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Preface

AT THE HEART OF THE UNIVERSE IS a steady, insistent beat: the sound of cycles in sync. It pervades nature at every scale from the nucleus to the cosmos. Every night along the tidal rivers of Malaysia, thousands of fireflies congregate in the mangroves and flash in unison, without any leader or cue from the environment. Trillions of electrons march in lockstep in a superconductor, enabling electricity to flow through it with zero resistance. In the solar system, gravitational synchrony can eject huge boulders out of the asteroid belt and toward Earth; the cataclysmic impact of one such meteor is thought to have killed the dinosaurs. Even our bodies are symphonies of rhythm, kept alive by the relentless, coordinated firing of thousands of pacemaker cells in our hearts. In every case, these feats of synchrony occur spontaneously, almost as if nature has an eerie yearning for order.

And that raises a profound mystery: Scientists have long been baffled by the existence of spontaneous order in the universe. The laws of thermodynamics seem to dictate the opposite, that nature should inexorably degenerate toward a state of greater disorder, greater entropy. Yet all around us we see magnificent structures—galaxies, cells, ecosystems, human beings—that have somehow managed to assemble themselves. This enigma bedevils all of science today. Only in a few situations do we have a clear understanding of how order arises on its own. The first case to yield was a particular kind of order in physical space involving perfectly repetitive architectures. It’s the kind of order that occurs whenever the temperature drops below the freezing point and trillions of water molecules spontaneously lock themselves into a rigid, symmetrical crystal of ice. Explaining order in time, however, has proved to be more problematic. Even the simplest possibility, where the same things happen at the same times, has turned out to be remarkably subtle. This is the order we call synchrony.

It may seem at first that there’s little to explain. You can agree to meet a friend at a restaurant, and if both of you are punctual, your arrivals will be synchronized. An equally mundane kind of synchrony is triggered by a reaction to a common stimulus. Pigeons startled by a car backfiring will all take off at the same time, and their wings may even flap in sync for a while, but only because they reacted the same way to the same noise. They’re not actually communicating about their flapping rhythm and don’t maintain their synchrony after the first few seconds. Other kinds of transient sync can arise by chance. On a Sunday morning, the bells of two different churches may happen to ring at the same time for a while, and then drift apart. Or while sitting in your car, waiting to turn at a red light, you might notice that your blinker is flashing in perfect time with that of the car ahead of you, at least for a few beats. Such sync is pure coincidence, and hardly worth noting.

The impressive kind of sync is persistent. When two things keep happening simultaneously for an extended period of time, the synchrony is probably not an accident. Such persistent sync comes easily to us human beings, and, for some reason, it often gives us pleasure. We like to dance together, sing in a choir, play in a band. In its most refined form, persistent sync can be spectacular, as in the kickline of the Rockettes or the matched movements of synchronized swimmers. The feeling of artistry is heightened when the audience has no idea where the music is going next, or what the next dance move will be. We interpret persistent sync as a sign of intelligence, planning, and choreography.

So when sync occurs among unconscious entities like electrons or cells, it seems almost miraculous. It’s surprising enough to see animals cooperating—thousands of crickets chirping in unison on a summer night; the graceful undulating of schools of fish—but it’s even more shocking to see mobs of mindless things falling into step by themselves. These phenomena are so incredible that some commentators have been led to deny their existence, attributing them to illusions, accidents, or perceptual errors. Other observers have soared into mysticism, attributing sync to supernatural forces in the cosmos.

Until just a few years ago, the study of synchrony was a splintered affair, with biologists, physicists, mathematicians, astronomers, engineers, and sociologists laboring in their separate fields, pursuing seemingly independent lines of inquiry. Yet little by little, a science of sync has begun coalescing out of insights from these and other disciplines. This new science centers on the study of “coupled oscillators.” Groups of fireflies, planets, or pacemaker cells are all collections of oscillators—entities that cycle automatically, that repeat themselves over and over again at more or less regular time intervals. Fireflies flash; planets orbit; pacemaker cells fire. Two or more oscillators are said to be coupled if some physical or chemical process allows them to influence one another. Fireflies communicate with light. Planets tug on one another with gravity. Heart cells pass electrical currents back and forth. As these examples suggest, nature uses every available channel to allow its oscillators to talk to one another. And the result of those conversations is often synchrony, in which all the oscillators begin to move as one.

Those of us working in this emerging field are asking such questions as: How exactly do coupled oscillators synchronize themselves, and under what conditions? When is sync impossible and when is it inevitable? What other modes of organization are to be expected when sync breaks down? And what are the practical implications of all that we’re trying to learn?

I’ve been fascinated by such questions for 20 years, first as a graduate student at Harvard University and then as a professor of applied math at the Massachusetts Institute of Technology and Cornell University, where I now teach and do research on chaos and complexity theory. My interest in cycles goes back even further than that, to an epiphany I had as a freshman in high school. For one of the first experiments in Science I, Mr. diCurcio gave each of us a stopwatch and a little toy pendulum, a tricky gadget with an extensible arm that could be lengthened or shortened in discrete steps, like one of those old telescopes you see in pirate movies. Our assignment was to clock the pendulum’s period—the time it takes for one swing back and forth—and to figure out how its period depends on its length: Does a longer pendulum swing faster, slower, or stay the same? To find out, we set our pendulums to the shortest length, timed its period, and plotted the result on a piece of graph paper. Then we repeated the experiment for progressively longer pendulums, always stretching the arm one click at a time. As I drew the fourth or fifth dot on the graph paper, it suddenly dawned on me that a pattern was emerging: The dots were falling on a parabolic curve. The same parabolas that I was learning about in Algebra II were secretly governing the motions of these pendulums. An enveloping sensation of wonder and fear came over me. In that moment of revelation, I became aware of a hidden but beautiful world that can be seen only through mathematics. It was a moment from which I have never really recovered.

Thirty years later, I’m still captivated by the mathematics of nature, especially as manifested by things that move in cycles, like the periodic swaying of the pendulum. But instead of a single cycle, my research has taken me to the study of many of them working together all at once—to the study of coupled oscillators. My training leads me to make simple models, to replace the bewildering complexity and richness of real fireflies or superconductors with idealized sets of equations that mimic their group behavior. I try to use calculus and computers to see how order emerges from chaos. What makes these puzzles so much fun is that they lie at the edge of known mathematics. Two coupled oscillators would be no challenge—their behavior has been understood since the early 1950s. But for questions involving hundreds or thousands of oscillators, we’re still in the dark. The nonlinear dynamics of systems with that many variables is still beyond us. Even with the help of supercomputers, the collective behavior of gigantic systems of oscillators remains a forbidding terra incognita.

Still, over the past decade, thanks to the combined efforts of mathematicians and physicists around the world, one special case has finally been worked out, opening the door to a deeper understanding of sync. If we assume that all the oscillators in a given group are nearly identical, and that they are all coupled equally to one another, the dynamics become mathematically tractable. In Parts I and II of this book, I tell the story of how my colleagues and I solved this class of theoretical problems, and what their solutions imply for sync in the real world: in Part I for living oscillators (cells, animals, and people) and then in Part II with reference to inanimate oscillators (pendulums, planets, lasers, and electrons). Part III deals with the frontiers of sync, when we cast aside our earlier simplifying assumptions. This realm is still largely unexplored, and includes situations where the oscillators are replaced by chaotic systems, or where they are coupled in less symmetrical ways—to their neighbors in three-dimensional space, or in intricate networks that transcend geography.

Sync is an attempt to synthesize a vast body of knowledge on this subject created by scientists working across disciplines, continents, and centuries. The science needed to understand sync draws on the work of some of the greatest minds of the twentieth century, many of whom are household names and others who should be—the physicists Albert Einstein, Richard Feynman, Brian Josephson, and Yoshiki Kuramoto; the mathematicians Norbert Wiener and Paul Erdös; the social psychologist Stanley Milgram; the chemist Boris Belousov; the chaos theorist Edward Lorenz; and the biologists Charles Czeisler and Arthur Winfree.

My own research runs through the story, not because I have any illusions about my place in history, but because I want to give a feel for what it’s like to be working in the trenches of science—the blind alleys, the twists and turns, the exhilaration of discovery, the metamorphosis from student to colleague to mentor. To convey the vitality of mathematics to a broad spectrum of readers, I’ve avoided equations altogether, and rely instead on metaphors and images from everyday life to illustrate the key ideas.

My hope is that you’ll come to share some of my excitement about the breathtaking diversity of synchronization in the natural world, and the power of mathematics to explain it. Sync is both strange and beautiful. It is strange because it seems to defy the laws of physics (though in fact it relies on them, often in curious ways). It is beautiful because it results in a kind of cosmic ballet that plays out on stages that range from our bodies to the universe as a whole. And it is also critically important. Our basic understanding of sync has already spawned such technological wonders as the global positioning system; the laser; and the world’s most sensitive detectors, used by doctors to pinpoint diseased tissues in the brains of epileptics without the need for surgery, by engineers to search for tiny cracks in airplane wings, and by geologists to locate oil buried deep underground. By investigating what happens when sync unravels, mathematicians are helping cardiologists track down the cause of fibrillation, a deadly arrhythmia that kills hundreds of thousands of people every year, suddenly and without warning, even those with no history of heart disease. And this is just a sample of what we are able to do today, thanks to our growing but still rudimentary knowledge of sync.

I am deeply grateful for the opportunity to have worked with so many brilliant and creative minds throughout my career. The research described here was a joint effort with my advisers Art Winfree, Richard Kronauer, Chuck Czeisler, and Nancy Kopell; my collaborators Rennie Mirollo, Paul Matthews, Kurt Wiesenfeld, Jim Swift, Kevin Cuomo, Al Oppenheim, and Tim Forrest; and my former students Shinya Watanabe and Duncan Watts. Thanks for being such wonderful companions on our journeys into the wilds of sync.

Other scientists helped improve the book in various ways. Jack Cowan shared his affectionate memories of Norbert Wiener at MIT in the late 1950s and enlightened me with the untold but very human story behind the double-dip spectrum. Lou Pecora provided a blow-by-blow account of how he and Tom Carroll were led to the discovery of synchronized chaos. Jim Thorp answered my questions about the power grid with his usual wisdom and good humor. Cedric Langbort kindly translated Huygens’s correspondence about the sympathy of clocks. Joe Burns, Erik Herzog, Chris Lobb, Charlie Marcus, Raj Roy, and Joe Takahashi offered insightful comments on early drafts of the manuscript. Margy Nelson prepared the illustrations with her distinctive blend of scientific judgment and artistic flair. I’m especially grateful to Art Winfree for sharing his playfulness and his mastery of sync, and, above all, for his heroic and amazingly generous effort in reading the manuscript from cover to cover, even under the most difficult circumstances.

Thank you to Lindy Williams, Stephen Tien, Herbert Hui, Tom Gilovich, and all my other friends who so patiently endured my tribulations in the early stages; Karen Dashiff Gilovich, who helped me find my voice; and Alan Alda, a terrifically stimulating partner in brainstorming sessions, who taught me a lot about how to approach the creative process. (Though I never did manage to follow his best piece of advice, about writing the first draft in one long, happy belch. Maybe next time.)

My colleagues at Cornell, especially Richard Rand and my department chairman, Tim Healey, have provided encouragement and support throughout the exhausting process of writing this book and have been patient with me whenever my mind seemed to be elsewhere. Thanks for being so understanding.

My literary agents Katinka Matson and John Brockman have been enthusiastic and helpful at every turn. John suggested the main title for the book within a millisecond of hearing my description of it. Katinka gently coached me through all aspects of the book-writing process, from proposal to publication.

A writer could not ask for a better publication team than the staff at Hyperion Books. In particular, editorial assistant Kiera Hepford was always gracious, upbeat, and efficient. Art director Phil Rose designed a cover that captures the essence of sync memorably and beautifully. And thanks especially to my editor, Will Schwalbe, whose keen eye, good taste, and sense of structure improved the book in so many ways, and whose unflagging excitement about this project spurred me on when I needed it most.

Thanks to my family for their love and encouragement, and especially to my dad, who has—as always—been on my side, quietly cheering, smiling, urging me on. The incredible selflessness of my mother-in-law, Shirley Schiffman, made it possible for me to work for long stretches without feeling guilty about neglecting my baby girls. Thank you to my daughters: Leah, for bringing me back down to earth by being a toddler; and Joanna, for not being born too early or too late. My wife, Carole, has shown her love in countless ways—listening, reading, coaxing, forgiving, teaching me how to create, how to loosen up, how to let go. Her generosity of spirit gave me the freedom to be consumed by a sometimes needy, always present obsession.

Finally, thank you to the citizens of the United States for your trust and farsightedness. By supporting the American research enterprise through agencies like the National Science Foundation, your taxes give scientists the most precious gift we could hope for—the chance to follow our imaginations wherever they may lead. I hope you take as much pleasure in our discoveries as we do.





Part I
Living Sync







• One •
Fireflies and the Inevitability of Sync


“Some twenty years ago I saw, or thought I saw, a synchronal or simultaneous flashing of fireflies. I could hardly believe my eyes, for such a thing to occur among insects is certainly contrary to all natural laws.”


SO WROTE PHILIP LAURENT IN THE JOURNAL Science in 1917, as he joined the debate about this perplexing phenomenon. For 300 years, Western travelers to Southeast Asia had been returning with tales of enormous congregations of fireflies blinking on and off in unison, in displays that supposedly stretched for miles along the riverbanks. These anecdotal reports, often written in the romantic style favored by authors of travel books, provoked widespread disbelief. How could thousands of fireflies orchestrate their flashings so precisely and on such a vast scale? Now Laurent felt certain he had solved the enigma: “The apparent phenomenon was caused by the twitching or sudden lowering and raising of my eyelids. The insects had nothing whatsoever to do with it.”


In the years between 1915 and 1935, Science published 20 other articles on this mysterious form of mass synchrony. Some dismissed the phenomenon as a fleeting coincidence. Others ascribed it to peculiar atmospheric conditions of exceptional humidity, calm, or darkness. A few believed there must be a maestro, a firefly that cues all the rest. As George Hudson wrote in 1918, “If it is desired to get a body of men to sing or play together in perfect rhythm they not only must have a leader but must be trained to follow such a leader. . . . Do these insects inherit a sense of rhythm more perfect than our own?” The naturalist Hugh Smith, who had lived in Thailand from 1923 to 1934 and witnessed the displays countless times, wrote in exasperation that “some of the published explanations are more remarkable than the phenomenon itself.” But he confessed that he too was unable to offer any explanation.


For decades, no one could come up with a plausible theory. Even as late as 1961, Joy Adamson, in her sequel to Born Free, marveled at an African version of the same phenomenon, the first ever described on that continent:


a great belt of light, some ten feet wide, formed by thousands upon thousands of fireflies whose green phosphorescence bridges the shoulder-high grass . . . The fluorescent band composed of these tiny organisms lights up and goes out with a precision that is perfectly synchronized, and one is left wondering what means of communication they possess which enables them to coordinate their shining as though controlled by a mechanical device.


By the late 1960s, the pieces of the puzzle began to fall into place. One clue was so obvious that nearly everyone missed it. Synchronous fireflies not only flash in unison—they flash in rhythm, at a constant tempo. Even when isolated from one another, they still keep to a steady beat. That implies that each insect must have its own means of keeping time, some sort of internal clock. This hypothetical oscillator is still unidentified anatomically but is presumed to be a cluster of neurons somewhere in the firefly’s tiny brain. Much like the natural pacemaker in our hearts, the oscillator fires repetitively, generating an electrical rhythm that travels downstream to the firefly’s lantern and ultimately triggers its periodic flash.


The second clue came from the work of the biologist John Buck, who did more than anyone else to make the study of synchronous fireflies scientifically respectable. In the mid-1960s, he and his wife, Elisabeth, traveled to Thailand for the first time, in hopes of seeing the spectacular displays for themselves. In an informal but revealing experiment, they captured scores of fireflies along the tidal rivers near Bangkok and released them in their darkened hotel room. The insects flitted about nervously, then gradually settled down all over the walls and ceiling, always spacing themselves at least 10 centimeters apart. At first they twinkled incoherently. As the Bucks watched in silent wonderment, pairs and then trios began to pulse in unison. Pockets of synchrony continued to emerge and grow, until as many as a dozen fireflies were blinking on and off in perfect concert.


These observations suggested that the fireflies must somehow be adjusting their rhythms in response to the flashes of others. To test that hypothesis directly, Buck and his colleagues later conducted laboratory studies where they flashed an artificial light at a firefly (to mimic the flash of another) and measured its response. They found that an individual firefly will shift the timing of its subsequent flashes in a consistent, predictable manner, and that the size and direction of the shift depend on when in the cycle the stimulus was received. For some species, the stimulus always advanced the firefly’s rhythm, as if setting its clock ahead; for other species, the clock could be either delayed or advanced, depending on whether the firefly was just about to flash, whether it was halfway between flashes, and so on.


Taken together, the two clues suggested that the flash rhythm was regulated by an internal, resettable oscillator. And that immediately suggested a possible synchronization mechanism: In a congregation of flashing fireflies, every one is continually sending and receiving signals, shifting the rhythms of others and being shifted by them in turn. Out of the hubbub, sync somehow emerges spontaneously.


Thus we are led to entertain an explanation that seemed unthinkable just a few decades ago—the fireflies organize themselves. No maestro is required, and it doesn’t matter what the weather is like. Sync occurs through mutual cuing, in the same way that an orchestra can keep perfect time without a conductor. What’s counterintuitive here is that the insects don’t need to be intelligent. They have all the ingredients they need: Each firefly contains an oscillator, a little metronome, whose timing adjusts automatically in response to the flashes of others. That’s it.


Except for one thing. It’s not at all obvious that the scenario can work. Can perfect synchrony emerge from a cacophony of thousands of mindless metronomes? In 1989 my colleague Rennie Mirollo and I proved that the answer is yes. Not only can it work—it will always work, under certain conditions.


For reasons we don’t yet understand, the tendency to synchronize is one of the most pervasive drives in the universe, extending from atoms to animals, from people to planets. Female friends or coworkers who spend a great deal of time together often find that their menstrual periods tend to start around the same day. Sperm swimming side by side en route to the egg beat their tails in unison, in a primordial display of synchronized swimming. Sometimes sync can be pernicious: Epilepsy is caused by millions of brain cells discharging in pathological lockstep, causing the rhythmic convulsions associated with seizures. Even lifeless things can synchronize. The astounding coherence of a laser beam comes from trillions of atoms pulsing in concert, all emitting photons of the same phase and frequency. Over the course of millennia, the incessant effects of the tides have locked the moon’s spin to its orbit. It now turns on its axis at precisely the same rate as it circles the earth, which is why we always see the man in the moon and never its dark side.


On the surface, these phenomena might seem unrelated. After all, the forces that synchronize brain cells have nothing to do with those in a laser. But at a deeper level, there is a connection, one that transcends the details of any particular mechanism. That connection is mathematics. All the examples are variations on the same mathematical theme: self-organization, the spontaneous emergence of order out of chaos. By studying simple models of fireflies and other self-organizing systems, scientists are beginning to unlock the secrets of this dazzling kind of order in the universe.


The question about self-organization that Rennie and I explored was originally posed by Charlie Peskin, an applied mathematician at New York University’s Courant Institute. A soft-spoken man with a neatly trimmed beard and an easy smile, Peskin is one of the world’s most creative mathematical biologists. He loves to use math and computers to plumb the mysteries of physiology: how the molecules and tissues and organs of the body perform their exquisite functions. Whether he’s trying to work out how the retina can detect the dimmest light imaginable, or how molecular motors generate the forces in muscles, his trademark is his versatility. He seems willing to try anything, whatever is required to gain insight. If the math he needs does not exist, he’ll invent it. If the problem requires a supercomputer, he’ll program it. If existing procedures are too slow, he’ll devise faster ones.


Even his mathematical style is flexible and pragmatic. His most celebrated work deals with the three-dimensional pattern of blood flow in the chambers of a pumping heart, complete with realistic anatomy, valves, and fiber architecture. For that complex problem he combined the brute force of a supercomputer simulation with the finesse of a wholly original numerical scheme. On other problems, however, he has usually followed Einstein’s dictum that everything should be made as simple as possible, but not simpler. In those cases he opted for a minimalist approach, neglecting all biological details except the truly essential ones. It was in that minimalist spirit that Peskin proposed a schematic model for how the pacemaker cells of the heart might synchronize themselves.


The heart’s natural pacemaker is a marvel of evolution, perhaps the most impressive oscillator ever created. A cluster of about 10,000 cells called the sinoatrial node, its function is to generate the electrical rhythm that commands the rest of the heart to beat, and it must do so reliably, minute after minute, for three billion beats in a lifetime. Unlike most of the cells in the heart, the pacemaker cells oscillate automatically—isolated in a petri dish, their voltage rises and falls in a regular rhythm.


All of which raises the issue, Why do we need so many of these cells, if one can do the job by itself? Probably because a single leader is not a robust design—a leader can malfunction or die. Instead, evolution has produced a more reliable, democratic system in which thousands of cells collectively set the pace. Of course, democracy raises its own problems: Somehow the cells have to coordinate their firings; if they send conflicting signals, the heart becomes deranged. And that’s the issue that Peskin wondered about: How do these cells, with no leader or outside instructions, manage to get in sync?


Notice how similar this question is to the earlier one about fireflies. Both involve large populations of rhythmic individuals that fire off sudden pulses that jolt the rhythms of others in their group, speeding them up or slowing them down according to specific rules. In both cases, sync appears inevitable. The challenge is to explain why this should be so.


In 1975, Peskin examined this question within the framework of a simplified model. Each pacemaker cell is abstracted as an oscillating electrical circuit, equivalent to a capacitor in parallel with a resistor. (A capacitor is a device for storing electrical charge, and here plays a role akin to the cell’s membrane; a resistor provides a pathway for current to flow out of the cell, analogous to so-called leakage channels in the membrane.) A constant input current causes the capacitor to charge up, increasing its voltage steadily. Meanwhile, as the voltage rises, the amount of current leaking through the resistor increases, so the rate of increase slows down. When the voltage reaches a threshold, the capacitor discharges, and the voltage drops instantly to zero—this pattern mimics the firing of a pacemaker cell and its subsequent return to baseline. Then the voltage starts rising again, and the cycle begins anew. Viewed as a function of time, the voltage cycle has two parts: a gentle ascent along a charging curve (a graph shaped like half an arch, rising but bowed downward), followed by a vertical drop back to baseline.


Next, Peskin idealized the cardiac pacemaker as an enormous collection of these mathematical oscillators. For simplicity, he assumed that all the oscillators are identical (and therefore follow the same charging curve); that each oscillator is coupled equally strongly to all the others; and that the oscillators affect one another only when they fire. Specifically, when an oscillator fires, it instantly kicks the voltages of all the others up by a fixed amount. If any cell’s voltage exceeds the threshold, it fires immediately.


What makes the problem so bewildering is that different oscillators are typically at different stages in the cycle at any given moment—some are on the brink of firing, others are farther down on the charging curve, and still others may be close to baseline. Once the lead oscillator reaches threshold, it fires and kicks everyone else to different positions along the charging curve. The effects of the firing are mixed: Oscillators that were close to threshold are knocked closer to the firing oscillator, but those close to baseline are knocked farther out of phase. In other words, a single firing has synchronizing effects for some oscillators and desynchronizing effects for others. The long-term consequences of all these rearrangements are impossible to fathom by common sense alone.
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For a more vivid picture of what’s going on, imagine an individual cell as analogous to a toilet tank filling with water. As the water pours in, its level rises steadily, as the voltage does in the cell. Suppose that when the water reaches a certain height, the toilet automatically flushes. The sudden discharge returns the water to its baseline level, at which point the tank begins filling again, creating a spontaneous oscillator. (To complete the analogy, we also have to suppose that the tank is slightly leaky. Water spills out through a small hole near the bottom of the tank. It drains faster when there’s more water in the tank, which implies that the tank fills more slowly as it rises. This leakage is not important for the oscillation itself—the apparatus would cycle without it—but it turns out to be crucial for the synchronization of many such oscillators.) Finally, imagine an army of 10,000 of these oscillating toilets, rigged together by a system of pipes connecting every tank to every other, so that when any one flushes, it raises the water level equally in all the rest. If that additional water lifts any of those over their threshold, they flush too.


It’s a bizarre image, a plumber’s version of a Rube Goldberg machine, and the question becomes, What will this contraption do, once started? Remain perpetually disorganized? Split into battling factions, flushing in turn?


Peskin conjectured that the system would always synchronize: No matter how it was started, all the oscillators would end up firing in unison. Furthermore, he suspected that sync would occur even if the oscillators were not quite identical. But when he tried to prove his conjectures, he ran into technical obstacles. There were no established mathematical procedures for handling large systems of oscillators coupled by sudden, discontinuous impulses. So he backed off and focused on the simplest possible case: two identical oscillators. Even here the mathematics was thorny. He restricted the problem further by allowing only infinitesimal kicks and infinitesimal leakage through the resistor. Now the problem became manageable; for this special case, he proved that sync was inevitable.


Peskin’s proof relies on an idea introduced by the French mathematician Henri Poincaré, the founder of chaos theory. Poincaré’s concept is the mathematical equivalent of strobe photography. Take two identical oscillators, A and B, and chart their evolution by taking a snapshot every time A fires. What does the series of snapshots look like? Oscillator A has just fired, so it always appears at baseline, at zero voltage. The voltage of B, in contrast, changes from one snapshot to the next. By solving the equations governing his model, Peskin found an explicit but messy formula for the change in B’s voltage between snapshots. The formula revealed that if the voltage is less than a certain critical value, it will decrease steadily until it reaches zero, whereas if it is larger, it will increase steadily until it reaches threshold. In either case, B ends up synchronized with A. There is one exception: If B’s voltage is precisely equal to the critical voltage, then it can be driven neither up nor down and so stays poised at criticality. The oscillators fire repeatedly half a cycle out of phase from each other. But this equilibrium is unstable: The slightest nudge tips the system toward synchrony.


Despite Peskin’s successful analysis of the two-oscillator case, the case of an arbitrary number of oscillators eluded proof for another 15 years. During this time Peskin’s work went virtually unnoticed. It lay buried in an obscure monograph—essentially a photocopied set of his lecture notes—available only by request from his department.


One day in 1989, I was flipping through a book called The Geometry of Biological Time, written by the theoretical biologist Art Winfree, one of my heroes. At the time I was a postdoctoral fellow in applied math at Harvard and feeling hungry for a new problem to work on. Even though I’d been poring over Winfree’s book for the past eight years, I still found it to be an endless source of ideas and inspiration. It wasn’t just a summary of past research on biological oscillators—it was a map for fortune hunters, a guide to future discoveries. On practically every page, Winfree pointed the way to good unsolved problems, with tips about which ones were ripest.


And here was a lead I hadn’t noticed before: In a section on oscillators communicating by rhythmic impulses, Winfree mentioned the model for cardiac pacemaker cells that Peskin had proposed in his monograph. Although Peskin had successfully analyzed the case of two identical oscillators, wrote Winfree, “the population problem awaits completion.”


That piqued my curiosity. What was this fundamental puzzle, all set up, waiting to be solved? I’d never heard of Peskin’s work, but it sounded extraordinary. Nobody else had ever tried to tackle the mathematics of a population of “pulse-coupled” oscillators, where the interactions are mediated by abrupt, pulsatile signals. This was a noticeable hole in the literature of mathematical biology, and an embarrassing one at that, given how common it was for biological oscillators to interact in this way. Fireflies flash. Crickets chirp. Neurons spike. All use sudden pulses to communicate. Nevertheless, theorists shied away from pulse coupling for mathematical reasons. Impulses make variables jump discontinuously, and calculus has trouble coping with jumps—it works best for processes that change smoothly. Yet Peskin had somehow found a way to analyze two oscillators that repeatedly zap each other. How had he done it? And what blocked his path for more than two?


Our library didn’t have a copy of his monograph, but Peskin kindly mailed me the relevant pages. His analysis was sweet, clear, and direct. But I quickly realized why he stopped at two: Although his analysis was elegant, his formulas were already becoming unwieldy. Three oscillators would be worse, and an arbitrary number, n, seemed downright forbidding. I couldn’t see how to extend his argument or bypass the complications.


To get a better feel for the problem, I ran it on the computer in two different ways. The first approach was to inch ahead and try the three-oscillator problem, mimicking Peskin’s strategy, using small kicks and leakage, and letting the computer handle all the algebra. The formulas were horrible—some of them filled several pages—but with the computer’s help, I whittled them down to something intelligible. The results showed that Peskin’s conjecture was probably true for three oscillators. They also showed that this was not the right way to proceed. The algebra, even with the help of the computer, was becoming prohibitive.


The second approach was simulation. No formulas now, just let the computer march the system forward in time, one small step after another, then see what happens. Simulation is no substitute for math—it could never provide a proof—but if Peskin’s conjecture was false, this approach would save me a lot of time by revealing a counterexample. This sort of evidence is extremely valuable in math. When you’re trying to prove something, it helps to know it’s true. That gives you the confidence you need to keep searching for a rigorous proof.


Programming the simulation was easy. When one oscillator fires, it kicks all the others up by a certain, fixed amount. If any of the kicked ones go over the threshold themselves, let those fire too, and update the others accordingly. Otherwise, in between firings, use Peskin’s formulas to advance all the oscillators toward their thresholds.


I tried a population of 100 identical oscillators. With their voltages initially scattered at random between baseline and threshold, I plotted them as a swarm of dots arching toward threshold, climbing up their common charging curve of voltage versus time. Even with the help of computer graphics, I couldn’t see a pattern in their collective motion—only a buzzing confusion.


The problem here was too much information. And so I came to appreciate another advantage of Peskin’s strobe method: Not only does it simplify the analysis, it’s also the best way to visualize how the system evolves. All the oscillators are invisible except at the precise moments when one particular oscillator fires. At those moments, an imaginary strobe light illuminates the rest of the oscillators, revealing their instantaneous voltages. Then the whole system lapses back into darkness until the next time that distinguished oscillator fires. Peskin’s model has the property that the oscillators fire in turn—no one ever jumps the queue—so 99 other oscillators fire in the dark before the next strobe flash occurs.


Viewed on the computer, these computations flew by so rapidly that the screen appeared to flicker, with 99 oscillators hopping along the charging curve, changing their positions with each flash of the strobe. Now the pattern was unmistakable. The dots clumped together, forming small pockets of sync that coalesced into larger ones, like raindrops merging on a windowpane.


It was spooky—the system was synchronizing itself. Defying Philip Laurent and all the other skeptics who had argued that firefly sync was impossible in principle, that such a thing was “certainly contrary to all natural laws,” the computer was showing that a mob of mindless little oscillators could fall into step automatically. The effect was uncanny to watch. An onlooker couldn’t help but feel that the oscillators were deliberately cooperating, consciously striving for order, but they were not. Each one was responding robotically to the impulses fired by others, with no goal in mind.


To make sure I hadn’t gotten lucky on the first try, I repeated the simulation dozens of times, for other random initial conditions and for other numbers of oscillators. Sync every time. Peskin’s conjecture seemed to be right. The challenge now was to prove it. Only an ironclad proof would demonstrate, in a way that no computer ever could, that sync was inevitable; and the best kind of proof would clarify why it was inevitable. I called my friend Rennie Mirollo, a mathematician at Boston College.


Rennie and I had known each other for ten years. As grad students at Harvard, we used to hang out together on weekends, eating french fries at greasy spoons at 2 A.M., while talking about math and women in roughly equal measure. But we never worked together in those days. His training was in pure math while mine was in applied math—we could understand each other, but not completely.


For his doctoral studies, Rennie worked on a very abstract problem and hoped to write his thesis about it. His instinct told him that a certain theorem must be true, and he spent three years trying to prove it. One day, he realized that it was false—he found a counterexample that wrecked everything. Nothing could be salvaged. Yet rather than be depressed, his reaction was to switch to a new branch of mathematics, solve a key problem in it, and write a thesis—all in one year.


Around 1987, Rennie and I began working together. Our strengths were complementary. Usually I would propose the problem, explain its scientific context, run computer simulations, and suggest intuitive arguments. He would come up with strategies to crack the problem wide open, and then find ways to prove a theorem.


When I told him about my computer experiments on Peskin’s model, he was eager at first, good-natured and curious. But once he understood the question, he became impatient, like a boxer waiting to enter the ring. He gave me a few more minutes to summarize what I’d done, but before long, he insisted on looking at it his own way.


Rennie simplified the model ruthlessly. He had no patience for all the details inherent in Peskin’s original circuit model, with its capacitors and resistors and voltages. The only essential feature of the model, he guessed, is that each oscillator follows a slowing upward curve of voltage as it rises toward threshold. So he imposed that geometry from the start. He threw away the circuit and replaced it with an abstract, voltagelike variable that repeatedly builds up to a threshold, fires, and resets. Then he imagined a collection of these variables, n of them, all identical, and all interacting as before: Whenever one oscillator fires, it pulls all the others up by a fixed amount, or up to threshold, whichever is less.


This distilled model is not only clearer (which reduces the algebra enormously); it’s also more broadly applicable. Instead of a purely electrical interpretation in terms of voltage, we could now think of the variable as measuring any oscillator’s readiness to fire, whether a heart cell or a cricket, a neuron or a firefly.


We were able to prove that this generalized system almost always becomes synchronized, for any number of oscillators and no matter how they are started. A key ingredient in the proof is the notion of “absorption”—a shorthand for the idea that if one oscillator kicks another over threshold, they will remain synchronized forever, as if one had absorbed the other. Absorptions were conspicuous in my computer experiments, when the oscillators appeared to merge like raindrops. They are also irrevocable: Once two oscillators fire together, they will never drift apart on their own, because they have identical dynamics; furthermore, they are identically coupled to all the others, so even when they are kicked, they will stay in sync because they are jolted equally. Thus absorptions act like a ratchet, always bringing the system closer to synchrony.


The heart of the proof is an argument demonstrating that a sequence of absorptions locks the oscillators together in ever-growing clumps, until they finally coalesce into one giant group. If you’re not a mathematician, you might be wondering how to go about proving something like that. There are an infinite number of different ways to start the system, so how can all the possibilities be covered? And what ensures that enough absorptions will occur to carry the system all the way to ultimate synchrony?


As I outline the reasoning below, don’t worry too much about following the details. The point is just to give you a sense of how such proofs are built. It’s not like what you might expect if your only experience was with high school geometry, which is often taught in a mechanical, authoritarian way. Developing a mathematical proof is actually a very creative process, full of vague ideas and images, especially in the early stages. Rigor comes later. (If you are not particularly interested in this, feel free to skip this section.)


The first step is to catalog all the possible starting configurations. For instance, let’s reconsider the case of two oscillators. Because of Peskin’s strobe trick, we know we don’t need to watch the oscillators at all times. It’s enough to focus on one moment in every cycle, which we choose to be the instant immediately after oscillator A has fired and returned to baseline. Then oscillator B could be at any “voltage” between baseline and threshold. Visualizing B’s voltage as a point on a number line, with baseline at 0 and threshold at 1, we see there’s a line segment of different possibilities. This one-dimensional segment encompasses all possible starting conditions for the system (because we know A is at 0, having just fired and reset to baseline; the only variable is B, which must be somewhere along the line segment between 0 and 1).


Three oscillators create a larger space of possibilities. Now we need to know two numbers: Given that A has just fired and returned to 0, we still need to specify the voltages of oscillators B and C at that instant. Visualize those two possibilities, all combinations of B’s and C’s voltages. What is the geometry corresponding to a pair of numbers? We can think of them as the two coordinates of a point in a two-dimensional space.


Picture the x,y plane, familiar from high school math. Here the x-axis, plotted horizontally as usual, represents B’s voltage at the moment that A fires. The y-axis, plotted vertically, represents C’s voltage at the same instant. A pair of voltages is a single point in this plane.


As we allow B and C to vary independently over all voltages between 0 and 1 (to cover all possibilities), the corresponding point moves around inside a square region, in the same way that turning the two knobs on an Etch A Sketch moves the mechanical pen across a square screen.


The upshot is that with three oscillators, we have a square of possible initial conditions: one axis for B, one for C. Notice that we don’t need an axis for A, since it always starts at 0, by definition of how we strobe the system.


The pattern is becoming clear. As we add more oscillators, we need to add more dimensions to account for all the possibilities. Four oscillators require a solid cube of initial conditions; five require a four-dimensional hypercube; and in general, n oscillators require an (n-1)-dimensional hypercube. That sounds mind-boggling, and it is, if you try to picture it. But the mathematical formalism handles all dimensions in the same way. There are no new complications. So for concreteness, I’ll continue to focus on the three-oscillator case, which contains all the main ideas.
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The next step is to translate the dynamics—the evolution of the system in time—into the pictorial framework we’re developing. The goal is to predict whether the system will end up in sync, given an initial condition for oscillators B and C.


Imagine what happens if we let the system run. All the oscillators rise toward threshold, fire, and reset to baseline; they also respond to kicks from other oscillators. To eliminate redundant information, we again exploit the strobe idea: Let the system run in the dark until the next time A has fired and gone back to 0, and B and C have responded. Then flash the strobe and take the next snapshot, recording the new positions of B and C.


The geometrical effect is that the old point in the square has just hopped to a new point: the updated voltages of B and C. In other words, the dynamical evolution of the system is tantamount to a transformation that takes any given point in the square and sends it to a new point, according to some complicated rule that depends on the shape of the charging curve and the size of the kicks.


The process can be repeated; the new point can be treated as an initial point, then sent on its way by the transformation, over and over again, hopping from place to place in the square in a series of jerky steps. If the system is destined to sync, the point will eventually hop toward the lower left corner of the square—the point with voltages (0,0)—meaning that each oscillator reaches baseline simultaneously. (Why that corner? Because that’s where oscillator A is. By definition of the strobe, A has just fired and reset, so its voltage is 0. In the synchronized state, both of the other oscillators have voltage 0 too.)


In principle, every initial point has a fate that can be calculated. If all the oscillators end up firing in sync, we say the starting point is “good.” Otherwise, it’s “bad.” Rennie and I never found a way to decide exactly which points were which, but we did manage to prove that almost all points are good. Bad points do exist, but they are so few and sparse that, taken all together, they occupy no area. Or to put it another way, if you choose a point at random, you have no chance of picking a bad one.


That might sound nonsensical: If bad points exist, you may be thinking, surely with my luck I would choose one. But you wouldn’t. It would be like throwing a dart at a dartboard and requiring that it land precisely on the dividing line between two scores. That’s unlikely enough, but now imagine that the line has no thickness (as required if it is to have zero area) and now you see why a random dart would never hit it.


It was Rennie’s idea to think about the bad points, even though we were interested in the good ones. His strategy was reminiscent of the artist’s concept of negative space: To understand the object, understand the space around it. In particular, he found a way to prove that the bad points occupy zero area.


To give the flavor of the argument, let’s concentrate on the worst of the bad points, which I’ll call the “terrible” ones. These are the most defiant in resisting the urge to sync; they never undergo any absorptions. When the system starts at a terrible point, no pair of oscillators (let alone the whole population) ever synchronizes.


To see why the terrible points have no area, think of them collectively as a set, and examine what happens when we apply the transformation to all the points in that set. Each terrible point will hop somewhere, but it will still be terrible after the transformation. That’s almost a tautology: If a point never leads to an absorption, then after one iteration of the transformation, it still never leads to an absorption. Hence, the new point is terrible too. Since the original set included all terrible points (by definition), this new point must have been lurking somewhere in there to begin with.


The conclusion is that the transformed set lies entirely inside the original. In more visual terms, it’s like those “before” and “after” pictures favored by advertisements for diet programs. The transformed set—the slimmed-down “after” picture—is contained entirely in the chubbier “before” picture, just as the diet promised.


So far the argument hasn’t used any information about the shape of the charging curve or the size of the kicks. When we finally take those details into account, we come to what seems at first like a paradox, though it’s actually the clincher for the argument. Rennie and I were able to prove that the transformation from “before” to “after” works somewhat like the enlarging function on a photocopier. Any set of points that you feed into the transformation comes out larger afterward, in the sense that its total area will be magnified by a factor larger than 1. It does not matter what set you choose (just as it doesn’t matter what image you place on the photocopier); all sets get expanded in area. In particular, the terrible set expands. But wait—that means the terrible set becomes fatter, not skinnier, seemingly contradicting what we said above. To be more precise, the conundrum is that the transformed version of the terrible set has to sit inside the original, yet its area also has to get larger, which seems impossible. The only way these two conclusions could be compatible is if the original set had zero area to begin with (the “before” picture must have been a stick figure). Then there’s no contradiction—when multiplied by a number larger than 1, its area is still zero, so the transformed set can fit inside the original. And this is exactly what we wanted to show: The terrible points occupy no area. So you’ll never choose them, if you pick an initial condition at random. Nor will you pick any other bad points. And that’s why sync is inevitable for this model.


The same argument works for any number of oscillators, with the slight modification that area must be replaced by volume or hypervolume when there are four or more oscillators. In any case, the probability of starting at a bad point is always zero. Hence Peskin was right: In his model of identical, pulse-coupled oscillators, everyone ends up firing in unison.


In developing this proof, we found that Peskin’s leakage assumption was crucial; otherwise the transformation from “before” to “after” doesn’t expand area, and the whole argument breaks down. And in fact, it has to break down, because the theorem is false without that assumption. If the charging curve had bowed up instead of down—if the voltage accelerates up to threshold—our simulations showed the population doesn’t necessarily synchronize. The oscillators can get stuck in a random-looking pattern of disorganized firing.


This delicate point often tripped up other mathematicians when I first gave lectures about our work; before I had a chance to explain it, some heckler (and usually there was one) would interrupt and say the theorem is trivial, that of course the oscillators will synchronize, since they’re all identical and coupled equally to one another, and what else did I expect? But that objection is too facile—it overlooks the subtle influence of the charging curve’s shape. Only when the curve bends in the right direction is sync inevitable. In biological terms, the shape of the charging curve determines whether kicks are more potent at the beginning of the cycle (near baseline) or at the end of the cycle (near threshold). When the curve bows downward as in Peskin’s model, a given kick in voltage translates to a larger shift in phase for oscillators close to threshold, which in turn ensures that the system will synchronize, though seeing why requires a complicated calculation and is certainly not obvious.


Our proof of Peskin’s conjecture was the first rigorous result about a population of oscillators coupled by sudden impulses. With regard to real fireflies or cardiac pacemaker cells, however, the model is plainly simplified. It assumes that the firing of one oscillator always kicks the others toward threshold, thereby advancing their phases; real biological oscillators can generally inflict both advances or delays. Moreover, the Thai fireflies that are most adept at synchronizing—a species known as Pteroptyx malaccae—use an altogether different strategy: They continually adjust their clocks’ frequencies, not their phases, in response to incoming flashes. In effect they make them tick faster or slower, rather than pushing the minute hands forward or back. By further pretending that all oscillators are identical, the model neglects the genetic variability inherent in any real population. And finally, assuming that all oscillators affect one another equally is a crude approximation for heart cells, which primarily influence their nearest neighbors. Given all the limitations of our analysis, we were unprepared for the reaction it was about to provoke.


Within the next few years, more than 100 papers were written on pulse-coupled oscillators by scientists in disciplines ranging from neurobiology to geophysics. In neurobiology, theorists studying models of neural networks had grown impatient with the prevailing approach, in which neurons were described coarsely by their average rates of firing (the number of spikes per second) instead of in terms of the actual timing of the spikes themselves. The new framework of pulse-coupled oscillators fit perfectly with the needs and mood of the time.


By an accident of scientific sociology, or maybe because of a mysterious zeitgeist, in the early 1990s scientists in other fields were also thinking about these kinds of systems. For example, the influential Caltech biophysicist John Hopfield pointed out a connection between pulse-coupled neurons and earthquakes. In a simplified model of an earthquake, crustal plates continually pull on one another, building up stress until a threshold is crossed. Then the plates slip suddenly, releasing their pent-up energy in a burst. The whole process is reminiscent of the gradual rise and sudden firing of a neuron’s voltage. In the earthquake model, the slippage of one plate may be enough to trigger others to slip (just as neural firing can set off a chain reaction of other discharges in the brain). These cascades of propagating events can give rise to earthquakes (or epileptic seizures). Depending on the exact configuration of the other elements of the system, the result may be a minor rumble or a massive quake.


The same mathematical structure cropped up in models of other interacting systems, ranging from forest fires to mass extinctions. In each case, an individual element is subjected to increasing pressure, builds up toward a threshold, then suddenly relieves its stress and spreads it to others, potentially triggering a domino effect. Models with this character were all the rage in early 1990s. The statistics of the cascades—most very small, but a few cataclysmic—were studied theoretically by the physicist Per Bak and his collaborators, in connection with what they called self-organized criticality.


Hopfield’s insight was that self-organized criticality might be intimately linked to synchronization in pulse-coupled oscillator systems. The tantalizing possibility of a relationship between those two areas spawned dozens of papers exploring the possible ties. This episode exemplifies the ways that mathematics can expose the underlying unity of phenomena that otherwise seem unrelated.


Our work also attracted media attention, largely because of its connection to fireflies, which conjure up childhood memories of summer evenings spent catching the glowing insects in glass jars. As a result of this coverage, in 1992 I received a delightful letter from a woman in Knoxville, Tennessee, named Lynn Faust. In her gracious and unassuming way, she was about to shatter a myth about synchronous fireflies that had lasted for decades. She wrote:


I am sure you are aware of this, but just in case, there is a type of group synchrony lightning bug inside the Great Smoky Mountain National Park near Elkmont, Tennessee. These bugs “start up” in mid June at around 10 pm nightly. They exhibit 6 seconds of total darkness; then in perfect synchrony, thousands light up 6 rapid times in a 3 second period before all going dark for 6 more seconds.


We have a cabin in Elkmont (due to be destroyed by the Park Service in December 1992) and, as far as we know, it is only in this small area that this particular type of group synchronized lightning bug exists. It is beautiful.


These are very different from our regular lightning bugs that just seem to blink on and off anytime after dusk.


She went on to say that across the creek from the cabin, fireflies high on the hillside start their sequence a little bit ahead of those below, so light seems to ripple down “like a waterfall of fireflies.”


She wrote to the Park Service, desperately worried that their plan to evict the Elkmont residents from their cabins could ruin the habitat before any scientists had a chance to study it. The spectacle was seen nowhere else in the park, not even a half mile away, which suggested to Lynn that the local residents must be doing something to enable it. She guessed that the key might be freshly mowed lawns: For 50 years, Elkmont residents had mowed their lawns roughly every two weeks. That allowed the firefly larvae to survive the winter by burrowing into the short, mossy grass. They also hatched there in the spring and bred there in the summer. In short, without the Elkmont residents around to mow the grass, she argued, the fireflies might be lost to science forever. In support of her lawn hypothesis, she noted that the highest concentrations of fireflies were found


right up next to the cabins and extending out onto the mown lawn areas . . . no larvae have been located at Uncle Lem Owenby’s former homeplace where regular mowing no longer occurs. In the 15 years that the forest has replaced lawn at Mayna McKinna’s cabin way up Jake’s Creek she has noticed a marked decrease in “her” firefly population.


Lynn was also driven by concerns over losing her cabin and community. The Faust family had enjoyed the light show for 40 years. Every June, three generations would wrap themselves in blankets and sit silently on their unlit porch, waiting for the entertainment to begin.


What was so familiar to the Fausts was new to science. These backyard observations were about to become the first well-documented case of synchronous fireflies in the Western Hemisphere. In the decades since the controversy erupted in Science magazine in the early 1900s, the dogma had been that the phenomenon never occurs here, only in Asia and Africa. I put Lynn in touch with Jonathan Copeland, a firefly researcher at nearby Georgia Southern University, who, along with his collaborator Andy Moiseff of University of Connecticut, confirmed that the fireflies at the Faust cabin were synchronous, lighting up within three-hundredths of a second of one another.


Although Elkmont was absorbed by the Great Smoky Mountain National Park in 1992, the fireflies have survived the change, and “The Light Show” has gone on to become a tourist attraction. As for Lynn Faust, she continues to be tuned in to the pervasiveness of sync in nature, and is still making her own discoveries. In a 1999 letter to me, she wrote: “Just another simple synchrony I noticed this spring—when 4 turkey gobblers (these were domestic) are together during the spring mating time they congregate in a circle and gobble in synchrony after (what appears to be) the head gobbler makes an initial gobble.”


Not everyone is so appreciative of the wonders of synchrony in the animal world. On May 18, 1993, the tabloid National Enquirer ran an article titled “Govt. Blows Your Tax $$ to Study Fireflies in Borneo—Not a Bright Idea!” The piece mocked the National Science Foundation for funding one of Copeland’s grant proposals, and reported that Representative Tom Petri, Republican from Wisconsin, “doesn’t think the study is likely to be very illuminating—and he wants to squash it. ‘Spending taxpayers’ money studying fireflies doesn’t sound like a very bright idea to me.’ ”


It’s hard to blame Representative Petri for missing the point. The value of studying fireflies is endlessly surprising. For example, before 1994, Internet engineers were vexed by spontaneous pulsations in the traffic between computers called routers, until they realized that the machines were behaving like fireflies, exchanging periodic messages that were inadvertently synchronizing them. Once the cause was identified, it became clear how to relieve the congestion. Electrical engineers devised a decentralized architecture for clocking computer circuits more efficiently, by mimicking the fireflies’ strategy for achieving synchrony at low cost and high reliability. (The humble creatures have even helped save human lives. Ironically, the same week that Representative Petri’s quip appeared in the Enquirer, an article in Time magazine reported that doctors were borrowing the firefly’s light-emitting enzyme, luciferase, to accelerate the testing of drugs against resistant strains of tuberculosis.)


Beyond serving as an inspiration to engineers, the group behavior of fireflies has broader significance for science as a whole. It represents one of the few tractable instances of a complex, self-organizing system, where millions of interactions occur simultaneously—when everyone changes the state of everyone else. Virtually all the major unsolved problems in science today have this intricate character. Consider the cascade of biochemical reactions in a single cell and their disruption when the cell turns cancerous; the booms and crashes of the stock market; the emergence of consciousness from the interplay of trillions of neurons in the brain; the origin of life from a meshwork of chemical reactions in the primordial soup. All these involve enormous numbers of players linked in complex webs. In every case, astonishing patterns emerge spontaneously. The richness of the world around us is due, in large part, to the miracle of self-organization.


Unfortunately, our minds are bad at grasping these kinds of problems. We’re accustomed to thinking in terms of centralized control, clear chains of command, the straightforward logic of cause and effect. But in huge, interconnected systems, where every player ultimately affects every other, our standard ways of thinking fall apart. Simple pictures and verbal arguments are too feeble, too myopic. That’s what plagues us in economics when we try to anticipate the effect of a tax cut or a change in interest rates, or in ecology, when a new pesticide backfires and produces dire, unintended consequences that propagate through the food chain.


The firefly problem poses many of the same conceptual challenges, though of course it’s much easier than economics or ecology. We have a much better idea about the nature of the individuals (fireflies) and their behavior (rhythmic flashing) and their interactions (resetting in response to light) than we do about the global marketplace or ecological webs, with so many diverse companies and species and unknown modes of interaction among them. But it’s still not easy. In fact, it’s at the edge of what we understand today. As such, it’s an ideal starting point for learning how math can help us unravel the secrets of spontaneous order, and a case study of what it can (and cannot) do for us at this primitive, thrillingly early stage of exploration.


Although synchrony is ubiquitous among living things, its function is not always obvious. Why, for instance, should fireflies flash in unison? Biologists have offered at least 10 plausible explanations. The oldest one is called the beacon hypothesis. It has been known for decades that only the males synchronize their flashes; so, according to this view, the light show is directed at the females—a collective invitation to come hither. By blinking in concert, the males reinforce that seductive signal, beaming it for miles through the jungle canopy, luring females who might not otherwise see any of them. This may be why synchrony is common in densely vegetated areas (like the jungles of Thailand and Malaysia, or the forest behind Lynn Faust’s cabin) but rare in the open meadows of the eastern United States, where fireflies can easily tryst without it.


A second possible advantage of synchrony is that you might get lucky—a female with eyes for your look-alike neighbor might become confused and mate with you instead. For that matter, synchrony could be equally beneficial for confounding predators; it’s always safest to blend in with a crowd. The latest theory is that synchrony reflects competition, not cooperation: Every firefly is trying to be the first to flash (because females seem to prefer that), but if everyone follows that strategy, sync automatically ensues.


For many other creatures as well, communal sync is somehow tied to reproduction. Periodical cicadas outwit their predators by hiding underground for 17 years; then millions of them burst out simultaneously in a monthlong mating frenzy and die. Groups of male fiddler crabs, each of which sports a single, comically huge claw, take best advantage of their natural endowments: They flirt with a female by surrounding her and waving their gigantic claws in unison. (The ritual looks like many maestros conducting a single musician.)


In our own species, it is the females who do the synchronizing. Most women are familiar with the phenomenon of menstrual synchrony, in which sisters, roommates, close friends, or coworkers find that their periods tend to start around the same time. Long dismissed as anecdotal, menstrual synchrony was first documented scientifically by Martha McClintock, then an undergraduate psychology major at Wellesley, an all-female college in Massachusetts. She studied 135 fellow students and had them keep records of their periods throughout the school year. In October, the cycles of close friends and roommates started an average of 8.5 days apart, but by March, the average spacing was down to 5 days, a statistically significant reduction. A control group of randomly matched pairs of women showed no such change.


There are various ideas about the mechanism of synchronization, but the best guess is that it has something to do with pheromones: unidentified, odorless chemicals that somehow convey a synchronizing signal. The first evidence for this came from an experiment reported in 1980 by the biologist Michael Russell. A colleague of his, Genevieve Switz, had noticed the effect in her own life; when rooming with a female friend during the summer, the friend’s period would lock on to hers, then drift apart after they separated in the fall. This suggested that Genevieve was a powerful synchronizer. Russell tried to determine what it was about Genevieve that was so compelling. For the experiment, Genevieve wore small cotton pads under her arms and donated the accumulated sweat to Russell each day. He then mixed it with a little alcohol and dabbed this “essence of Genevieve” on the upper lip of female subjects, three times a week for four months.


The results were startling: After four months, the subjects’ periods began an average of 3.4 days apart from Genevieve’s, down from 9.3 days at the beginning of the experiment. In contrast, the cycles of a control group (whose upper lips were dabbed with alcohol only) showed no significant change. Evidently something in Genevieve’s sweat conveyed information about the phase of her menstrual cycle, in such a way that it tended to entrain the cycles of the other women who got wind of it.


Later studies didn’t turn out so neatly. Some found statistical evidence for synchrony, others did not. Skeptics have viewed the conflicting data as evidence of the weakness or coincidental nature of the phenomenon. Recent work by McClintock, now a biologist at the University of Chicago, suggests quite the opposite, that menstrual sync is only the most conspicuous consequence of a larger phenomenon: chemical communication between women. In a 1998 experiment, McClintock and her colleague Kathleen Stern found that if they took swabs from the armpits of women at different points in their menstrual cycles and dabbed them on the upper lips of other women, the donor secretions shifted the phase of the recipient’s cycle in a systematic way. Swabs taken from women at the beginning of their cycles, in the follicular phase before ovulation, tended to shorten the cycles of the women who received them. In other words, the recipients ovulated several days earlier than they would have otherwise, based on their prior records. In contrast, swabs taken from women at the time of ovulation prolonged the cycles of the beneficiaries. And secretions collected in the luteal phase, in the days before menstruation, had no effect whatsoever.


The implication is that women in a close-knit group are always pushing and pulling on one another’s cycles, unconsciously engaging in a silent conversation mediated by pheromones. One possible outcome is menstrual synchrony. But given that pheromonal signals can nudge cycles together or drive them apart, depending on when in the month the signals were produced, it should come as no surprise that synchrony is not inevitable here—asynchrony or even antisynchrony (with cycles diametrically opposed) should be possible, and indeed, they too have been observed.


The function of this chemical dialogue remains a mystery. It could be that women unconsciously strive to ovulate and conceive in step with their friends (to allow them to share child-rearing and breast-feeding duties) and to keep out of step with their enemies (to avoid competing with them for scarce resources). Far-fetched as it sounds, this scenario is known to occur with other mammals. Female rats in a synchronized group produce larger and healthier offspring than those reared by a solo mother. Reproductive sync has benefits for all if the other females in the group are cooperative.


From a mathematical perspective, McClintock’s data confirm what you probably already guessed: As coupled oscillators, women are far subtler than fireflies. The biochemical push and pull between them does not always coerce them into synchrony, unlike the firefly species in Southeast Asia that synchronize their flashes all night long, every night of the year. The inescapable synchrony of those fireflies (and of cardiac pacemaker cells) is brutally inflexible, and for that reason, is rarely found in other biological settings. Like women, most oscillators sync in some circumstances and not in others.


So the model we considered earlier in this chapter is starting to look far too simple. Although it helped us understand how sync could be inevitable under certain conditions, it went too far—it didn’t allow for anything else. A more refined theory of coupled oscillators should predict whether a particular group of oscillators will synchronize or not, and tell us what factors are decisive in that regard.


The theory should also allow for the full range of ways that oscillators interact. Recall that fireflies hit each other with sudden pulses—hammer blows of light—but then ignore one another during the rest of their cycles, whereas women grapple with one another’s oscillators at all times. Both types of coupling are common in nature, but the existing model allows only for pulses. An improved model should accommodate continuous interaction as well.


Furthermore, we have assumed so far that all the oscillators in a given population are strictly identical. But real oscillators are always diverse, with a spectrum of natural cycle lengths. Just as one woman may menstruate on a roughly 25-day cycle while another goes 35 days between periods, all other kinds of biological oscillators display a statistical distribution of cycle lengths. Even electronic and mechanical oscillators that are manufactured to be nominally identical never really are, due to slight errors in fabrication, or variations in their material properties.


Unfortunately, these complications ratchet up the mathematical difficulties tremendously. It’s one thing to wish for a more realistic model, and another to construct one that’s tractable. No insight is gained if the model is as perplexing as the phenomena it’s supposed to describe. This is what makes mathematical modeling an art as well as a science: An elegant model strikes just the right compromise between simplicity and verisimilitude. Today we have a beautiful model of sync that does precisely that. Its creation was a collective enterprise that spanned three decades, and required the efforts of three pioneers, the first of whom was one of the most visionary and eccentric thinkers of the twentieth century.
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We can express this graphically:
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