, energy and waves


Everything in the Universe comprises matter and/or energy. Waves are a key mechanism for the transfer of energy and are essential to many modern applications of physics.
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Forces and fields


The way that matter and energy interact is through forces and fields. The behaviour of the Universe is governed by fundamental forces with different magnitudes that interact over different distances. Physics involves study of these interactions across distances ranging from the very small (quantum and particle physics) to the very large (astronomy and cosmology).


The information in this introduction and the learning outcomes throughout the book are taken from the Cambridge International syllabus for examination from 2022. You should always refer to the appropriate syllabus document for the year of your students’ examination to confirm the details and for more information. The syllabus document is available on the Cambridge International website at www.cambridgeinternational.org.











Additional support


A number of other Hodder Education resources are available to help teachers deliver the Cambridge International AS & A Level Physics syllabus.




	
•  The Cambridge International AS & A Level Physics Practical Skills Workbook is a write-in resource designed to be used throughout the course and provides students with extra opportunities to test their understanding of the practical skills required by the syllabus.


	
•  The Cambridge International AS & A Level Physics Teacher’s Resources include an introduction to teaching the course, a scheme of work and additional teaching resources.


	
•  The Cambridge International AS & A Level Physics Study and Revision Guide is a stand-alone resource that is designed to be used independently by students at the end of their course of study as they prepare for their examinations. This title has not been through the Cambridge International endorsement process.





















AS LEVEL




1 Physical quantities and units
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Learning outcomes


By the end of this topic, you will be able to:




	
1.1 Physical quantities



	
1  understand that all physical quantities consist of a numerical magnitude and a unit


	
2  make reasonable estimates of physical quantities included within the syllabus







	
1.2 SI units



	
1  recall the following SI base quantities and their units: mass (kg), length (m), time (s), current (A), temperature (K)


	
2  express derived units as products or quotients of the SI base units and use the derived units for quantities listed in this syllabus as appropriate


	
3  use SI base units to check the homogeneity of physical equations


	
4  recall and use the following prefixes and their symbols to indicate decimal submultiples or multiples of both base and derived units: pico (p), nano (n), micro (μ), milli (m), centi (c), deci (d), kilo (k), mega (M), giga (G), tera (T)







	
1.3 Errors and uncertainties



	
1  understand and explain the effects of systematic errors (including zero errors) and random errors in measurements


	
2  understand the distinction between precision and accuracy


	
3  assess the uncertainty in a derived quantity by simple addition of absolute or percentage uncertainties







	
1.4 Scalars and vectors



	
1  understand the difference between scalar and vector quantities and give examples of scalar and vector quantities included in the syllabus


	
2  add and subtract coplanar vectors


	
3  represent a vector as two perpendicular components









[image: ]
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Starting points




	
•  Accurate measurement is very important in the development of physics.


	
•  Physicists begin by observing, measuring and collecting data.


	
•  The data items are analysed to discover whether they fit into a pattern.


	
•  If there is a pattern and this pattern can be used to explain other events, it becomes a theory.


	
•  The process is known as the scientific method (see Figure 1.1).





[image: ]
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Figure 1.1 Block diagram to illustrate the scientific method








1.1 Physical quantities




[image: ]

Figure 1.2 Tycho Brahe (1546–1601) measured the elevations of stars; these days a modern theodolite is used for measuring angular elevation.





A physical quantity is a feature of something which can be measured, for example, length, mass or the time interval for a particular event. Every physical quantity has a numerical value and a unit; for example, the length of this page is 27.5 cm, the mass of an apple is 450 g, the time to run 100 m is 12 s. If someone says they are able to run a distance of 1500 in 200 s, they could be very fast or very slow depending on whether the measurement of distance is in metres or centimetres! Take care – it is vital to give the unit of measurement whenever a quantity is measured or written down.


[image: ]


Large and small quantities are usually expressed in scientific notation, i.e. as a simple number multiplied by a power of ten. For example, 0.00034 would be written as 3.4 × 10−4 and 152000000 as 1.52 × 108. There is far less chance of making a mistake with the number of zeros.







1.2 SI quantities and base units


In very much the same way that languages have developed in various parts of the world, many different systems of measurement have evolved. Just as languages can be translated from one to another, units of measurement can also be converted between systems. Although some conversion factors are easy to remember, some are very difficult. It is much better to have just one system of units. For this reason, scientists around the world use the Système Internationale (SI), which is based on the metric system of measurement.




[image: ]

Figure 1.3 The mass of this jewel could be measured in kilograms, pounds, carats, grains, etc.





If a quantity is to be measured accurately, the unit in which it is measured must be defined as precisely as possible.
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SI is founded upon seven fundamental or base units. The base units each have a unique definition agreed at world conventions.
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The base quantities and the units with which they are measured are listed in Table 1.1. For completeness, the candela has been included, but this unit will not be used in the Cambridge International AS & A Level Physics course. The mole will only be used in the Cambridge International A Level Physics course.


Tables 1.2, 1.3 and 1.4 give some examples of length, mass and time intervals which may be met in the Cambridge International AS & A Level Physics course.








	base quantity

	base unit

	symbol










	mass

	kilogram

	kg






	length

	metre

	m






	time

	second

	s






	electric current

	ampere (amp)

	A






	temperature

	kelvin

	K






	amount of substance

	mole

	mol






	luminous intensity

	candela

	cd









Table 1.1 The base quantities and units








	quantity

	length/m










	from Earth to edge of observable Universe

	4 × 1026







	diameter of a galaxy

	1 × 1021







	from Earth to the Sun

	2 × 1011







	radius of the Earth

	6 × 106







	from London to Paris

	3 × 105







	length of a car

	2






	diameter of a hair

	5 × 10−4







	wavelength of light

	5 × 10−7







	diameter of an atom

	3 × 10−10







	diameter of a nucleus

	6 × 10−15










Table 1.2 Some values of length given to one significant figure








	object

	mass/kg










	Sun

	2 × 1030







	Earth

	6 × 1024







	Moon

	7 × 1022







	container ship

	5 × 108







	elephant

	6 × 103







	car

	2 × 103







	football

	4 × 10−1







	grain of sand

	4 × 10−10







	hydrogen atom

	2 × 10−27







	electron

	9 × 10−31







	electron neutrino

	4 × 10−36










Table 1.3 Some values of mass given to one significant figure








	time interval

	time interval/s










	age of the universe

	5 × 1017







	human life expectancy

	2 × 109







	time for the Earth to orbit the Sun

	3 × 107







	orbit period of the Moon

	2 × 106







	time to run a marathon (42 km)

	9 × 103







	time between human heartbeats

	1






	period of a musical note (middle C)

	4 × 10−3







	time for light to travel 1 m

	3 × 10−9







	lifetime of a bottom quark

	1 × 10−12







	mean lifetime of a Higgs boson

	2 × 10−24










Table 1.4 Some values of time intervals given to one significant figure
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MATHS NOTE


Significant figures




	
•  All non-zero digits are considered significant. For example, 25 has two significant figures (2 and 5), while 123.45 has five significant figures (1, 2, 3, 4 and 5).


	
•  Zeros appearing anywhere between two non-zero digits are significant: 20.052 has five significant figures: 2, 0, 0, 5, 2.


	
•  Zeros to the left of the significant figures are not significant. For example, 0.00034 has two significant figures: 3 and 4.





For example,




	
•  6 is quoted to 1 significant figure


	
•  63 is quoted to 2 significant figures


	
•  634 is quoted to 3 significant figures


	
•  6.345 is quoted to 4 significant figures.





A problem arises when there are zeros at the end of the number. If the number is 600, then has this number been quoted to one, two, or three significant figures? This problem is overcome by using scientific notation.


For example,




	
•  6 × 102 is quoted to 1 significant figure


	
•  6.0 × 102 is quoted to 2 significant figures


	
•  6.00 × 102 is quoted to 3 significant figures.





Where a number of zeros are given before a number they do not count as significant figures. The number 0.00063 has two significant figures.
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Each quantity has just one unit and this unit can have multiples and sub-multiples to cater for larger or smaller values. The unit is given a prefix to denote the multiple or sub-multiple (see Table 1.5). For example, one thousandth of a metre is known as a millimetre (mm) and 1.0 millimetre equals 1.0 × 10−3 metres (m).
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	prefix

	symbol

	multiplying factor










	tera

	T

	1012







	giga

	G

	109







	mega

	M

	106







	kilo

	k

	103







	deci

	d

	10−1







	centi

	c

	10−2







	milli

	m

	10−3







	micro

	μ

	10−6







	nano

	n

	10−9







	pico

	p

	10−12










Table 1.5 The more commonly used prefixes


Beware when converting units for lengths, areas and volumes!
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The box in Figure 1.4 has a volume of 1.0 × 103 cm3 or 1.0 × 106 mm3 or 1.0 × 10−3 m3.
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Figure 1.4 This box has a volume of 1.0 × 103 cm3.





A distance of 30 metres should be written as 30 m and not 30 ms or 30 m s. The letter s is never included in a unit for the plural. If a space is left between two letters, the letters denote different units. So, 30 m s means 30 metre seconds and 30 ms means 30 milliseconds.
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WORKED EXAMPLE 1A


Calculate the number of micrograms in 1.0 milligram.


Answer
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Questions




	
1  Calculate the area, in cm2, of the top of a table with sides of 1.2 m and 0.9 m.


	
2  Determine the number of cubic metres in one cubic kilometre.


	
3  Calculate the volume in m3 of a wire of length 75 cm and diameter 0.38 mm.


	
4  Write down, using scientific notation, the values of the following quantities:



	
a  6.8 pF


	
b  32 μC


	
c  60 GW







	
5  How many electric fires, each rated at 2.5 kW, can be powered from a generator providing 2.0 MW of electric power?


	
6  An atom of gold, Figure 1.5, has a diameter of 0.26 nm and the diameter of its nucleus is 5.6 × 10−3 pm. Calculate the ratio of the diameter of the atom to that of the nucleus.
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Figure 1.5 Atom of gold
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Order of magnitude of quantities


It is often useful to be able to estimate the size, or order of magnitude, of a quantity. Strictly speaking, the order of magnitude is the power of ten to which the number is raised. The ability to estimate is particularly important in a subject like physics where quantities have such widely different values. A short distance for an astrophysicist is a light-year (about 9.5 × 1015 m) whereas a long distance for a nuclear physicist is 6 × 10−15 m (the approximate diameter of a nucleus)!


The ability to estimate orders of magnitude is valuable when planning and carrying out experiments or when suggesting theories. Having an idea of the expected result provides a useful check that an error has not been made. This is also true when using a calculator. For example, the acceleration of free fall at the Earth’s surface is about 10 m s−2. If a value of 9800 m s−2 is calculated, then this is obviously wrong and a simple error in the power of ten is likely to be the cause. Similarly, a calculation in which the journey time for a car travelling 400 km at 20 m s−1 is found to be several seconds instead of several hours may indicate that the distance has been assumed to be in metres rather than in kilometres.
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Figure 1.6 The ratio of the mass of the humpback whale to the mass of the mouse is about 104, or 4 orders of magnitude. That is minute compared to the ratio of the mass of the Sun to the mass of an electron (1061 or 61 orders of magnitude)!





The approximate values of common objects or physical quantities should be known. For example, a carton of orange juice has a volume of 1000 cm3 (1 litre), the mass of a large car is about 2 × 103 kg and an adult about 1 × 102 kg. You could use the more familiar values for the masses of a car and an adult to make a reasonable estimate of the mass of an elephant or a jumbo jet – see Figure 1.7.
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Figure 1.7 The elephant has a mass that is large in comparison with the boy but small compared with the jumbo jet.
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WORKED EXAMPLE 1B


Estimate to 1 significant figure:




	
a  the mass of jar of peanut butter in g


	
b  the volume of an orange in cm3.





Answers




	
a  5 × 102 g


	
b  3 × 102 cm3
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Question




	
7  Estimate to 1 significant figure the following quantities:



	
a  the mass of an orange in g


	
b  the mass of an adult human in kg


	
c  the height of a room in a house in m


	
d  the diameter of a pencil in cm


	
e  the thickness of this page in mm


	
f  the volume of a grain of rice in m3



	
g  the volume of a human head in m3



	
h  the maximum speed of a human in m s−1



	
i  the speed of a jumbo jet in m s−1



	
j  the kinetic energy of a ocean liner at cruising speed in GJ


	
k  the change in gravitational potential energy of a child climbing two flights of stairs in a house in kJ.









[image: ]














Derived units


All quantities, apart from the base quantities, can be expressed in terms of derived units.






[image: ]


Derived units consist of some combination of the base units. The base units may be multiplied together or divided by one another, but never added or subtracted.
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See Table 1.6 for examples of derived units. Some quantities have a named unit. For example, the unit of force is the newton, symbol N, but the newton can be expressed in terms of base units. Quantities which do not have a named unit are expressed in terms of other units. For example, moment of a force is measured in newton metre (N m) or kg m2 s−2.








	quantity

	unit

	derived unit










	frequency

	hertz (Hz)

	s−1







	velocity

	m s−1


	m s−1







	acceleration

	m s−2


	m s−2







	force

	newton (N)

	kg m s−2







	momentum

	newton second (N s)

	kg m s−1







	energy

	joule (J)

	kg m2 s−2







	power

	watt (W)

	kg m2 s−3







	electric charge

	coulomb (C)

	A s






	potential difference

	volt (V)

	kg m2 s−3 A−1







	electrical resistance

	ohm (Ω)

	kg m2 s−3 A−2










Table 1.6 Some examples of derived units
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WORKED EXAMPLE 1C


What are the base units of speed?


Answer


Speed is defined as distance/time and so the unit is m/s.


Division by a unit is shown using a negative index that is s−1.


The base units of speed are m s−1.
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Question


Use the information in Tables 1.1 and 1.6 to determine the base units of the following quantities.




	
8  density = mass/volume


	
9  pressure = force/area
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Checking equations


It is possible to work out the total number of oranges in two bags if one bag contains four and the other five (the answer is nine!). This exercise would, of course, be nonsense if one bag contained three oranges and the other four mangoes. In the same way, for any equation to make sense, each term involved in the equation must have the same base units. A term in an equation is a group of numbers and symbols, and each of these terms (or groups) is added to, or subtracted from, other terms. For example, in the equation
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the terms are v, u and at.






[image: ]


In any equation where each term has the same base units, the equation is said to be homogeneous or ‘balanced’.
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In the example above, each term has the base units m s−1. If the equation is not homogeneous, then it is incorrect and is not valid.


Note the checking an equation to see if it is balanced does not guarantee that the equation is correct. There may be missing or incorrect pure numbers or the equation may not be valid.
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WORKED EXAMPLE 1D


Use base units to show that the following equation is homogeneous.


work done = gain in kinetic energy + gain in gravitational potential energy


Answer


The terms in the equation are work, (gain in) kinetic energy and (gain in) gravitational potential energy.


work done = force × distance moved in the direction of the force


and so the base units are kg m s−2 × m = kg m2 s−2.
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Since any pure number such as [image: ] has no unit, the base units are kg × (m s−1)2 = kg m2 s−2.


potential energy = mass × acceleration of free fall g × distance


The base units are kg × m s−2 × m = kg m2 s−2.


Conclusion: All terms have the same base units and the equation is homogeneous.
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When an equation is known to be homogeneous, then the balancing of base units provides a means of finding the units of an unknown quantity.
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WORKED EXAMPLE 1E


The drag force F acting on a sky diver is given by the equation
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where C is a constant, ρ is the density of air, A is the cross-sectional area of the diver and v is the speed of fall. Show that C has no base units.


Answer


The base units of force are kg m s−2.


The base units of ρAv2 are kg m−3 × m2 × (m s−1)2 = kg m s−2.


Conclusion: C does not have any base units.
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Question




	
10  Use base units to check whether the following equations are balanced:



	
a  pressure = depth × density × acceleration of free fall


	
b  energy = mass × (speed of light)2








	
11  The work done stretching a spring by extension x is given by the equation
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where k is a constant. Determine the base units of k.




	
12  Use base units to check whether the following equations are balanced:



	
a  power = potential difference × electric current,


	
b  electrical energy = (electric current)2 × resistance × time







	
13  Show that the left-hand side of the equation
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is homogeneous and find the base units of the constant on the right-hand side.
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Conventions for symbols and units


You may have noticed that when symbols and units are printed, they appear in different styles of type. The symbol for a physical quantity is printed in italic (sloping) type, whereas its unit is in roman (upright) type. For example, velocity v is italic, but its unit m s−1 is roman. Of course, you will not be able to make this distinction in handwriting.


At Cambridge International AS & A Level and beyond, there is a special convention for labelling columns of data in tables and graph axes. The symbol is printed first (in italic), separated by a forward slash (the printing term is a solidus) from the unit (in roman). Then the data is presented in a column, or along an axis, as pure numbers. This is illustrated in Figure 1.8, which shows a table of data and the resulting graph for the velocity v of a particle at various times t.
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Figure 1.8 The convention for labelling tables and graphs





If you remember that a physical quantity contains a pure number and a unit, the reason for this style of presentation becomes clear. By dividing a physical quantity such as time (a number and a unit) by the appropriate unit, you are left with a pure number. It is then algebraically correct for the data in tables, and along graph axes, to appear as pure numbers.


You may also see examples in which the symbol for the physical quantity is followed by the slash, and then by a power of 10, and then the unit, for example, t/102 s. This means that the column of data has been divided by 100, to save repeating lots of zeros in the table. If you see a table or graph labelled t/102 s and the figures 1, 2, 3 in the table column or along the graph axis, this means that the experimental data was obtained at values of t of 100 s, 200 s, 300 s.


Try to get out of the habit of heading table columns and graphs in ways such as ‘t in s’, ‘t(s)’ or even of recording each reading in the table as 1.0 s, 2.0 s, 3.0 s.










1.3 Errors and uncertainties


If we want to measure the diameter of a steel sphere or a marble, we could use a metre rule, or a vernier caliper, or a micrometer screw gauge. The choice of measuring instrument would depend on the number of significant figures appropriate or required for the length being measured. For example, the metre rule could be used to measure to the nearest millimetre, the vernier caliper to the nearest tenth of a millimetre, and the micrometer screw gauge to the nearest one-hundredth of a millimetre.
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Figure 1.9 A micrometer screw gauge. The object to be measured is placed between A and B. B is screwed down on to the object, using the ratchet C, until the ratchet slips.
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Figure 1.10 This screw gauge shows a reading of 9.5 mm on the divisions on the barrel plus 0.36 mm on the divisions on the thimble, 9.86 mm in total. You can easily read to the nearest division on the thimble; that is, to the nearest 0.01 mm.
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WORKED EXAMPLE 1F




	
1  Figure 1.11a shows the scale of a micrometer screw gauge when the two faces are moved to make contact with each other (this checks the so-called uncertainty in the zero reading), and Figure 1.11b shows the scale when the gauge is tightened on an object.

What is the length of the object?




	
2  Figure 1.12 shows the scale of a vernier caliper. What is the reading?
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Figure 1.11 a) and b)
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Figure 1.12










Answers




	
1  From Figure 1.11a, the initial reading is +0.12 mm. The reading in Figure 1.11b is 15.62 mm.

The length of the object is thus (15.62 – 0.12) mm = 15.50 mm.




	
2  The zero of the vernier scale is between the 5.5 cm and 5.6 cm divisions of the fixed scale. There is coincidence between the third graduation of the vernier scale and one of the graduations of the fixed scale. The reading is thus 5.53 cm or 55.3 mm.
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Questions




	
14  Figures 1.13a and 1.13b show the scales of a micrometer screw gauge when the zero is being checked, and again when measuring the diameter of an object. What is the diameter?
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Figure 1.13
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Absolute and percentage uncertainty


We could show the readings for the diameter of a steel sphere measured with a metre rule, or a vernier caliper, or a micrometer screw gauge as follows:


metre rule: 12 ± 1 mm


vernier caliper: 12.3 ± 0.1 mm


micrometer screw gauge: 12.34 ± 0.01 mm


In the list above, each of the measurements is shown with its uncertainty. For example, using the metre rule, the measurement of the diameter is 12 mm with an uncertainty of 1 mm.


The uncertainty in the measurement decreases as we move from the metre rule to the vernier caliper and finally to the micrometer screw gauge.


As we shall see in the section on accuracy and precision, in reality, uncertainty is not the only factor affecting the accuracy of the measurement.
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The total range of values within which the measurement is likely to lie is known as its uncertainty.
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For example, a measurement of 46.0 ± 0.5 cm implies that the most likely value is 46.0 cm, but it could be as low as 45.5 cm or as high as 46.5 cm. The absolute uncertainty in the measurement is ±0.5 cm. The percentage uncertainty in the measurement is ±(0.5/46) × 100% = ±1%.


It is important to understand that, when writing down measurements, the number of significant figures of the measurement indicates its uncertainty. Some examples of uncertainty are given in Table 1.7.








	instrument

	uncertainty

	typical reading










	top-pan balance

	±0.01 g

	17.35 g






	stop-watch with 0.1 s divisions

	±0.1 s

	16.2 s






	thermometer with 1 deg C intervals

	±0.5°C

	22.5°C






	ammeter with 0.1 A divisions

	±0.1 A

	2.1 A









Table 1.7 Examples of uncertainty


The uncertainty in a measurement should be stated to one significant figure. The value for the quantity should be stated to the same number of decimal places as the uncertainty. For example, the reading for the time should not be stated as 16 s or 16.23 s where the uncertainty is ±0.1 s.


Remember that the uncertainty in a reading is not wholly confined to the reading of its scale or to the skill of the experimenter. Any measuring instrument has a built-in uncertainty. For example, a metal metre rule expands as its temperature rises. At only one temperature will readings of the scale be precise. At all other temperatures, there will be an uncertainty due to the expansion of the scale. Knowing by how much the rule expands would enable this uncertainty to be removed and hence improve precision.


Manufacturers of digital meters quote the uncertainty for each meter. For example, a digital voltmeter may be quoted as ±1% ±2 digits. The ±1% applies to the total reading shown on the scale and the ±2 digits is the uncertainty in the final display figure. This means that the uncertainty in a reading of 4.00 V would be (±4.00 × 1/100) ± 0.02 = ±0.06 V. This uncertainty would be added to any further uncertainty due to a fluctuating reading.


The uncertainty in a measurement is sometimes referred to as being its error. This is not strictly true. Error would imply that a mistake has been made. There is no mistake in taking the measurement, but there is always some doubt or some uncertainty as to its value.








Accuracy and precision
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Accuracy refers to the closeness of a measured value to the ‘true’ or ‘known’ value.


[image: ]








Accuracy depends on the equipment used, the skill of the experimenter and the techniques used. Reducing systematic error or uncertainty (described further below) in a measurement improves its accuracy.
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Precision refers to how close a set of measured values are to each other.
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The precision of a set of measured values depends on the range of values. The smaller the range the better the precision.


Reducing the random error or uncertainty in a measurement improves its precision.


The experimenter may choose different measuring instruments and may use them with different levels of skill, thus affecting the precision of measurement.


When a measurement is repeated many times and the readings are all close together, as shown in Figure 1.14a, the measurement is precise. If there is a greater spread of readings, as shown in Figure 1.14b, the measurement is imprecise.
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Figure 1.14





A set of measurements for a given quantity may be very precise but the measured value may not be accurate. Accuracy is concerned with how close the measured value is to the true value. For example, a micrometer screw gauge can be read to ±0.01 mm but, if there is a large zero error (described in the section on systematic errors below), then the readings from the scale for the diameter of a sphere or marble would not be accurate. The distinction between precision and accuracy is illustrated in Figure 1.15. On each of the graphs the value T is the true value of the quantity.
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Figure 1.15
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WORKED EXAMPLE 1G


A student takes a large number of imprecise readings for the current in a wire. He uses an ammeter with a zero error of −ΔI, meaning that all scale readings are too small by ΔI. The true value of the current is I. Sketch a distribution curve of the number of readings plotted against the measured value of the current. Label any relevant values.


Answer


This is the case illustrated in Figure 1.15b. The peak of the curve is centred on a value of I − ΔI.
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Questions




	
15  A large number of precise readings for the diameter D of a wire are made using a micrometer screw gauge. The gauge has a zero error +E, which means that all readings are too large. Sketch a distribution curve of the number of readings plotted against the measured value of the diameter.


	
16  The manufacturer of a digital ammeter quotes its uncertainty as ±1.5% ± 2 digits.



	
a  Determine the uncertainty in a constant reading of 2.64 A.


	
b  The meter is used to measure the current from a d.c. power supply. The current is found to fluctuate randomly between 1.98 A and 2.04 A. Determine the most likely value of the current, with its uncertainty.









[image: ]










Choice of instruments


The choice of an instrument required for a particular measurement is related to the measurement being made. Obviously, if the diameter of a hair is being measured, a micrometer screw gauge is required, rather than a metre rule, as the metre rule can only read to the nearest 0.5 mm so the uncertainty of ±1 mm is much greater than the diameter of the hair. Similarly, a galvanometer should be used to measure currents of the order of a few milliamperes, rather than an ammeter. Choice is often fairly obvious where single measurements are being made, but care has to be taken where two readings are subtracted. Consider the following example.


The distance of a lens from a fixed point is measured using a metre rule. The distance is 95.2 cm (see Figure 1.16). The lens is now moved closer to the fixed point and the new distance is 93.7 cm. How far has the lens moved? The answer is obvious: (95.2 − 93.7) = 1.5 cm. But what is the uncertainty in the measurement?
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Figure 1.16





The smallest division on the metre rule is 1 mm. If you are careful you should be able to estimate a reading to about 0.5 mm. If you are measuring the length of an object by taking a reading at each end, the uncertainties add to give a total uncertainty of ±1 mm (in this case [image: ] mm at the zero end of the rule plus [image: ] mm when finding the position of the centre of the lens). This means that each separate measurement of length has an uncertainty of about (1/940 × 100)%, i.e. about 0.1%. That appears to be good! However, the uncertainty in the distance moved is ±2 mm, because both distances have an uncertainty, and when finding the difference between these distances these uncertainties add up (see the section on Combining uncertainties), so the percentage uncertainty is ±(2/15 × 100)% = ±13%. This uncertainty is, quite clearly, unacceptable. Another means by which the distance moved could be measured must be devised to reduce the uncertainty.


During your Cambridge International AS & A Level Physics course, you will meet with many different measuring instruments. You must learn to recognise which instrument is most appropriate for particular measurements. A stop-watch may be suitable for measuring the period of oscillation of a pendulum but you would have difficulty using it to find the time taken for a stone to fall vertically from rest through a distance of 1 m. Choice of appropriate instruments is likely to be examined when you are planning experiments.
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WORKED EXAMPLE 1H


Suggest appropriate instruments for the measurement of the dimensions of a single page of this book.


Answer


The obvious instrument to measure the height and width of a page is a 30 cm ruler, which can be read to ±1 mm. The width, the smaller dimension, is about 210 mm, so the actual uncertainty is 210 mm ±1 mm and the percentage uncertainty is about ±0.5%. It is not sensible to try to measure the thickness of a single page, even with a micrometer screw gauge, as the percentage error will be very high. Instead, use the screw gauge to measure the thickness of a large number of pages (but don’t include the covers!). 400 pages are about 18 mm thick. The uncertainty in this measurement, using a screw gauge, is ±0.01 mm, giving a percentage uncertainty of about ±0.05% in the thickness of all 400 pages. This is also the percentage uncertainty in the thickness of a single page. If an uncertainty of ±0.5% is acceptable, a vernier caliper should be used instead of the screw gauge.
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Questions




	
17  The diameter of a ball is measured using a metre rule and a set square, as illustrated in Figure 1.17. The readings on the rule are 16.8 cm and 20.4 cm. Each reading has an uncertainty of ±1 mm.

Calculate, for the diameter of the ball:




	
a  its actual uncertainty


	
b  its percentage uncertainty.





Suggest an alternative, but more precise, method by which the diameter could be measured.
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Figure 1.17
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Systematic and random errors


Not only is the choice of instrument important so that any measurement is made with acceptable percentage uncertainty but, also, the techniques of measurement must optimise accuracy. That is, your experimental technique must reduce as far as possible any uncertainties in readings. These uncertainties may be due to either systematic or random errors.




Systematic error


A systematic error will result in all readings being either above or below the true value. The shift from the true value is by a fixed amount and is in the same direction each time the measurement is taken. The uncertainty in the reading cannot be eliminated by repeat readings and then averaging. Instead systematic error can be reduced only by improving experimental techniques. This error affects the accuracy of the measurement.


Examples of systematic uncertainty are:




	
•  zero error on an instrument

The scale reading is not zero before measurements are taken – see Figure 1.18. Check before starting the experiment. Another example of a zero error is when the end of a rule is worn– see Figure 1.19. The length of the object is clearly not 1.65 cm. For this reason, it is bad practice to place the zero end of the rule against one end of the object to be measured and to take the reading at the other end. You should place the object against the rule so that a reading is made at each end of the object. The length of the object is then obtained by subtraction of the two readings.




	
•  wrongly calibrated scale

In school laboratories we assume that measuring devices are correctly calibrated (have no systematic error), and would not be expected to check the calibration in an experiment. However, if you have doubts, you can check the calibration of an ammeter by connecting several in series in the circuit, or of a voltmeter by connecting several in parallel. A metre rule can be checked by laying several of them alongside each other. Thermometers can be checked by placing several in well-stirred water. These checks will not enable you to say which of the instruments are calibrated correctly, but they will show you if there is a discrepancy.




	
•  reaction time of experimenter

When timings are carried out manually, it must be accepted that there will be a delay between the experimenter observing the event and starting the timing device. This delay, called the reaction time, may be as much as a few tenths of a second. To reduce the effect, you should arrange that the intervals you are timing are much greater than the reaction time. For example, you should time sufficient swings of a pendulum for the total time to be of the order of at least ten seconds, so that a reaction time of a few tenths of a second is less important.
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Figure 1.18 This ammeter has a zero error of about −0.2 A.
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Figure 1.19 Zero error with a metre rule










Random error


Random error results in readings being scattered around the accepted value. Random error may be reduced by repeating a reading and averaging, and by plotting a graph and drawing a best-fit line. Random error affects the precision of the measurement.


Examples of random errors are:




	
•  reading a scale, particularly if this involves the experimenter’s judgement about interpolation between scale readings


	
•  timing oscillations without the use of a reference marker, so that timings may not always be made to the same point of the swing


	
•  taking readings of a quantity that varies with time, involving the difficulty of reading both a timer scale and another meter simultaneously


	
•  reading a scale from different angles introduces a variable parallax error – see Figure 1.20. (In contrast, if a scale reading is always made from the same non-normal angle, this will introduce a systematic error.)
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Figure 1.20 Parallax error with a metre rule





Parallax error may be reduced by arranging the rule so that there is no gap between the scale and the object. Parallax error is also important in reading any instrument in which a needle moves over a scale. A rather sophisticated way of eliminating parallax error is to place a mirror alongside the scale. When the needle and scale are viewed directly, the needle and its image in the mirror coincide. This ensures that the scale reading is always taken at the same viewing angle.
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WORKED EXAMPLE 1I


The current in a resistor is to be measured using an analogue ammeter. State one source of:




	
a  a systematic error


	
b  a random error.





In both cases, suggest how the error may be reduced.


Answers




	
a  A systematic error could be a zero error on the meter, or a wrongly calibrated scale. This can be reduced by checking for a zero reading before starting the experiment, or using two ammeters in series to check that the readings agree.


	
b  A random error could be a parallax error caused by taking readings from different angles. This can be reduced by the use of a mirror behind the scale and viewing normally.
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Questions




	
18  The length of a pencil is measured with a 30 cm rule. Suggest one possible source of:



	
a  a systematic error


	
b  a random error.





In each case, suggest how the error may be reduced.




	
19  The diameter of a wire is to be measured to a precision of ±0.01 mm.



	
a  Name a suitable instrument.


	
b  Suggest a source of systematic error.


	
c  Explain why it is good practice to average a set of diameter readings, taken spirally along the length of the wire.
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Combining uncertainties


In many situations, in order to obtain the value of a physical quantity, several other quantities are measured. Each of these measured quantities has an uncertainty and these uncertainties must be combined in order to determine the uncertainty in the value of the physical quantity.


There are two simple rules for obtaining an estimate of the overall uncertainty in a final result for a derived quantity. The rules are:
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1  For quantities which are added or subtracted to give a final result, add the absolute uncertainties.


	
2  For quantities which are multiplied together or divided to give a final result, add the fractional or percentage uncertainties.
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Suppose that we wish to obtain the value of a physical quantity x by measuring two other quantities, y and z. The relation between x, y and z is known, and is
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If the uncertainties in y and z are Δy and Δz respectively, the uncertainty Δx in x is given by
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If the quantity x is given by
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the uncertainty in x is again given by
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WORKED EXAMPLE 1J




	
1  I1 and I2 are two currents coming into a junction in a circuit. The current I going out of the junction is given by

I = I1 + I2


In an experiment, the values of I1 and I2 are determined as 2.0 ± 0.1 A and 1.5 ± 0.2 A respectively. What is the value of I? What is the uncertainty in this value?




	
2  In an experiment, a liquid is heated electrically, causing the temperature to change from 20.0 ± 0.2°C to 21.5 ± 0.5°C. Find the change of temperature, with its associated uncertainty.





Answers




	
1  Using the given equation, the value of I is given by I = 2.0 + 1.5 = 3.5 A. The rule for combining the uncertainties gives ΔI = 0.1 + 0.2 = 0.3 A. The result for I is thus (3.5 ± 0.3) A.


	
2  The change of temperature is 21.5 − 20.0 = 1.5°C. The rule for combining the uncertainties gives the uncertainty in the temperature change as 0.2 + 0.5 = 0.7°C. The result for the temperature change is thus (1.5 ± 0.7)°C.
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Note that this second example shows that a small difference between two quantities may have a large uncertainty, even if the uncertainty in measuring each of the quantities is small. This is an important factor in considering the design of experiments, where the difference between two quantities may introduce an unacceptably large error.
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Questions




	
20  Two set-squares and a ruler are used to measure the diameter of a cylinder. The cylinder is placed between the set-squares, and the set-squares are aligned with the ruler, in the manner of the jaws of calipers. The readings on the ruler at opposite ends of a diameter are 4.15 cm and 2.95 cm. Each reading has an uncertainty of ±0.05 cm.



	
a  What is the diameter of the cylinder?


	
b  What is the uncertainty in the diameter?
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Now suppose that we wish to find the uncertainty in a quantity x, whose relation to two measured quantities, y and z, is
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where A is a constant. The uncertainty in the measurement of y is ±Δy, and that in z is ±Δz. The fractional uncertainty in x is given by adding the fractional uncertainties in y and z:
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and the percentage uncertainty in x is given by adding the percentage uncertainties in y and z:
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To combine the uncertainties when the quantities are raised to a power, for example,
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where A is a constant, the rule is to multiply the fractional uncertainties by the power, so
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Similarly the percentage uncertainty in x is given by
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WORKED EXAMPLE 1K


The volume of a cylinder is determined by measuring its diameter and length. The diameter d was measured as 2.5 ± 0.1 cm and the length l measured as 7.6 ± 0.1 cm. Determine the volume with its absolute uncertainty in cm3.


Answer


Volume = (πd2l)/4 = π × (2.5)2 × 7.6/4 = 37.31 cm3


The percentage uncertainties are (0.1/2.5) × 100% = 4.0% for d and (0.1/7.6) × 100% = 1.3% in l.


The percentage uncertainty in the volume is:


2 × percentage uncertainty in d + percentage uncertainty in l = 9.3%


The absolute uncertainty in the volume is 9.3% of 37.31 = 3.47 cm3.


The volume with its absolute uncertainty is 37 ± 3 cm3.
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WORKED EXAMPLE 1L


A value of the acceleration of free fall g was determined by measuring the period of oscillation T of a simple pendulum of length l. The relation between g, T and l is
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In the experiment, l was measured as 0.55 ± 0.02 m and T was measured as 1.50 ± 0.02 s. Find the value of g, and the fractional and percentage uncertainties in this value.


Answer


Substituting in the equation, g = 4π2(0.55/1.502) = 9.7 m s−2. The fractional uncertainties are Δl/l = 0.020/0.55 = 0.036 and ΔT/T = 0.02/1.50 = 0.013.


Applying the rule to find the fractional uncertainty in g
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The actual uncertainty in g is given by (value of g) × (fractional uncertainty in g) = 9.7 × 0.062 = 0.60 m s−2. The experimental value of g, with its uncertainty, is thus (9.7 ± 0.6) m s−2.


The percentage uncertainties are 3.6% for l and 1.3% for T. The percentage uncertainty in g is given by 3.6% + 2 × 1.3% = 6.2%.


The absolute uncertainty in g is 6.2% of 9.7 also giving (9.7 ± 0.6) m s−2.
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Note that it is not good practice to determine g from the measurement of the period of a pendulum of fixed length. It would be much better to take values of T for a number of different lengths l, and to draw a graph of T2 against l. The gradient of this graph is 4π2/g.
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Questions




	
21  A value of the volume V of a cylinder is determined by measuring the radius r and the length L. The relation between V, r and L is

V = πr2L


In an experiment, r was measured as 3.30 ± 0.05 cm, and L was measured as 25.4 ± 0.4 cm. Find the value of V, and the absolute uncertainty in this value.




	
22  The mass and dimensions of a metal rectangular block are measured. The values obtained are: mass = 1.50 ± 0.01 kg, length =70 ± 1 mm, breadth 60 ± 1 mm and depth 40 ± 1 mm. Determine the density of the metal and its absolute uncertainty in kg m−3.
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If you find it difficult to deal with the fractional uncertainty rule, you can easily estimate the uncertainty by substituting extreme values into the equation. For x = Ayazb, taking account of the uncertainties in y and z, the lowest value of x is given by


[image: ]


and the highest by


[image: ]


If xlow and xhigh are worked out, the uncertainty in the value of x is given by


[image: ]
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WORKED EXAMPLE 1M


Apply the extreme value method to the data for the simple pendulum experiment in Worked example 1L.


Answer


Because of the form of the equation for g, the lowest value for g will be obtained if the lowest value of l and the highest value for T are substituted. This gives


[image: ]


The highest value for g is obtained by substituting the highest value for l and the lowest value for T. This gives


[image: ]


The uncertainty in the value of g is thus (ghigh − glow)/2 = (10.3 − 9.1)/2 = 0.6 m s−2, as before.


[image: ]
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Question




	
23  Apply the extreme value method to the data for the volume of the cylinder, in question 21.





[image: ]








If the expression for the quantity under consideration involves combinations of products (or quotients) and sums (or differences), then the best approach is the extreme value method.













1.4 Scalars and vectors


All physical quantities have a magnitude and a unit. For some quantities, magnitude and units do not give us enough information to fully describe the quantity. For example, if we are given the time for which a car travels at a certain speed, then we can calculate the distance travelled. However, we cannot find out how far the car is from its starting point unless we are told the direction of travel. In this case, the speed and direction must be specified.






[image: ]


A quantity which can be described fully by giving its magnitude and unit is known as a scalar quantity. They can be added algebraically.


A vector quantity has magnitude, unit and direction. They may not be added algebraically.


[image: ]










[image: ]

Figure 1.21 Although the athlete runs 5 km in the race, his final distance from the starting point may well be zero!





Some examples of scalar and vector quantities are given in Table 1.8.








	quantity

	scalar


	vector











	mass

	[image: ]


	 






	weight

	 

	[image: ]







	speed

	[image: ]


	 






	velocity

	 

	[image: ]







	acceleration

	 

	[image: ]







	force

	 

	[image: ]







	momentum

	 

	[image: ]







	energy

	[image: ]


	 






	power

	[image: ]


	 






	pressure

	[image: ]


	 






	temperature

	[image: ]


	 









Table 1.8 Some scalars and vectors


Note: It may seem that electric current should be treated as a vector quantity. We give current a direction when we deal with, for example, the motor effect (see Topic 20) and when we predict the direction of the magnetic field due to current-carrying coils and wires. However, electric current does not follow the laws of vector addition and should be treated as a scalar quantity.






[image: ]


WORKED EXAMPLE 1N


A ‘big wheel’ at a theme park has a diameter of 14 m and people on the ride complete one revolution in 24 s. Calculate:




	
a  the distance a rider moves in 3.0 minutes


	
b  the distance of the rider from the starting position.





Answers




	
a  [image: ]



	
b  7.5 revolutions completed. Rider is [image: ] revolution from starting point. The rider is at the opposite end of a diameter of the big wheel. So, the distance from starting position = 14 m.





[image: ]
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Questions




	
24  State whether the following quantities are scalars or vectors:



	
a  time of departure of a train


	
b  acceleration due to free fall


	
c  density of a liquid.







	
25  State whether the following quantities are scalars or vectors:



	
a  temperature


	
b  frequency of vibration


	
c  flow of water in a pipe.







	
26  Speed and velocity have the same units. Explain why speed is a scalar quantity whereas velocity is a vector quantity.


	
27  A student states that a bag of sugar has a weight of 10 N and that this weight is a vector quantity. Discuss whether the student is correct when stating that weight is a vector.





[image: ]











Vector representation


When you hit a tennis ball, you have to judge the direction you want it to move in, as well as how hard to hit it. The force you exert is, therefore, a vector quantity and cannot be represented by magnitude (size) alone. One way to represent a vector is by means of an arrow. The direction of the arrow is the direction of the vector quantity. The length of the arrow, drawn to scale, represents its magnitude. This is illustrated in Figure 1.22.




[image: ]

Figure 1.22 Representation of a vector quantity





[image: ]







Addition of vectors


The addition of two scalar quantities which have the same unit is no problem. The quantities are added using the normal rules of addition. For example, a beaker of volume 250 cm3 and a bucket of volume 9.0 litres have a total volume of 9250 cm3.


Adding together two vectors is more difficult because they have direction as well as magnitude. If the two vectors are in the same direction, then they can simply be added together. Two objects of weight 50 N and 40 N have a combined weight of 90 N because both weights act in the same direction (vertically downwards). Figure 1.23 shows the effect of adding two forces of magnitudes 30 N and 20 N which act in the same direction or in opposite directions. The angle between the forces is 0° when they act in the same direction and 180° when they are in opposite directions. For all other angles between the directions of the forces, the combined effect, or resultant, is some value between 10 N and 50 N.




[image: ]

Figure 1.23 Vector addition a) and vector subtraction b)





In cases where the two vectors do not act in the same or opposite directions, the resultant is found by means of a vector triangle. Each one of the two vectors V1 and V2 is represented in magnitude and direction by the side of a triangle. Note that both vectors must be in either a clockwise or an anticlockwise direction (see Figure 1.24). The combined effect, or resultant R, is given in magnitude and direction by the third side of the triangle. It is important to remember that, if V1 and V2 are drawn clockwise, then R is anticlockwise; if V1 and V2 are anticlockwise, R is clockwise.




[image: ]

Figure 1.24 Vector triangles





The resultant may be found by means of a scale diagram. Alternatively, having drawn a sketch of the vector triangle, the problem may be solved using trigonometry (see the Maths Note at the end of Topic 1).


The subtraction of vectors obeys the same rules as the addition of the vectors. To subtract a vector B from a vector A, the vector B in the opposite direction is added to vector A.


A – B = A + (–B) where –B is a vector of the same magnitude as B but has opposite direction. For example, if vector A is a displacement of 3 m due north and vector B is a displacement of 4 m due east, then A + B is shown in Figure 1.25a and A – B is shown in Figure 1.25b.




[image: ]

Figure 1.25
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WORKED EXAMPLE 1O


A ship is travelling due north with a speed of 12 km h−1 relative to the water. There is a current in the water flowing at 4.0 km h−1 in an easterly direction relative to the shore. Determine the velocity of the ship relative to the shore by:




	
a  scale drawing


	
b  calculation.





Answers




	
a  By scale drawing (Figure 1.26): Scale: 1 cm represents 2 km h−1 resultant R



[image: ]

Figure 1.26





The velocity relative to the shore is: 6.3 × 2 = 12.6 km h−1 in a direction 18° east of north.




	
b  By calculation:

Referring to the diagram (Figure 1.27) and using Pythagoras’ theorem,


[image: ]




[image: ]

Figure 1.27





The velocity of the ship relative to the shore is 12.6 km h−1 in a direction 18.4° east of north.







[image: ]
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Question




	
28  Explain how an arrow may be used to represent a vector quantity.


	
29  Two forces are of magnitude 450 N and 240 N respectively. Determine:



	
a  the maximum magnitude of the resultant force


	
b  the minimum magnitude of the resultant force


	
c  the resultant force when the forces act at right angles to each other.





Use a vector diagram and then check your result by calculation.




	
30  A boat can be rowed at a speed of 7.0 km h−1 in still water. A river flows at a constant speed of 1.5 km h−1. Use a scale diagram to determine the angle to the bank at which the boat must be rowed in order that the boat travels directly across the river.


	
31  Two forces act at a point P as shown in Figure 1.28. Draw a vector diagram, to scale, to determine the resultant force. Check your work by calculation.



[image: ]

Figure 1.28







	
32  A swimmer who can swim in still water at a speed of 4 km h−1 is swimming in a river. The river flows at a speed of 3 km h−1. Calculate the speed of the swimmer relative to the river bank when she swims:



	
a  downstream


	
b  upstream.







	
33  Draw to scale a vector triangle to determine the resultant of the two forces shown in Figure 1.29. Check your answer by calculating the resultant.



[image: ]

Figure 1.29
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The use of a vector triangle for finding the resultant of two vectors can be demonstrated by means of a simple laboratory experiment. A weight is attached to each end of a flexible thread and the thread is then suspended over two pulleys, as shown in Figure 1.30. A third weight is attached to a point P near the centre of the thread. The string moves over the pulleys and then comes to rest. The positions of the threads are marked on a piece of paper held on a board behind the threads. This is easy to do if light from a small lamp is shone at the board. Having noted the sizes W1 and W2 of the weights on the ends of the thread, a vector triangle can then be drawn on the paper, as shown in Figure 1.31. The resultant of W1 and W2 is found to be equal in magnitude but opposite in direction to the weight W3. If this were not so, there would be a resultant force at P and the thread and weights would move. The use of a vector triangle is justified. The three forces W1, W2 and W3 are in equilibrium. The condition for the vector diagram of these forces to represent the equilibrium situation is that the three vectors should form a closed triangle.




[image: ]

Figure 1.30 Apparatus to check the use of a vector triangle





We have considered only the addition of two vectors. When three or more vectors need to be added, the same principles apply, provided the vectors are coplanar (all in the same plane). The vector triangle then becomes a vector polygon: the resultant forms the missing side to close the polygon.


To subtract two vectors, reverse the direction (that is, change the sign) of the vector to be subtracted, and add.




[image: ]

Figure 1.31 The vector triangle
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Resolution of vectors


Earlier in this section we saw that two vectors may be added together to produce a single resultant. This resultant behaves in the same way as the two individual vectors. It follows that a single vector may be split up, or resolved, into two vectors, or components. The combined effect of the components is the same as the original vector. In later topics, we will see that resolution of a vector into two perpendicular components is a very useful means of solving certain types of problem.


Consider a force of magnitude F acting at an angle of θ below the horizontal (see Figure 1.32. A vector triangle can be drawn with a component FH in the horizontal direction and a component FV acting vertically. Remembering that F, FH and FV form a right-angled triangle, then


[image: ]




[image: ]

Figure 1.32 Resolving a vector into components





The force F has been resolved into two perpendicular components, FH and FV. The example chosen is concerned with forces, but the method applies to all types of vector quantity.
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WORKED EXAMPLE 1P


A glider is launched by an aircraft with a cable, as shown in Figure 1.33. At one particular moment, the tension in the cable is 620 N and the cable makes an angle of 25° with the horizontal (see Figure 1.34). Calculate:




	
a  the force pulling the glider horizontally


	
b  the vertical force exerted by the cable on the nose of the glider.







[image: ]

Figure 1.33







[image: ]

Figure 1.34





Answers




	
a  horizontal component FH = 620 cos 25° = 560 N



	
b  vertical component FV = 620 sin 25° = 260 N






[image: ]
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Questions




	
34  An aircraft is travelling 35° east of north at a speed of 310 km h−1. Calculate the speed of the aircraft in:



	
a  the northerly direction


	
b  the easterly direction.







	
35  A cyclist is travelling down a hill at a speed of 9.2 m s−1. The hillside makes an angle of 6.3° with the horizontal. Calculate, for the cyclist:



	
a  the vertical speed


	
b  the horizontal speed.









[image: ]
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SUMMARY




	
•  All physical quantities have a magnitude (size) and a unit.


	
•  The SI base units of mass, length, time, electric current, thermodynamic temperature and amount of substance are the kilogram, metre, second, ampere, kelvin and mole respectively.


	
•  Units of all mechanical, electrical, magnetic and thermal quantities may be derived in terms of these base units.


	
•  Physical equations must be homogeneous (balanced). Each term in an equation must have the same base units.


	
•  The convention for printing headings in tables of data, and for labelling graph axes, is the symbol for the physical quantity (in italic), followed by a forward slash, followed by the abbreviation for the unit (in roman). In handwriting, one cannot distinguish between italic and roman type.


	
•  The order of magnitude of a number is the power of ten to which the number is raised. The order of magnitude can be used to make a check on whether a calculation gives a sensible answer.


	
•  Accuracy refers to the closeness of a measured value to the ‘true’ or ‘known’ value.


	
•  Precision is determined by the size of the random error and is the part of accuracy which can be controlled by the experimenter. Precision refers to how close a set of measured values are to each other.


	
•  Uncertainty indicates the range of values within which a measurement is likely to lie.


	
•  A systematic uncertainty (or systematic error) is often due to instrumental causes, and results in all readings being either above or below the true value. It cannot be eliminated by averaging.


	
•  A random uncertainty (or random error) is due to the scatter of readings around the true value. It may be reduced by repeating a reading and averaging, or by plotting a graph and taking a best-fit line.


	
•  Combining uncertainties:



	–  for expressions of the form x = y + z or x = y − z, the overall uncertainty is Δx = Δy + Δz



	–  for expressions of the form x = yz or x = y/z the overall uncertainty is given by adding the fractional uncertainties or the percentage uncertainties


	–  for expressions of the form x = Ayazb, the overall fractional uncertainty is Δx/x = a(Δy/y) + b(Δz/z) or the overall percentage uncertainty (Δx/x) × 100 = a[(Δxy/y) × 100 + b[(Δz/z) × 100.







	
•  A scalar quantity has magnitude and unit only.


	
•  A vector quantity has magnitude, unit and direction.


	
•  A vector quantity may be represented by an arrow, with the length of the arrow drawn to scale to give the magnitude.


	
•  The combined effect of two (or more) vectors is called the resultant.


	
•  Coplanar vectors may be added (or subtracted) using a vector diagram.


	
•  The resultant may be found using a scale drawing of the vector diagram, or by calculation.


	
•  A single vector may be divided into two separate components.


	
•  The dividing of a vector into components is known as the resolution of the vector.


	
•  In general, a vector is resolved into two components at right angles to each other.



	–  The resolved components of a vector of magnitude V acting at an angle θ to the horizontal are V cos θ horizontally and V sin θ vertically.
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END OF TOPIC QUESTIONS




	  1  Which of the following is an SI base unit?



	
A  ampere


	
B  coulomb


	
C  newton


	
D  joule







	  2  Which of the following is not a SI base quantity?



	
A  current


	
B  energy


	
C  mass


	
D  temperature







	  3  Which of the following is a vector?



	
A  electric charge


	
B  momentum


	
C  power


	
D  work







	  4   Which order of magnitude is represented by the prefix p (pico)?



	
A  10−6



	
B  10−9



	
C  10−12



	
D  10−15








	  5  The speed of a sound wave through a gas of pressure P and density ρ is given by the equation

[image: ]


An experiment is performed to determine k. The percentage uncertainties in v, P and ρ are ±4%, ±2% and ±3% respectively. Which of the following gives the percentage uncertainty in k?




	
A  ±5%


	
B  ±9%


	
C  ±13%


	
D  ±21%







	  6  A girl walks at a speed of 1.5 m s−1 for 1.0 minutes in a direction of 35° north of east. How far east does she walk?



	
A  52 m


	
B  63 m


	
C  74 m


	
D  90 m











	
7  a  i   Explain what is meant by a base unit.


	        ii  Give four examples of base units.







	      b  State what is meant by a derived unit.







	    c  i   For any equation to be valid, it must be homogeneous. Explain what is meant by a homogeneous equation.


	        ii  The pressure P of an ideal gas of density ρ is given by the equation

[image: ]


where <c2> is the mean-square-speed (i.e. it is a quantity measured as (speed)2). Use base units to show that the equation is homogeneous.









	  8  The period T of a pendulum of mass M is given by the expression

[image: ]


where g is the acceleration of free fall and h is a length.


Determine the base units of the quantity I.









	
9  a   Determine the base units of:


	        i   work done,


	        ii  the moment of a force.







	      b  Explain why your answers to a mean that caution is required when the homogeneity of an equation is being tested.







	
10  Distinguish between accuracy and precision.


	
11  The mass of a coin is measured to be 12.5 ± 0.1 g. The diameter is 2.8 ± 0.1 cm and the thickness 2.1 ± 0.1 mm. Calculate the average density of the material from which the coin is made with its uncertainty. Give your answer in kg m−3.







	
12  a  Distinguish between a scalar and a vector quantity.


	      b  A mass of weight 120 N is hung from two strings as shown in Fig. 1.35.



[image: ]

Figure 1.35





Determine, by scale drawing or by calculation, the tension in:









	        i   RA,


	        ii  RB.







	      c  Use your answers in b to determine the horizontal component of the tension in:



	
i   RA,


	
ii  RB.





Comment on your answer.









	
13  A fielder in a cricket match throws the ball to the wicket-keeper. At one moment of time, the ball has a horizontal velocity of 16 m s−1 and a velocity in the vertically upward direction of 8.9 m s−1.







	      a  Determine, for the ball:







	        i   its resultant speed,


	        ii  the direction in which it is travelling relative to the horizontal.







	      b  During the flight of the ball to the wicket-keeper, the horizontal velocity remains unchanged. The speed of the ball at the moment when the wicket-keeper catches it is 19 m s−1. Calculate, for the ball just as it is caught:







	        i   its vertical speed,


	        ii  the angle that the path of the ball makes with the horizontal.







	      c  Suggest with a reason whether the ball, at the moment it is caught, is rising or falling.







	
14  a  The spacing between two atoms in a crystal is 3.8 × 10−10 m. State this distance in pm.

[1]




	      b  Calculate the time of one day in Ms.

[1]




	      c  The distance from the Earth to the Sun is 0.15 Tm. Calculate the time in minutes for light to travel from the Sun to the Earth.

[2]




	      d  Identify all the vector quantities in the list below.

distance    energy    momentum    weight    work


[1]




	      e  The velocity vector diagram for an aircraft heading due north is shown to scale in Fig. 1.36. There is a wind blowing from the north-west.



[image: ]

Figure 1.36





The speed of the wind is 36 m s −1 and the speed of the aircraft is 250 m s−1.









	        i   Make a copy of Fig. 1.36. Draw an arrow to show the direction of the resultant velocity of the aircraft.

[1]




	        ii  Determine the magnitude of the resultant velocity of the aircraft.

[2]
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15  a  i  State the SI base units of volume.

[1]




	          ii  Show that the SI base units of pressure are kg m−1 s−2.

[1]









	      b  The volume V of liquid that flows through a pipe in time t is given by the equation [image: ]

where P is the pressure difference between the ends of the pipe of radius r and length l. The constant C depends on the frictional effects of the liquid. Determine the base units of C.


[3]
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16  a  Make estimates of:







	        i  the mass, in kg, of a wooden metre rule,

[1]




	        ii  the volume, in cm3, of a cricket ball or a tennis ball.

[1]









	      b  A metal wire of length L has a circular cross-section of diameter d, as shown in Fig. 1.37.



[image: ]

Figure 1.37





The volume V of the wire is given by the expression


[image: ]


The diameter d, length L and mass M are measured to determine the density of the metal of the wire. The measured values are:


d = 0.38 ± 0.01 mm,


L = 25.0 ± 0.1 cm,


M = 0.225 ± 0.001 g.


Calculate the density of the metal, with its absolute uncertainty. Give your answer to an appropriate number of significant figures.


[5]
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17  a  i   Define pressure.

[1]









	        ii  Show that the SI base units of pressure are kg m−1 s−2.

[1]









	      b  Gas flows through the narrow end (nozzle) of a pipe. Under certain conditions, the mass m of gas that flows through the nozzle in a short time t is given by

[image: ]


where k is a constant with no units,


C is a quantity that depends on the nozzle size,


ρ is the density of the gas arriving at the nozzle,


P is the pressure of the gas arriving at the nozzle.


Determine the base units of C.


[3]
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18  a  An analogue voltmeter is used to take measurements of a constant potential difference across a resistor.

For these measurements, describe one example of:









	        i  a systematic error,

[1]




	        ii  a random error.

[1]









	      b  The potential difference across a resistor is measured as 5.0 V ± 0.1 V. The resistor is labelled as having a resistance of 125 Ω ± 3%.







	        i   Calculate the power dissipated by the resistor.

[2]




	        ii  Calculate the percentage uncertainty in the calculated power.

[2]




	        iii Determine the value of the power, with its absolute uncertainty, to an appropriate number of significant figures.

[2]
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MATHS NOTE


Sine rule


For any triangle (Figure 1.38),


[image: ]


Cosine rule


For any triangle,


[image: ]




[image: ]

Figure 1.38





Pythagoras’ theorem


For a right-angled triangle (Figure 1.39),


[image: ]


Also for a right-angled triangle:


[image: ]
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Figure 1.39
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2 Kinematics









[image: ]


Learning outcomes


By the end of this topic, you will be able to:




	
2.1 Equations of motion



	
1  define and use distance, displacement, speed, velocity and acceleration


	
2  use graphical methods to represent distance, displacement, speed, velocity and acceleration


	
3  determine displacement from the area under a velocity–time graph


	
4  determine velocity using the gradient of a displacement–time graph


	
5  determine acceleration using the gradient of a velocity–time graph


	
6  derive, from the definitions of velocity and acceleration, equations that represent uniformly accelerated motion in a straight line


	
7  solve problems using equations that represent uniformly accelerated motion in a straight line, including the motion of bodies falling in a uniform gravitational field without air resistance


	
8  describe an experiment to determine the acceleration of free fall using a falling object


	
9  describe and explain motion due to a uniform velocity in one direction and a uniform acceleration in a perpendicular direction
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Starting points




	
•  Kinematics is a description of how objects move.


	
•  The motion of objects can be described in terms of quantities such as position, speed, velocity and acceleration.
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2.1 Equations of motion




Distance, displacement, speed, velocity and acceleration




Distance and displacement


The distance moved by a particle is the length along the actual path travelled from the starting point to the finishing point. Distance is a scalar quantity.


The displacement of a particle is its change of position. The displacement is the length travelled in a straight line in a specified direction from the starting point to the finishing point. Displacement is a vector quantity.


Consider a cyclist travelling 500 m due east along a straight road, and then turning round and coming back 300 m. The total distance travelled is 800 m, but the displacement is only 200 m due east, since the cyclist has ended up 200 m from the starting point.






[image: ]


WORKED EXAMPLE 2A


A particle moves from point A to poinht B along the path of a circle of radius 5.0 m as shown in Figure 2.1.


What is




	
a  the distance moved by the particle


	
b  the displacement of the particle?







[image: ]

Figure 2.1 The movement of a particle from A to B





Answers




	
a  The actual path of the particle along the circumference of the circle = π × 5 = 16 m.


	
b  The displacement of the particle is the straight line from A to B along the diameter of the circle = 10 m in the direction downwards.





[image: ]













Average speed


When talking about motion, we shall discuss the way in which the position of a particle varies with time. Think about a particle moving its position. In a certain time, the particle will cover a certain distance. The average speed of the particle is defined as the distance moved along the actual path divided by the time taken. Written as a word equation, this is






[image: ]


[image: ]
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The unit of speed is the metre per second (m s–1).


One of the most fundamental of physical constants is the speed of light in a vacuum. It is important because it is used in the definition of the metre, and because, according to the theory of relativity, it defines an upper limit to attainable speeds. The range of typical speeds that you are likely to come across is enormous; some are summarised in Table 2.1.








	 

	speed/m s–1











	light

	3.0 × 108







	electron around nucleus

	2.2 × 106







	Earth around Sun

	3.0 × 104







	jet airliner

	2.5 × 102







	typical car speed (80 km per hour)

	22






	sprinter

	1.0 × 101







	walking speed

	1.5






	snail

	1.0 × 10–3










Table 2.1 Examples of speeds


It is important to recognise that speed has a meaning only if it is quoted relative to a fixed reference. In most cases, speeds are quoted relative to the surface of the Earth, which – although it is moving relative to the Solar System – is often taken to be fixed. Thus, when we say that a bird can fly at a certain average speed, we are relating its speed to the Earth. However, a passenger on a ferry may see that a seagull, flying parallel to the boat, appears to be practically stationary. If this is the case, the seagull’s speed relative to the boat is zero. However, if the speed of the boat through the water is 8 m s–1, then the speed of the seagull relative to Earth is also 8 m s–1. When talking about relative speeds we must also be careful about directions. It is easy if the speeds are in the same direction, as in the example of the ferry and the seagull. If the speeds are not in the same direction the addition of the motions should follow those introduced for vectors as considered in Topic 1.4.






[image: ]


WORKED EXAMPLE 2B




	
1  The radius of the Earth is 6.4 × 106 m; one revolution about its axis takes 24 hours (8.6 × 104 s).

Calculate the average speed of a point on the Equator relative to the centre of the Earth.




	
2  How far does a cyclist travel in 11 minutes if his average speed is 22 km h–1?


	
3  A train is travelling at a speed of 25 m s–1 along a straight track. A boy walks along the corridor in a carriage towards the rear of the train, at a speed of 1 m s–1 relative to the train. What is his speed relative to Earth?





Answers




	
1  In 24 hours, the point on the equator completes one revolution and travels a distance of 2π × the Earth’s radius, that is 2π × 6.4 × 106 = 4.0 × 107 m.

The average speed is (distance moved)/(time taken), or 4.0 × 107/8.6 × 104 = 4.7 × 102 m s–1.




	
2  First convert the average speed in km h–1 to a value in m s–1.

22 km (2.2 × 104 m) in 1 hour (3.6 × 103 s) is an average speed of 6.1 m s–1. 11 minutes is 660 s.


Since average speed is (distance moved)/(time taken), the distance moved is given by (average speed) × (time taken), or 6.1 × 660 = 4000 m.


Note the importance of working in consistent units: this is why the average speed and the time were converted to m s–1 and s respectively.




	
3  In one second, the train travels 25 m forwards along the track. In the same time the boy moves 1 m towards the rear of the train, so he has moved 24 m along the track.

His speed relative to Earth is thus 25 − 1 = 24 m s–1.
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Questions




	
1  The speed of an electron in orbit about the nucleus of a hydrogen atom is 2.2 × 106 m s –1. It takes 1.5 × 10–16 s for the electron to complete one orbit. Calculate the radius of the orbit.


	
2  The average speed of an airliner on a domestic flight is 220 m s–1. Calculate the time taken to fly between two airports on a flight path 700 km long.


	
3  Two cars are travelling in the same direction on a long, straight road. The one in front has an average speed of 25 m s–1 relative to Earth; the other’s is 31 m s–1, also relative to Earth. What is the speed of the second car relative to the first when it is overtaking?
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Speed and velocity


In ordinary language, there is no difference between the terms speed and velocity. However, in physics there is an important distinction between the two. Velocity is used to represent a vector quantity: the magnitude of how fast a particle is moving, and the direction in which it is moving. Speed does not have an associated direction. It is a scalar quantity (see Topic 1.4).


So far, we have talked about the total distance travelled by an object along its actual path. Like speed, distance is a scalar quantity, because we do not have to specify the direction in which the distance is travelled. However, in defining velocity we use the quantity displacement.


The average velocity is defined as the displacement divided by the time taken.
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Because distance and displacement are different quantities, the average speed of motion will sometimes be different from the magnitude of the average velocity. If the time taken for the cyclist’s trip in the example at the start of this Topic is 120 s, the average speed is 800/120 = 6.7 m s–1, whereas the magnitude of the average velocity is 200/120 = 1.7 m s –1. This may seem confusing, but the difficulty arises only when the motion involves a change of direction and we take an average value. If we are interested in describing the motion of a particle at a particular moment in time, the speed at that moment is the same as the magnitude of the velocity at that moment.


We now need to define average velocity more precisely, in terms of a mathematical equation, instead of our previous word equation. Suppose that at time t1 a particle is at a point x1 on the x-axis (Figure 2.2). At a later time t2, the particle has moved to x2. The displacement (the change in position) is (x2 − x1), and the time taken is (t2 − t1).
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Figure 2.2





The average velocity [image: ] is then
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The bar over v is the symbol meaning ‘average’. As a shorthand, we can write (x2 − x1) as Δx, where Δ (the Greek capital letter delta) means ‘the change in’. Similarly, t2 − t1 is written as Δt. This gives us
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If x2 were less than x1, (x2 − x1) and Δx would be negative. This would mean that the particle had moved to the left, instead of to the right as in Figure 2.2. The sign of the displacement gives the direction of particle motion. If Δx is negative, then the average velocity v is also negative. The sign of the velocity, as well as the sign of the displacement, indicates the direction of the particle’s motion. This is because both displacement and velocity are vector quantities.
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Describing motion by graphs




Position–time graphs




[image: ]

Figure 2.3





Figure 2.3 is a graph of position x against time t for a particle moving in a straight line.


This curve gives a complete description of the motion of the particle. We can see from the graph that the particle starts at the origin O (at which x = 0) at time t = 0. From O to A the graph is a straight line: the particle is covering equal distances in equal periods of time. This represents a period of uniform (constant) velocity. The average velocity during this time is (x1 − 0)/(t1 − 0). Clearly, this is the gradient of the straight-line part of the graph between O and A. Between A and B the particle is slowing down, because the distances travelled in equal periods of time are getting smaller. The average velocity during this period is (x2 − x1)/(t2 − t1). On the graph, this is represented by the gradient of the straight line joining A and B. At B, for a moment, the particle is at rest, and after B it has reversed its direction and is heading back towards the origin. Between B and C the average velocity is (x3 − x2)/(t3 − t2). Because x3 is less than x2, this is a negative quantity, indicating the reversal of direction.


Calculating the average velocity of the particle over the relatively long intervals t1, (t2 − t1) and (t3 − t2) will not, however, give us the complete description of the motion. To describe the motion exactly, we need to know the particle’s velocity at every instant. We introduce the idea of instantaneous velocity. To define instantaneous velocity we make the intervals of time over which we measure the average velocity shorter and shorter. This has the effect of approximating the curved displacement–time graph by a series of short straight-line segments. The approximation becomes better the shorter the time interval, as illustrated in Figure 2.4. Eventually, in the case of extremely small time intervals (mathematically we would say ‘infinitesimally small’), the straight-line segment has the same direction as the tangent to the curve. This limiting case gives the instantaneous velocity as the gradient of the tangent to the displacement–time curve.
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Figure 2.4










Displacement–time and velocity–time graphs


Figure 2.5 is a sketch graph showing how the displacement of a car, travelling along a straight test track, varies with time. We interpret this graph in a descriptive way by noting that between O and A the distances travelled in equal intervals of time are progressively increasing: that is, the velocity is increasing as the car is accelerating. Between A and B the distances for equal time intervals are decreasing; the car is slowing down. Finally, there is no change in position, even though time passes, so the car must be at rest. We can use Figure 2.5 to deduce the details of the way in which the car’s instantaneous velocity v varies with time. To do this, we draw tangents to the curve in Figure 2.5 at regular intervals of time, and measure the slope of each tangent to obtain values of v. The plot of v against t gives the graph in Figure 2.6. This confirms our descriptive interpretation: the velocity increases from zero to a maximum value, and then decreases to zero again. We will look at this example in more detail later on, where we shall see that the area under the velocity–time graph in Figure 2.6 gives the displacement x.
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Figure 2.5
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Figure 2.6














Acceleration


We have used the word accelerating in describing the increase in velocity of the car in the previous section. Acceleration is a measure of the rate at which the velocity of the particle is changing. Average acceleration is defined by the word equation
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The unit of acceleration is the unit of velocity (the metre per second) divided by the unit of time (the second), giving the metre per (second)2 which is represented as m s–2. In symbols, this equation is






[image: ]


[image: ]


[image: ]








where v1 and v2 are the velocities at time t1 and t2 respectively. To obtain the instantaneous acceleration, we take extremely small time intervals, just as we did when defining instantaneous velocity. Because it involves a change in velocity (a vector quantity), acceleration is also a vector quantity: we need to specify both its magnitude and its direction.


A particle moving with uniform (constant) velocity has zero acceleration. This means that the magnitude (speed) of the particle and its direction are not changing with time.


We can deduce the acceleration of a particle from its velocity–time graph by drawing a tangent to the curve and finding the slope of the tangent. Figure 2.7 shows the result of doing this for the car’s motion described by Figure 2.5 (the displacement–time graph) and Figure 2.6 (the velocity–time graph). The car accelerates at a constant rate between O and A, and then decelerates (that is, slows down) uniformly between A and B.
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Figure 2.7





An acceleration with a very familiar value is the acceleration of free fall near the Earth’s surface (discussed further below): this is 9.81 m s–2, often approximated to 10 m s–2. To illustrate the range of values you may come across, some accelerations are summarised in Table 2.2.








	 

	acceleration/m s–2











	due to circular motion of electron around nucleus

	9 × 1026







	car crash

	1 × 103







	free fall on Earth

	10






	family car

	2






	free fall on Moon

	2






	at Equator, due to rotation of Earth

	3 × 10–2







	due to circular motion of Earth around Sun

	6 × 10–5










Table 2.2 Examples of accelerations
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WORKED EXAMPLE 2C




	
1  A sports car accelerates along a straight test track from rest to 70 km h–1 in 6.3 s. What is its average acceleration?


	
2  A railway train, travelling along a straight track, takes 1.5 minutes to come to rest from a speed of 115 km h–1. What is its average acceleration while braking?





Answers




	
1  First convert the data into consistent units. 70 km (7.0 × 104 m) in 1 hour (3.6 × 103 s) is 19 m s–1. Since average acceleration is (change of velocity)/ (time taken), the acceleration is 19/6.3 = 3.0 m s–2.


	
2  115 km h–1 is 31.9 m s–1, and 1.5 minutes is 90 s. The average acceleration is (change of velocity)/ (time taken) = –31.9/90 = –0.35 m s–2.

Note that the acceleration is a negative quantity because the change of velocity is negative: the final velocity is less than the initial. A negative acceleration is often called a deceleration.
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Questions




	  4  A sprinter, starting from the blocks, reaches his full speed of 9.0 m s–1 in 1.5 s. What is his average acceleration?


	  5  A car is travelling at a speed of 25 m s–1. At this speed, it is capable of accelerating at 1.8 m s–2. How long would it take to accelerate from 25 m s–1 to the speed limit of 31 m s–1?


	  6  At an average speed of 24 km h–1, how many kilometres will a cyclist travel in 75 minutes?


	  7  An aircraft travels 1600 km in 2.5 hours. What is its average speed, in m s–1?


	  8  Does a car speedometer register speed or velocity? Explain.


	  9  An aircraft travels 1400 km at a speed of 700 km h–1, and then runs into a headwind that reduces its speed over the ground to 500 km h–1 for the next 800 km. What is the total time for the flight? What is the average speed of the aircraft?


	
10  A sports car can stop in 6.1 s from a speed of 110 km h–1. What is its acceleration?


	
11  Can the velocity of a particle change if its speed is constant? Can the speed of a particle change if its velocity is constant? If the answer to either question is ‘yes’, give examples.
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Uniformly accelerated motion


Having defined displacement, velocity and acceleration, we shall use the definitions to derive a series of equations, called the kinematic equations, which can be used to give a complete description of the motion of a particle in a straight line. The mathematics will be simplified if we deal with situations in which the acceleration does not vary with time; that is, the acceleration is uniform (or constant). This approximation applies for many practical cases. However, there are two important types of motion for which the kinematic equations do not apply: circular motion and the oscillatory motion called simple harmonic motion. We shall deal with these separately in Topic 12 and Topic 17.


Think about a particle moving along a straight line with constant acceleration a. Suppose that its initial velocity, at time t = 0, is u. After a further time t its velocity has increased to v. From the definition of acceleration as (change in velocity) / (time taken), we have a = (v − u)/t or, re-arranging,
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From the definition of average velocity v (distance travelled)/(time taken), over the time t the distance travelled s will be given by the average velocity multiplied by the time taken, or
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The average velocity [image: ] is written in terms of the initial velocity u and final velocity v as
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and, using the previous equation for v,


[image: ]


Substituting this we have
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The right-hand side of this equation is the sum of two terms. The ut term is the distance the particle would have travelled in time t if it had been travelling with a constant speed u, and the [image: ] term is the additional distance travelled as a result of the acceleration.


The equation relating the final velocity v, the initial velocity u, the acceleration a and the distance travelled s is


[image: ]


If you wish to see how this is obtained from previous equations, see the Maths Note below.
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MATHS NOTE
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Multiplying both sides by 2a and expanding the terms,
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The five equations relating the various quantities which define the motion of the particle in a straight line in uniformly accelerated motion are


[image: ]






[image: ]


[image: ]


[image: ]








In these equations u is the initial velocity, v is the final velocity, a is the acceleration, s is the distance travelled, and t is the time taken. The average velocity, [image: ] is given by (u + v)/2.


In solving problems involving kinematics, it is important to understand the situation before you try to substitute numerical values into an equation. Identify the quantity you want to know, and then make a list of the quantities you know already. This should make it obvious which equation is to be used.
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Free fall acceleration


A very common example of uniformly accelerated motion is when an object falls freely near the Earth’s surface. Because of the gravitational field of the Earth, the Earth exerts a force on all objects dropped near its surface. The gravitational field near the surface of the Earth is taken to be uniform, so all objects fall with the same uniform acceleration. A Level Topic 13 will describe gravitational fields in more detail. This acceleration is called the acceleration of free fall, and is represented by the symbol g. It has a value of 9.81 m s–2, and is directed downwards. For completeness, we ought to qualify this statement by saying that the fall must be in the absence of air resistance, but in most situations this can be assumed to be true.







Determination of the acceleration of free fall


The acceleration of free fall may be determined in several ways. The most direct method involves timing the fall of an object from rest through a measured height. Note that, because the time of fall is likely to be only a few tenths of a second, a timing device that can measure to one-hundredth of a second is required.
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Figure 2.8 Strobe-flash photograph of objects in free fall





For example, a steel sphere is released from an electromagnet and falls under gravity. As it falls, it passes through two light gates which switch an electronic timer on and then off (Figure 2.9). The acceleration of free fall can be determined from the values of the time interval and distance between the two light gates.
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Figure 2.9 Determination of the acceleration of free fall using a ball falling between two light gates





In one example of an experiment to determine the acceleration of free fall, the fall of a steel ball is recorded using strobe-flash photography. A steel ball is released from an electromagnet and falls under gravity (Figure 2.10). A video camera is used to produce a film of the ball’s fall. A stroboscope is used to flash a light at a selected frequency. The film shows the position of the ball at regular intervals of time against the scale on a measuring tape or metre rule as the ball falls vertically (Figure 2.11).
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Figure 2.10 An experiment to determine the acceleration due to free fall
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Figure 2.11 Strobe-flash image of a ball in free fall





If the object falls from rest, we can use the second of the equations for uniformly accelerated motion in the form


[image: ]


to calculate the value of g. The frequency of the stroboscope gives the time interval to one-hundredth of a second between flashes of light and hence the images of the ball on the film. Table 2.3 shows a typical set of results. A frequency of 20 Hz was used for the stroboscope and the time interval obtained from T = 1/f. The time of zero is taken at the first clear image of the ball. A graph of the displacement s against t2 should give a straight line of gradient [image: ]a from which g can be calculated.








	position/m

	time/s










	0.012

	0.05






	0.049

	0.10






	0.110

	0.15






	0.196

	0.20






	0.306

	0.25






	0.441

	0.30









Table 2.3 The position and time for a free falling steel ball, using the stroboscope method with a stroboscope frequency of 20 Hz
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MATHS NOTE


Straight-line graphs


The representation of data in a graphical form is a very important means by which relationships between variables can be determined.


The plotting of data points provides an averaging which may well be superior to an arithmetical mean. Where an arithmetical mean is calculated, each set of data has an equal weighting. When using a best-fit line on a graph, the average is weighted towards those data points close to the line. A wayward point (anomalous point) can be detected and allowance made – perhaps taking a new set of measurements.


An important type of graph which is used frequently in Cambridge International AS & A Level Physics is the straight-line graph, as illustrated in Figure 2.12.
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Figure 2.12





The equation representing this graph is


[image: ]


where m and c are constants.


The constant m is the gradient of the graph, m = Δy/Δx.


The constant c is the intercept on the y-axis.


If a variable y is thought to vary linearly with x, then plotting this graph will enable the following:




	
•  the straight line with an intercept of c verifies a linear relationship between y and x



	
•  determination of the values of the gradient m and the intercept c enables the exact form of the relationship to be established.





If the intercept is zero, the straight line passes through the origin. The relationship is y = mx. This special case with c = 0 means that y is proportional to x.


Relationships may also be based on powers.


For example,


R = a + bSn


where a, b and n are constants. A graph of R against Sn gives a straight-line graph with gradient b and an intercept on the R axis of a.
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WORKED EXAMPLE 2D


Use Table 2.3 to calculate the average velocity:




	
a  between the first two positions in the table and


	
b  the last two positions in the table.





Hence show the average acceleration of the ball is 9.8 m s–2.


Answers




	
a  average velocity = (0.49 − 0.012)/0.05 = 0.74 m s–1



	
b  average velocity = (0.441 − 0.306)/0.05 = 2.7 m s–1






The average acceleration = (2.7 − 0.74)/0.2 = 9.8 m s–2
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Question




	
12  Use the data given in Table 2.3 to plot a graph of displacement against time squared. Determine the acceleration of free fall from the gradient of your graph.
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Acceleration of free fall


Until the sixteenth century, the idea of the acceleration of a falling object was not fully appreciated. It was commonly thought that heavier bodies fell faster than light ones. This idea was a consequence of observing the effect of air resistance on light objects with a large surface area, such as feathers. However, Galileo Galilei (1564–1642) suggested that, in the absence of resistance, all bodies would fall with the same constant acceleration. He showed mathematically that, for an object falling from rest, the displacement travelled is proportional to the square of the time. Galileo tested the relation experimentally by timing the fall of objects from various levels of the Leaning Tower of Pisa (Figure 2.13).
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Figure 2.13 Leaning Tower of Pisa





This is the relation we have derived as [image: ]. For an object starting from rest, u = 0 and [image: ]. That is, the displacement is proportional to time squared.
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Figure 2.14 Galileo in his study
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WORKED EXAMPLE 2E




	
1  A car increases its speed from 25 m s–1 to 31 m s–1 with a uniform acceleration of 1.8 m s–2. How far does it travel while accelerating?


	
2  The average acceleration of a sprinter from the time of leaving the blocks to reaching her maximum speed of 9.0 m s–1 is 6.0 m s–2. For how long does she accelerate? What distance does she cover in this time?


	
3  A cricketer throws a ball vertically upward into the air with an initial velocity of 18.0 m s–1. How high does the ball go? How long is it before it returns to the cricketer’s hands?





Answers




	
1  In this problem we want to know the distance s. We know the initial speed u = 25 m s–1, the final speed v = 31 m s–1, and the acceleration a = 1.8 m s–2.

We need an equation linking s with u, v and a. This is


[image: ]


Substituting the values gives 312 = 252 + 2 × 1.8s.


Re-arranging, s = (312 − 252)/(2 × 1.8) = 93 m.




	
2  In the first part of this problem, we want to know the time t. We know the initial speed u = 0, the final speed v = 9.0 m s–1, and the acceleration a = 6.0 m s–2. We need an equation linking t with u, v and a. This is

[image: ]


Substituting the values, we have 9.0 = 0 + 6.0t. Re-arranging, t = 9.0/6.0 = 1.5 s.


For the second part of the problem, we want to know the distance s. We know the initial speed u = 0, the final speed v = 9.0 m s–1, and the acceleration a = 6.0 m s–2; we have also just found the time t = 1.5 s. There is a choice of equations linking s with u, v, a and t. We can use


[image: ]


Substituting the values, [image: ].


Another relevant equation is [image: ]. Here the average velocity [image: ] is given by [image: ]. Δx/Δt is the same as s/t, so 4.5 = s/1.5, and s = 4.5 × 1.5 = 6.8 m as before.




	
3  In the first part of the problem, we want to know the distance s. We know the initial velocity u = 18.0 m s–1 upwards and the acceleration a = g = 9.81 m s–2 downwards. At the highest point the ball is momentarily at rest, so the final velocity v = 0. The equation linking s with u, v and a is

[image: ]


Substituting the values, 0 = (18.0)2 + 2(–9.81)s. Thus s = –(18.0)2/2(–9.81) = 16.5 m. Note that here the ball has an upward velocity but a downward acceleration, and that at the highest point the velocity is zero but the acceleration is not zero.


In the second part we want to know the time t for the ball’s up-and-down flight. We know u and a, and also the overall displacement s = 0, as the ball returns to the same point at which it was thrown. The equation to use is


[image: ]


Substituting the values, [image: ]. Doing some algebra, t(36.0 − 9.81t) = 0. There are two solutions, t = 0 and t = 36.0/9.81 = 3.7 s. The t = 0 value corresponds to the time when the displacement was zero when the ball was on the point of leaving the cricketer’s hands. The answer required here is 3.7 s.
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Questions




	
13  An airliner must reach a speed of 110 m s–1 to take off. If the available length of the runway is 2.4 km and the aircraft accelerates uniformly from rest at one end, what minimum acceleration must be available if it is to take off?


	
14  A speeding motorist passes a traffic police officer on a stationary motorcycle. The police officer immediately gives chase: his uniform acceleration is 4.0 m s–2, and by the time he draws level with the motorist he is travelling at 30 m s–1. How long does it take for the police officer to catch the car? If the car continues to travel at a steady speed during the chase, what is that speed?


	
15  A cricket ball is thrown vertically upwards with a speed of 15.0 m s–1. What is its velocity when it first passes through a point 8.0 m above the cricketer’s hands?
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