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A Note on the Text

The texts in this book are based on translations of the original printed editions. We have made no attempt to modernize the authors’ own distinct usage, spelling, or punctuation, or to make the texts consistent with each other in this regard.






 INTRODUCTION

BY STEPHEN HAWKING

 




The goal of physical science is to explain what the universe is made of, and how it works. Ever since Kepler, Galileo, and Newton, we have represented our knowledge of natural phenomena through physical laws. These have evolved over time, as we have enlarged the domain of our observations. When, early in the twentieth century, physicists developed the tools to investigate the structure of atoms and their interaction with radiation, they discovered that their picture of Nature, which was based on observations of the objects of everyday life, was inadequate in a fundamental way. This fascinating volume employs original texts to trace the development of the revolutionary new concepts required to explain Nature at and below the scale of atoms. It is a compelling story, a tale of troubling observations and profound flashes of insight, leading to a new world-view in which familiar properties such as position and momentum take on a new meaning, ideas such as the trajectory of a particle have to be abandoned, and the very idea of what is meant by prediction has to be redefined.

It was observations of the light produced by glowing objects, called “black-body radiation,” that first challenged the credibility of the old “classical” picture. Not only did the theory based on that picture not match experimental observations, it also predicted that an infinite amount of radiation would be emitted by such bodies. That is an absurd result. In 1899 Max Planck showed that he could derive the correct mathematical description if he made what seemed at the time to be a limited and ad hoc assumption: that, for any frequency of light, there is a fundamental unit of energy. As a result, the energy radiated by the black body at any frequency must be an integer multiple of that fundamental “quantum.”

Around the same time, the classical picture also failed to explain the nature of another phenomenon, the photoelectric effect, in which  electric current is produced when light strikes metals. In 1905 Albert Einstein employed Planck’s idea to account for the mystery. But Einstein’s explanation had importance that reached far beyond the photoelectric effect. By employing the quantum to explain a phenomenon unrelated to blackbody radiation, Einstein had shown that Planck’s idea had fundamental significance, and was not just a mysterious property of blackbody radiation. Quantum physics was born.

In the ensuing two decades, experimental observations revealed new mysteries, and the quantum always seemed to be the idea needed to solve the puzzle. Ernest Rutherford and Hans Geiger, for example, conducted experiments that seemed to show that the protons in an atom are clumped together at its center, the nucleus, while the electrons orbit around them. But according to classical theory, charged particles travelling in that manner should radiate away their energy, and spiral inward. Why then, are atoms stable?

Niels Bohr employed the quantum idea to explain this. He proposed that the radius of electron orbits, like energy, is quantized. That would mean that electrons can only be at certain discrete allowed distances from the nucleus, and therefore cannot spiral inward. In Bohr’s model, when an electron jumps from one allowed orbit to another, it emits or absorbs energy. In this way, he explained the atomic spectrum of hydrogen.

The idea of quantized distances and energy levels in an atom was another indication of the universality of the quantum principle, but quantum theory didn’t become a fully developed theory until Werner Heisenberg and Erwin Schrodinger developed their equations in 1926, describing how a quantum system will evolve over time, and under the influence of any force. A few years later, Paul Dirac showed how to modify that theory to include special relativity. Dirac’s theory required the existence of a new kind of matter, anti-matter. Quantum theory had predicted the existence of the positron, which was discovered in experiments performed soon thereafter.

The success of quantum theory, and its interpretation, raised many philosophical issues because quantum theory is non-deterministic,  meaning that when a system starts in a given state, the results of measurements on its future state cannot in general be precisely predicted. One can calculate the probability of obtaining various results, but, if repeated, experiments that all begin with the same initial state can produce different results. The development of quantum theory meant the end of the idea that science could in principle predict all future events given enough information about the system at present. That bothered many physicists, such as Einstein and Schrodinger, who raised arguments against quantum theory, but their specific objections were eventually shown to be invalid.

Today, thanks to Richard Feynman, we know that quantum theory means that a physical system doesn’t have a single history, but rather has many histories, each associated with a different probability. That picture was used to create a theory of quantum electrodynamics, which explains how quantum particles interact with electromagnetic fields, and how they emit and absorb radiation. The predictions of quantum electrodynamics match experimental observations to a degree of accuracy unparalleled in the rest of science.

As this volume traces all these developments we are reminded of Bertrand Russell’s words, “We all start from ‘naive realism,’ i.e., the doctrine that things are what they seem. We think that grass is green, that stones are hard, and that snow is cold. But physics assures us that the greenness of grass, the hardness of stones, and the coldness of snow are not the greenness, hardness, and coldness that we know in our experience, but something very different . . . ” It is these dreams that stuff is made of.






 Chapter One


The question of the nature of light has been a central issue for much of the history of physics. Isaac Newton theorized that light was particle-like—a beam of light was a stream of little particles in much the same way that a stream of water is composed of tiny water molecules. Because of his reputation as one of the great founders of physics, his theory of light was widely accepted. However, in 1801 Thomas Young definitively showed that Newton’s particle theory could not be the complete description of light. He demonstrated that light incident on two closely-spaced narrow openings produces an interference pattern on a distant screen. Interference is a wave phenomenon and cannot be explained by a particle theory of light. Another major blow to the particle theory of light came in the 1860s when James Clerk Maxwell united the theories of electricity and magnetism and showed that light is an electromagnetic wave. Thus the wave theory of light was on very good experimental and theoretical grounds.

However, in the early twentieth century, the groundbreaking explanations of two troubling observations changed our understanding of light and began the quantum revolution, in which we find that light and matter have both wave- and particle-like properties. The first of these was the explanation of the shape of the black-body radiation spectrum.

We have all seen hot things glow—the red glow from the dying embers of a fire or the heating coils on a stove, the light produced by the tungsten filament in a normal incandescent light bulb, even the brilliant white light emitted from the surface of the sun are all examples of the same phenomenon. We call the light produced by glowing hot objects, black-body radiation. We experience it every day and in many different ways. It seems very ordinary, so it is surprising that to understand black-body radiation required a break from classical  physics and opened the door to the revolution of quantum mechanics. But this is precisely what happened.

Black-body radiation was found to be only dependent on the temperature of the object. Hotter objects radiate more energy, and the peak of the emission spectrum is toward higher frequencies of light. As an example, consider heating a metal rod. At first it does not seem to glow at all. Of course, it is still emitting, but the radiation is primarily produced in the infrared region of the electromagnetic spectrum, which our eyes cannot see. As it is heated, it begins to glow a dull red as its emission spectrum moves into the visible range. With further heating it becomes bright red, then orange, then yellow, and so on as the peak of its spectrum passes through the visible portion of the electromagnetic spectrum.

The spectrum produced by black-body radiation can be measured, and this was done by several researchers in the latter part of the nineteenth century. However, no physical theory at that point was able to correctly predict how the spectrum would change as the temperature varied. Wilhelm Wien found an empirical relationship that described the spectrum at high frequencies. However, he was not able to derive this relationship from previously discovered physical laws, so it was not grounded well conceptually. In other words, the Wien law worked, but no one knew why. Even worse, in the late 1890s observations of the black-body spectrum were made at low frequencies which completely disagreed with the predictions of the Wien law.

In “On the Law of Distribution of Energy in the Normal Spectrum,” Max Planck was able to resolve this discrepancy and derive a mathematical expression that described the spectrum of black-body radiation correctly at all frequencies. To do this, Planck had to make what has turned out to be a revolutionary assumption. He assumed that black-body radiation was produced by a large number of microscopic oscillators and that the total thermal energy of the black-body was not distributed continuously among these, but rather in finite and discrete portions. In other words, the energy was “quantized” in that it was an integer multiple of some small unit of energy. Planck  showed this small energy element is proportional to the frequency of the oscillator. The constant of proportionality, which he labeled h, is known as Planck’s constant—it is a fundamental parameter of quantum mechanics. Its value dictates the scale level at where classical physics fails and a theory of quantum physics is needed.

The second troubling phenomenon that could not be explained by the classical wave theory of light is known as the photoelectric effect. In the early 1900s it had been noticed that when light impacted on metals, an electrical current could be produced. Today this is a well-known and well-used concept. It is, in fact, part of how solar cells produce electricity from sunlight. However, at that time the photoelectric effect was something of a mystery. At first glance, the wave theory of light provides a simple explanation. Light waves impacting on the metal give energy to electrons on the metal’s surface, which removes them from the atoms to which they are bound. They are free to move and so can produce an electrical current. According to wave theory, the more intense the light, the more energy the electrons will have. But this is not what was observed. In 1902 Phillip Lenard observed that the energy of the freed electrons is independent of the light’s intensity. A more intense light produces more electrons, but an individual electron’s energy is not affected by the intensity of light—rather by its color. This was an odd result, because the color (or frequency) of light waves should have nothing to do with the waves’ energy. Even stranger, there was a cutoff frequency below which no electrons were freed no matter the light’s intensity. These strange details required an explanation beyond the wave theory of light.

In “On a Heuristic Viewpoint Concerning the Production and Transformation of Light,” Albert Einstein was able to explain the photoelectric effect using Planck’s quantization principle. He theorized that the energy in a light ray was not continuously distributed but consisted of a finite number of “energy quanta” that could not be divided. Monochromatic light, then, consists of a large but finite number of particles of light, each with an energy given by the product  of Planck’s constant and the frequency of the light. The particle of light is now called the photon. An individual photon can only be absorbed as a complete unit. When an electron absorbs the energy from a photon, it is the photon’s energy, not the overall intensity, that determines how much energy the electron gains. In the photoelectric effect it requires a certain amount of energy to remove an electron from the metal. If the frequency of light is too small, then no photon will have enough energy to remove the electron regardless of how many photons are present (i.e., the intensity of the light). Thus with the assumption of energy quantization Einstein could explain the strange details of the photoelectric effect.

With the publication of Planck’s explanation of black-body radiation and Einstein’s explanation of the photoelectric effect, the theory of quantum physics was born. Given the revolutionary nature of what was introduced we can ask, “Where did Planck get the inspiration to make this assumption?” In a 1909 lecture at Columbia University entitled “The Atomic Theory of Matter,” Plank revealed how his work in statistical mechanics led him to make his brilliant assumption of energy quantization. However, it seems likely that neither Planck nor Einstein truly understood the extent to which physics would be changed as a result of their work, for both resisted some of the implications that accompanied quantum physics once it was fully formed. We shall see in subsequent chapters that our understanding of the universe and reality at a fundamental level was radically altered as a result of the quantum revolution.




ON THE LAW OF DISTRIBUTION OF ENERGY IN THE NORMAL SPECTRUM 

BY
 MAX PLANCK


First published in Annalen der Physik, vol. 4, p. 553 ff (1901)

 



The recent spectral measurements made by O. Lummer and E. Pringsheim a, and even more notable those by H. Rubens and F. Kurlbaumb, which together confirmed an earlier result obtained by H. Beckmannc, show that the law of energy distribution in the normal spectrum, first derived by W. Wien from molecular-kinetic considerations and later by me from the theory of electromagnetic radiation, is not valid generally.

In any case the theory requires a correction, and I shall attempt in the following to accomplish this on the basis of the theory of electromagnetic radiation which I developed. For this purpose it will be necessary first to find in the set of conditions leading to Wien’s energy distribution law that term which can be changed; thereafter it will be a matter of removing this term from the set and making an appropriate substitution for it.

In my last articled I showed that the physical foundations of the electromagnetic radiation theory, including the hypothesis of “natural radiation,” withstand the most severe criticism; and since to my knowledge there are no errors in the calculations, the principle persists that the law of energy distribution in the normal spectrum is completely determined when one succeeds in calculating the entropy S of an irradiated, monochromatic, vibrating resonator as a function of its vibrational energy U. Since one then obtains, from the relationship   dS/dU = 1/θ , the dependence of the energy U on the temperature θ , and since the energy is also related to the density of radiation at the corresponding frequency by a simple relatione, one also obtains the dependence of this density of radiation on the temperature. The normal energy distribution is then the one in which the radiation densities of all different frequencies have the same temperature.

Consequently, the entire problem is reduced to determining S as a function of U, and it is to this task that the most essential part of the following analysis is devoted. In my first treatment of this subject I had expressed S, by definition, as a simple function of U without further foundation, and I was satisfied to show that this from of entropy meets all the requirements imposed on it by thermodynamics. At that time I believed that this was the only possible expression and that consequently Wein’s law, which follows from it, necessarily had general validity. In a later, closer analysis,f however, it appeared to me that there must be other expressions which yield the same result, and that in any case one needs another condition in order to be able to calculate S uniquely. I believed I had found such a condition in the principle, which at the time seemed to me perfectly plausible, that in an infinitely small irreversible change in a system, near thermal equilibrium, of N identical resonators in the same stationary radiation field, the increase in the total entropy SN = NS with which it is associated depends only on its total energy UN = NU and the changes in this quantity, but not on the energy U of individual resonators. This theorem leads again to Wien’s energy distribution law. But since the latter is not confirmed by experience one is forced to conclude that even this principle cannot be generally valid and thus must be eliminated from the theory.g


Thus another condition must now be introduced which will allow the calculation of S, and to accomplish this it is necessary to look more deeply into the meaning of the concept of entropy. Consideration of the untenability of the hypothesis made formerly will help to orient   our thoughts in the direction indicated by the above discussion. In the following a method will be described which yields a new, simpler expression for entropy and thus provides also a new radiation equation which does not seem to conflict with any facts so far determined.


I. CALCULATIONS OF THE ENTROPY OF A RESONATOR AS A FUNCTION OF ITS ENERGY


§ 1. Entropy depends on disorder and this disorder, according to the electromagnetic theory of radiation for the monochromatic vibrations of a resonator when situated in a permanent stationary radiation field, depends on the irregularity with which it constantly changes its amplitude and phase, provided one considers time intervals large compared to the time of one vibration but small compared to the duration of a measurement. If amplitude and phase both remained absolutely constant, which means completely homogeneous vibrations, no entropy could exist and the vibrational energy would have to be completely free to be converted into work. The constant energy U of a single stationary vibrating resonator accordingly is to be taken as time average, or what is the same thing, as a simultaneous average of the energies of a large number N of identical resonators, situated in the same stationary radiation field, and which are sufficiently separated so as not to influence each other directly. It is in this sense that we shall refer to the average energy U of a single resonator. Then to the total energy 





(1)
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of such a system of N resonators there corresponds a certain total entropy 





(2)
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of the same system, where S represents the average entropy of a single resonator and the entropy SN depends on the disorder with which the total energy UN is distributed among the individual resonators.


§ 2. We now set the entropy SN of the system proportional to the logarithm of its probability W, within an arbitrary additive constant,  so that the N resonators together have the energy EN: 





(3)
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In my opinion this actually serves as a definition of the probability W, since in the basic assumptions of electromagnetic theory there is no definite evidence for such a probability. The suitability of this expression is evident from the outset, in view of its simplicity and close connection with a theorem from kinetic gas theory.h



§ 3. It is now a matter of finding the probability W so that the N resonators together possess the vibrational energy UN. Moreover, it is necessary to interpret UN not as a continuous, infinitely divisible quantity, but as a discrete quantity composed of an integral number of finite equal parts. Let us call each such part the energy element ε; consequently we must set 





(4)
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where P represents a large integer generally, while the value of ∈ is yet uncertain.

The above paragraph in the original German

Now it is evident that any distribution of the P energy elements among the N resonators can result only in a finite, integral, definite number. Every such form of distribution we call, after an expression used by L. Boltzmann for a similar idea, a “complex.” If one denotes the resonators by the numbers 1, 2, 3, . . .N, and writes these side by side, and if one sets under each resonator the number of energy elements assigned to it by some arbitrary distribution, then one obtains for every complex a pattern of the following form:[image: 006]



Here we assume N = 10, P = 100. The number R of all possible complexes is obviously equal to the number of arrangements that one can obtain in this fashion for the lower row, for a given N and P. For the sake of clarity we should note that two complexes must be   considered different if the corresponding number patters contain the same numbers but in a different order.

From combination theory one obtains the number of all possible complexes as:[image: 007]



Now according to Stirling’s theorem, we have in the first approximation:
N! = NN






Consequently, the corresponding approximation is:[image: 008]




§ 4. The hypothesis which we want to establish as the basis for further calculation proceeds as follows: in order for the N resonators to possess collectively the vibrational energy UN, the probability W must be proportional to the number R of all possible complexes formed by distribution of the energy UN among the N resonators; or in other words, any given complex is just as probable as any other. Whether this actually occurs in nature one can, in the last analysis, prove only by experience. But should experience finally decide in its favor it will be possible to draw further conclusions from the validity of this hypothesis about the particular nature of resonator vibrations; namely in the interpretation put forth by J. V. Kriesi regarding the character of the “original amplitudes, comparable in magnitude but independent of each other.” As the matter now stands, further development along these lines would appear to be premature.


§ 5. According to the hypothesis introduced in connection with equation (3), the entropy of the system of resonators under consideration is, after suitable determination of the additive constant: 





(5)
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  and by considering (4) and (1):[image: 010]



Thus, according to equation (2) the entropy S of a resonator as a function of its energy U is given by: 





(6)
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II. INTRODUCTION OF WIEN’S DISPLACEMENT LAW


§ 6. Next to Kirchoff’s theorem of the proportionality of emissive and absorptive power, the so-called displacement law, discovered by and named after W. Wien,j which includes as a special case the Stefan-Boltzmann law of dependence of total radiation on temperature, provides the most valuable contribution to the firmly established foundation of the theory of heat radiation, In the form given by M. Thiesenk it reads as follows:[image: 012]

where λ is the wavelength, E dλ represents the volume density of the “black-body” radiationl within the spectral region λ to λ + dλ, θ represents temperature and ψ (x) represents a certain function of the argument x only.


§ 7. We now want to examine what Wien’s displacement law states about the dependence of the entropy S of our resonator on its energy U and its characteristic period, particularly in the general case where the resonator is situated in an arbitrary diathermic medium. For this purpose we next generalize Thiesen’s form of the law for the radiation in an arbitrary diathermic medium with the velocity of light c. Since we do not have to consider the total radiation, but only the monochromatic radiation, it becomes necessary in order to compare different diathermic media to introduce the frequency ν instead of the wavelength λ.

 Thus, let us denote by u dν the volume density of the radiation energy belonging to the spectral region ν to ν + dν; then we write: u dν instead of E dλ; c/ν instead of λ, and cdν/ν2 instead of dλ. From which we obtain[image: 013]



Now according to the well-known Kirchoff-Clausius law, the energy emitted per unit time at the frequency ν and temperature θ from a black surface in a diathermic medium is inversely proportional to the square of the velocity of propagation c2; hence the energy density U is inversely proportional to c3 and we have:[image: 014]

where the constants associated with the function f are independent of c.

In place of this, if f represents a new function of a single argument, we can write: 





(7)
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and from this we see, among other things, that as is well known, the radiant energy u · λ3 at a given temperature and frequency is the same for all diathermic media.


§ 8. In order to go from the energy density u to the energy U of a stationary resonator situated in the radiation field and vibrating with the same frequency ν, we use the relation expressed in equation (34) of my paper on irreversible radiation processesm:[image: 016]

(K is the intensity of a monochromatic linearly, polarized ray), which together with the well-known equation:[image: 017]

  yields the relation: 





(8)
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From this and from equation (7) follows:[image: 019]

where now c does not appear at all. In place of this we may also write:[image: 020]




§ 9. Finally, we introduce the entropy S of the resonator by setting 





(9)
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We then obtain:[image: 022]

and integrated: 





(10)

[image: 023]

that is, the entropy of a resonator vibrating in an arbitrary diathermic medium depends only on the variable U/ν, containing besides this only universal constants. This is the simplest form of Wien’s displacement law known to me.


§ 10. If we apply Wien’s displacement law in the latter form to equation (6) for the entropy S, we then find that the energy element ε must be proportional to the frequency ν, thus:

ε = hν




and consequently:[image: 024]

here h and k are universal constants. 


By substitution into equation (9) one obtains: 





(11)
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and from equation (8) there then follows the energy distribution law sought for: 





(12)

[image: 026]

or by introducing the substitutions given in § 7, in terms of wavelength λ instead of the frequency: 





(13)

[image: 027]



I plan to derive elsewhere the expressions for the intensity and entropy of radiation progressing in a diathermic medium, as well as the theorem for the increase of total entropy in nonstationary radiation processes.


III. NUMERICAL VALUES


§ 11. The values of both universal constants h and k may be calculated rather precisely with the aid of available measurements. F. Kurlbaumn, designating the total energy radiating into air from 1 sq cm of a black body at temperature t°C in 1 sec by St, found that:[image: 028]



From this one can obtain the energy density of the total radiation energy in air at the absolute temperature 1:[image: 029]



On the other hand, according to equation (12) the energy density of the total radiant energy for θ = 1 is:[image: 030]

and by termwise integration:[image: 031]



If we set this equal to 7.061 · 10−15, then, since c = 3 · 1010 cm/sec, we obtain: 





(14)
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§ 12. O. Lummer and E. Pringswimo determined the product λmθ, where λm is the wavelength of maximum energy in air at temperature 0, to be 2940 micron· degree. Thus, in absolute measure:

λm = 0.294 cm · deg





On the other hand, it follows from equation (13), when one sets the derivative of E with respect to θ equal to zero, thereby finding λ = λm [image: 033]

and from this transcendental equation:

λmθ = ch/4.9651k




consequently:
h/k = (4.9561 · 0.294) /3 · 1010 = 4.866 · 10−11






From this and from equation (14) the values for the universal constants become: 





(15)
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(16)
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These are the same number that I indicated in my earlier communication.




 ON A HEURISTIC VIEWPOINT CONCERNING THE PRODUCTION AND TRANSFORMATION OF LIGHT 

BY
 ALBERT EINSTEIN

First presented in Bern, Switzerland, March 17, 1905.

 



A profound formal distinction exists between the theoretical concepts which physicists have formed regarding gases and other ponderable bodies and the Maxwellian theory of electromagnetic processes in so–called empty space. While we consider the state of a body to be completely determined by the positions and velocities of a very large, yet finite, number of atoms and electrons, we make use of continuous spatial functions to describe the electromagnetic state of a given volume, and a finite number of parameters cannot be regarded as sufficient for the complete determination of such a state. According to the Maxwellian theory, energy is to be considered a continuous spatial function in the case of all purely electromagnetic phenomena including light, while the energy of a ponderable object should, according to the present conceptions of physicists, be represented as a sum carried over the atoms and electrons. The energy of a ponderable body cannot be subdivided into arbitrarily many or arbitrarily small parts, while the energy of a beam of light from a point source (according to the Maxwellian theory of light or, more generally, according to any wave theory) is continuously spread an ever increasing volume.

The wave theory of light, which operates with continuous spatial functions, has worked well in the representation of purely optical phenomena and will probably never be replaced by another theory. It should be kept in mind, however, that the optical observations refer to time averages rather than instantaneous values. In spite of the complete experimental confirmation of the theory as applied to diffraction, reflection, refraction, dispersion, etc., it is still conceivable that the theory of light which operates with continuous spatial functions may lead to contradictions with experience when it is applied to the phenomena of emission and transformation of light.


Reprinted with permission from American Journal of Physics, 33, 367–374 (1965). © 1965, American Association of Physics Teachers.



 It seems to me that the observations associated with blackbody radiation, fluorescence, the production of cathode rays by ultraviolet light, and other related phenomena connected with the emission or transformation of light are more readily understood if one assumes that the energy of light is discontinuously distributed in space. In accordance with the assumption to be considered here, the energy of a light ray spreading out from a point source is not continuously distributed over an increasing space but consists of a finite number of energy quanta which are localized at points in space, which move without dividing, and which can only be produced and absorbed as complete units.

In the following I wish to present the line of thought and the facts which have led me to this point of view, hoping that this approach may be useful to some investigators in their research.


1. CONCERNING A DIFFICULTY WITH REGARD TO THE THEORY OF BLACKBODY RADIATION

We start first with the point of view taken in the Maxwellian and the electron theories and consider the following case. In a space enclosed by completely reflecting walls, let there be a number of gas molecules and electrons which are free to move and which exert conservative forces on each other on close approach: i.e. they can collide with each other like molecules in the kinetic theory of gases.pFurthermore, let there be a number of electrons which are bound to widely separated   points by forces proportional to their distances from these points. The bound electrons are also to participate in conservative interactions with the free molecules and electrons when the latter come very close. We call the bound electrons “oscillators”: they emit and absorb electromagnetic waves of definite periods.

According to the present view regarding the origin of light, the radiation in the space we are considering (radiation which is found for the case of dynamic equilibrium in accordance with the Maxwellian theory) must be identical with the blackbody radiation—at least if oscillators of all the relevant frequencies are considered to be present.

For the time being, we disregard the radiation emitted and absorbed by the oscillators and inquire into the condition of dynamical equilibrium associated with the interaction (or collision) of molecules and electrons. The kinetic theory of gases asserts that the average kinetic energy of an oscillator electron must be equal to the average kinetic energy of a translating gas molecule. If we separate the motion of an oscillator electron into three components at angles to each other, we find for the average energy [image: 036]of one of these linear components the expression[image: 037]

where R denotes the universal gas constant. N denotes the number of “real molecules” in a gram equivalent, and T the absolute temperature. The energy E is equal to two-thirds the kinetic energy of a free monatomic gas particle because of the equality the time average values of the kinetic and potential energies of the oscillator. If through any cause—in our case through radiation processes—it should occur that the energy of an oscillator takes on a time-average value greater or less than E , then the collisions with the free electrons and molecules would lead to a gain or loss of energy by the gas, different on the average from zero. Therefore, in the case we are considering, dynamic equilibrium is possible only when each oscillator has the average energy Ē .

We shall now proceed to present a similar argument regarding the interaction between the oscillators and the radiation present in the cavity. Herr Planck has derivedq the condition for the dynamics equilibrium in this case under the supposition that the radiation can be considered a completely random process.r He found[image: 038]

where (Eν ) is the average energy (per degree of freedom) of an oscillator with eigenfrequency ν, L the velocity of light, ν the frequency, and ρνdν the energy per unit volume of that portion of the radiation with frequency between ν and ν + dν.

If the radiation energy of frequency ν is not continually increasing or decreasing, the following relations must obtain:[image: 039]



These relations, found to be the conditions of dynamic equilibrium, not only fail to coincide with experiment, but also state that in our model there can be not talk of a definite energy distribution between ether and matter. The wider the range of wave numbers of the oscillators, the greater will be the radiation energy of the space, and in the limit we obtain[image: 040]




2. CONCERNING PLANCK’S DETERMINATION OF THE FUNDAMENTAL CONSTANTS

We wish to show in the following that Herr Planck’s determination of the fundamental constants is, to a certain extent, independent of his theory of blackbody radiation.

Planck’s formula,s which has proved adequate up to this point, gives for ρν [image: 044]



For large values of T/ν; i.e. for large wavelengths and radiation densities, this equation takes the form[image: 045]



It is evident that this equation is identical with the one obtained in Sec. 1 from the Maxwellian and electron theories. By equating the coefficients of both formulas one obtains[image: 046]

or[image: 047]

i.e., an atom of hydrogen weighs 1/N grams = 1.62 × 10−24 g. This is exactly the value found by Herr Planck, which in turn agrees with values found by other methods.

We therefore arrive at the conclusion: the greater the energy density and the wavelength of a radiation, the more useful do the theoretical principles we have employed turn out to be: for small wavelengths and small radiation densities, however, these principles fail us completely.

In the following we shall consider the experimental facts concerning blackbody radiation without invoking a model for the emission and propagation of the radiation itself.


3. CONCERNING THE ENTROPY OF RADIATION

The following treatment is to be found in a famous work by Herr W. Wien and is introduced here only for the sake of completeness.

Suppose we have radiation occupying a volume v. We assume that the observable properties of the radiation are completely determined when the radiation density ρ(ν) is given for all frequencies.t Since radiation of different frequencies are to be considered independent of each other when there is no transfer of heat or work, the entropy of the radiation can be represented by[image: 048]

where ϕ is a function of the variables ρ and ν.


ϕ can be reduced to a function of a single variable through formulation of the condition that the entropy of the radiation is unaltered during adiabatic compression between reflecting walls. We shall not enter into this problem, however, but shall directly investigate the derivation of the function ϕ from the blackbody radiation law.

In the case of blackbody radiation, ρ is such a function of ν that the entropy is maximum for a fixed value of energy; i.e.,[image: 049]

providing[image: 050]



From this it follows that for every choice of δρ as a function of ν [image: 051]

where λ is independent of ν. In the case of blackbody radiation, therefore, ∂ϕ/∂ρ is independent of ν.

The following equation applies when the temperature of a unit volume of blackbody radiation increases by dT [image: 052]

or, since ∂ϕ/∂ρ is independent of ν.[image: 053]



Since dE is equal to the heat added and since the process is reversible, the following statement also applies

dS = (1/T) d E.






By comparison one obtains

∂ϕ/∂ρ = 1/ T.






This is the law of blackbody radiation. Therefore one can derive the law of blackbody radiation from the function ϕ, and, inversely, one can derive the function ϕ by integration, keeping in mind the fact that ϕ vanishes when ρ = 0.


4. ASYMPTOTIC FROM FOR THE ENTROPY OF MONOCHROMATIC RADIATION AT LOW RADIATION DENSITY

From existing observations of the blackbody radiation, it is clear that the law originally postulated by Herr W. Wien,

ρ = αν3e −βν/T ,



is not exactly valid. It is, however, well confirmed experimentally for large values of ν / T. We shall base our analysis on this formula, keeping in mind that our results are only valid within certain limits.

This formula gives immediately
(1/T) = − (1/βν) ln (ρ/αν3)



and then, by using the relation obtained in the preceeding section,[image: 054]



Suppose that we have radiation of energy E, with frequency between ν and ν + dν , enclosed in volume ν. The entropy of this radiation is:[image: 055]



If we confine ourselves to investigating the dependence of the entropy on the volume occupied by the radiation, and if we denote by S0 the entropy of the radiation at volume v0, we obtain

S −S0 = (E/βν) in (v/v0) .





This equation shows that the entropy of a monochromatic radiation of sufficiently low density varies with the volume in the same manner as the entropy of an ideal gas or a dilute solution. In the following, this equation will be interpreted in accordance with the principle introduced into physics by Herr Boltzmann, namely that the entropy of a system is a function of the probability its state.


5. MOLECULAR—THEORETIC INVESTIGATION OF THE DEPENDENCE OF THE ENTROPY OF GASES AND DILUTE SOLUTIONS ON THE VOLUME

In the calculation of entropy by molecular–theoretic methods we frequently use the word “probability” in a sense differing from that employed in the calculus of probabilities. In particular “gases of equal probability” have frequently been hypothetically established when one theoretical models being utilized are definite enough to permit a deduction rather than a conjecture. I will show in a separate paper that the so-called “statistical probability” is fully adequate for the treatment of thermal phenomena, and I hope that by doing so I  will eliminate a logical difficulty that obstructs the application of Boltzmann’s Principle. Here, however, only a general formulation and application to very special cases will be given.

If it is reasonable to speak of the probability of the state of a system, and futhermore if every entropy increase can be understood as a transition to a state of higher probability, then the entropy S1 of a system is a function of W1, the probability of its instantaneous state. If we have two noninteracting systems S1 and S2, we can write[image: 056]



If one considers these two systems as a single system of entropy S and probability W, it follows that

S = S1 + S2 = ϕ(W )



and

W = W1 · W2.






The last equation says that the states of the two systems are independent of each other.

From these equation it follows that

ϕ (W1 · W2) = ϕ1 (W1) + ϕ2 (W2)



and finally[image: 057]



The quantity C is therefore a universal constant; the kinetic theory of gases shows its value to be R/N, where the constants R and N have been defined above. If S0 denotes the entropy of a system in some initial state and W denotes the relative probability of a state of entropy S, we obtain in general

S − S0 = ( R/N) ln W.






First we treat the following special case. We consider a number (n) of movable points (e.g., molecules) confined in a volume v0. Besides these points, there can be in the space any number of other movable points of any kind. We shall not assume anything concerning the law in accordance with which the points move in this space except that with regard to this motion, no part of the space (and no direction within it) can be distinguished from any other. Further, we take the number of these movable points to be so small that we can disregard interactions between them.

This system, which, for example, can be an ideal gas or a dilute solution, possesses an entropy S0. Let us imagine transferring all n movable points into a volume v (part of the volume v0) without anything else being changed in the system. This state obviously possesses a different entropy (S), and now wish to evaluate the entropy difference with the help of the Boltzmann Principle.

We inquire: How large is the probability of the latter state relative to the original one? Or: How large is the probability that at a randomly chosen instant of time all n movable points in the given volume v0 will be found by chance in the volume v?

For this probability, which is a “statistical probability”, one obviously obtains:

W = (v/v0)n ;





By applying the Boltzmann Principle, one then obtains

S −S0 = R (n/N) ln (v/v0) .






It is noteworthy that in the derivation of this equation, from which one can easily obtain the law of Boyle and Gay–Lussac as well as the analogous law of osmotic pressure thermodynamically,u no assumption had to be made as to a law of motion of the molecules.


6. INTERPRETATION OF THE EXPRESSION FOR THE VOLUME DEPENDENCE OF THE ENTROPY OF MONOCHROMATIC RADIATION IN ACCORDANCE WITH BOLTZMANN’S PRINCIPLE

In Sec. 4, we found the following expression for the dependence of the entropy of monochromatic radiation on the volume

S −S0 = (E/βν) in (v/v0).






If one writes this in the from

S − S0 = (R/N) ln [(v/v0)(N/R)(E/βν) ].




and if one compares this with the general formula for the Boltzmann principle

S − S0 = (R/N) ln W,




one arrives at the following conclusion:

If monochromatic radiation of frequency ν and energy E is enclosed by reflecting walls in a volume v0, the probability that the total radiation energy will be found in a volume v (part of the volume v0) at any randomly chosen instant is

W = (v/v0)(N R)(E βν) .






From this we further conclude that: Monochromatic radiation of low density (within the range of validity of Wien’s radiation formula) behaves thermodynamically as though it consisted of a number of independent energy quanta of magnitude Rβ ν/N.

We still wish to compare the average magnitude of the energy quanta of the blackbody radiation with the average translational kinetic energy of a molecule at the same temperature. The latter is 3/2(R/N)T, while, according to the Wien formula, one obtains for the average magnitude of an energy quantum[image: 058]



If the entropy of monochromatic radiation depends on volume as though the radiation were a discontinuous medium consisting of energy quanta of magnitude Rβν/N, the next obvious step is to  investigate whether the laws of emission and transformation of light are also of such a nature that they can be interpreted or explained by considering light to consist of such energy quanta. We shall examine this question in the following.


7. CONCERNING STOKES’S RULE

According to the result just obtained, let us assume that, when monochromatic light is transformed through photoluminescence into light of a different frequency, both the incident and emitted light consist of energy quanta of magnitude Rβν/N, where ν denotes the relevant frequency. The transformation process is to be interpreted in the following manner. Each incident energy quantum of frequency ν1 is absorbed and generates by itself–at least at sufficiently low densities of incident energy quanta—a light quantum of frequency ν2; it is possible that the absorption of the incident light quanta can give rise to the simultaneous emission of light quanta of frequencies ν3, ν4 etc., as well as to energy of other kinds, e.g., heat. It does not matter what intermediate processes give rise to this final result. If the fluorescent substance is not a perpetual source of energy, the principle of conservation of energy requires that the energy of an emitted energy quantum cannot be greater than that of the incident light quantum; it follows that

R βν2/N ≤ R βν1/N




or

ν2 ≤ ν1.






This is the well–known Stokes’s Rule.

It should be strongly emphasized that according to our conception the quantity of light emitted under conditions of low illumination (other conditions remaining constant) must be proportional to the strength of the incident light, since each incident energy quantum will cause an elementary process of the postulated kind, independently of the action of other incident energy quanta. In particular, there will be  no lower limit for the intensity of incident light necessary to excite the fluorescent effect.

According to the conception set forth above, deviations from Stokes’s Rule are conceivable in the following cases:1. when the number of simultaneously interacting energy quanta per unit volume is so large that an energy quantum of emitted light can receive its energy from several incident energy quanta;

2. when the incident (or emitted) light is not of such a composition that it corresponds to blackbody radiation within the range of validity of Wien’s Law, that is to say, for example, when the incident light is produced by a body of such high temperature that for the wavelengths under consideration Wien’s Law is no longer valid.



The last-mentioned possibility commands especial interest. According to the conception we have outlined, the possibility is not excluded that a “non-Wien radiation” of very low density can exhibit an energy behavior different from that of a blackbody radiation within the range of validity of Wien’s Law.


8. CONCERNING THE EMISSION OF CATHODE RAYS THROUGH ILLUMINATION OF SOLID BODIES

The usual conception that the energy of light is continuously distributed over the space through which it propagates, encounters very serious difficulties when one attempts to explain the photoelectric phenomena, as has been pointed out in Herr Lenard’s pioneering paper.v


According to the concept that the incident light consists of energy quanta of magnitude Rβν/N, however, one can conceive of the ejection of electrons by light in the following way. Energy quanta penetrate into the surface layer of the body, and their energy is transformed, at least in part, into kinetic energy of electrons. The simplest way to imagine this is that a light quantum delivers its entire energy to a single electron: we shall assume that this is what happens. The possibility   should not be excluded, however, that electrons might receive their energy only in part from the light quantum.

An electron to which kinetic energy has been imparted in the interior of the body will have lost some of this energy by the time it reaches the surface. Furthermore, we shall assume that in leaving the body each electron must perform an amount of work P characteristic of the substance. The ejected electrons leaving the body with the largest normal velocity will be those that were directly at the surface. The kinetic energy of such electrons is given by

Rβν/N − P.






In the body is charged to a positive potential Π and is surrounded by conductors at zero potential, and if Π is just large enough to prevent loss of electricity by the body, if follows that:

Π∈ = Rβν/N − P




where ∈ denotes the electronic charge, or

ΠE = Rβν − Pʹ



where E is the charge of a gram equivalent of a monovalent ion and Pʹ is the potential of this quantity of negative electricity relative to the body.w


If one takes E = 9.6 × 103, then Π · 10−8 is the potential in volts which the body assumes when irradiated in a vacuum.

In order to see whether the derived relation yields an order of magnitude consistent with experience, we take Pʹ = 0, ν = 1.03 × 1015 (corresponding to the limit of the solar spectrum toward the ultraviolet) and β = 4.866 × 10−11. We obtain Π . 107 = 4.3 volts, a result agreeing in order magnitude with those of Herr Lenard.x


If the derived formula is correct, then Π, when represented in Cartesian coordinates as a function of the frequency of the incident light, must be a straight line whose slope is independent of the nature of the emitting substance.

As far as I can see, there is no contradiction between these conceptions and the properties of the photoelectric observed by Herr Lenard. If each energy quantum of the incident light, independently of everything else, delivers its energy of electrons, then the velocity distribution of the ejected electrons will be independent of the intensity of the incident light; on the other hand the number of electrons leaving the body will, if other conditions are kept constant, be proportional to the intensity of the incident light.y


Remarks similar to those made concerning hypothetical deviations from Stokes’s Rule can be made with regard to hypothetical boundaries of validity of the law set forth above.

In the foregoing it has been assumed that the energy of at least some of the quanta of the incident light is delivered completely to individual electrons. If one does not make this obvious assumption, one obtains, in place of the last equation:

ΠE + Pʹ ≤ Rβν.






For fluorescence induced by cathode rays, which is the inverse process to the one discussed above, one obtains by analogous considerations:

ΠE + Pʹ ≥ Rβν.






In the case, of the substances investigated by Herr Lenard, PEz is always significantly greater than Rβν, since the potential difference, which the cathode rays must traverse in order to produce visible light, amounts in some cases to hundreds and in others to thousands of volts.aa It is therefore to be assumed that the kinetic energy of an electron goes into the production of many light energy quanta.


9. CONCERNING THE IONIZATION OF GASES BY ULTRAVIOLET LIGHT SOLID BODIES

We shall have to assume that, the ionization of a gas by ultraviolet light, an individual light energy quantum is used for the ionization of   an individual gas molecule. From this is follows immediately that the work of ionization (i.e., the work theoretically needed for ionization) of a molecule cannot be greater than the energy of an absorbed light quantum capable of producing this effect. If one denotes by J the (theoretical) work of ionization per gram equivalent, then it follows that:

Rβν ≥ J.






According to Lenard’s measurements, however, the largest effective wavelength for air is approximately 1.9 × 10−5 cm: therefore:

Rβ ν = 6.4 · 1012 erg ≥ J.






An upper limit for the work of ionization can also be obtained from the ionization potentials of rarefied gases according to J. Starkab the smallest observed ionization potentials for air (at platinum anodes) is about 10 V.ac One therefore obtains 9.6 × 1012 as an upper limit for J, which is nearly equal to the value found above.

There is another consequence the experimental testing of which seems to me to be of great importance. If every absorbed light energy quantum ionizes a molecule, the following relation must obtain between the quantity of absorbed light L and the number of gram molecules of ionized gas j:

j = L/Rβν.






If our conception is correct, this relationship must be valid for all gases which (at the relevant frequency) show no appreciable absorption without ionization.
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“THE ATOMIC THEORY OF MATTER” 

BY
 MAX PLANCK

 



The problem with which we shall be occupied in the present lecture is that of a closer investigation of the atomic theory of matter. It is, however, not my intention to introduce this theory with nothing further, and to set it up as something apart and disconnected with other physical theories, but I intend above all to bring out the peculiar significance of the atomic theory as related to the present general system of theoretical physics; for in this way only will it be possible to regard the whole system as one containing within itself the essential compact unity, and thereby to realize the principal object of these lectures.

Consequently it is self evident that we must rely on that sort of treatment which we have recognized in last week’s lecture as fundamental. That is, the division of all physical processes into reversible and irreversible processes. Furthermore, we shall be convinced that the accomplishment of this division is only possible through the atomic theory of matter, or, in other words, that irreversibility leads of necessity to atomistics.

I have already referred at the close of the first lecture to the fact that in pure thermodynamics, which knows nothing of an atomic structure and which regards all substances as absolutely continuous, the difference between reversible and irreversible processes can only be defined in one way, which a priori carries a provisional character and does not withstand penetrating analysis. This appears immediately evident when one reflects that the purely thermodynamic definition of irreversibility which proceeds from the impossibility of the realization of certain changes in nature, as, e.g., the transformation of heat into work without compensation, has at the outset assumed a definite limit to man’s mental capacity, while, however, such a limit is not indicated in reality. On the contrary: mankind is making every endeavor to press beyond the present boundaries of its capacity, and we hope that later on many things will be attained which, perhaps, many regard at present as impossible of accomplishment. Can it not happen then that a process, which up to the present has been regarded as irreversible, may be proved, through a new discovery or invention, to be reversible? In this case the whole structure of the second law would undeniably collapse, for the irreversibility of a single process conditions that of all the others.


Published in Eight Lectures on Theoretical Physics (Mineola: Dover Publications 1998). First published in Eight Lectures on Theoretical Physics, Delivered at Columbia University in 1909, as Publication Number 3 of the Ernest Kempton Adams Fund For Physical Research.



 It is evident then that the only means to assure to the second law real meaning consists in this, that the idea of irreversibility be made independent of any relationship to man and especially of all technical relations.

Now the idea of irreversibility harks back to the idea of entropy; for a process is irreversible when it is connected with an increase of entropy. The problem is hereby referred back to a proper improvement of the definition of entropy. In accordance with the original definition of Clausius, the entropy is measured by means of a certain reversible process, and the weakness of this definition rests upon the fact that many such reversible processes, strictly speaking all, are not capable of being carried out in practice. With some reason it may be objected that we have here to do, not with an actual process and an actual physicist, but only with ideal processes, so-called thought experiments, and with an ideal physicist who operates with all the experimental methods with absolute accuracy. But at this point the difficulty is encountered: How far do the physicist’s ideal measurements of this sort suffice? It may be understood, by passing to the limit, that a gas is compressed by a pressure which is equal to the pressure of the gas, and is heated by a heat reservoir which possesses the same temperature as the gas, but, for example, that a saturated vapor  shall be transformed through isothermal compression in a reversible manner to a liquid without at any time a part of the vapor being condensed, as in certain thermodynamic considerations is supposed, must certainly appear doubtful. Still more striking, however, is the liberty as regards thought experiments, which in physical chemistry is granted the theorist. With his semi-permeable membranes, which in reality are only realizable under certain special conditions and then only with a certain approximation, he separates in a reversible manner, not only all possible varieties of molecules, whether or not they are in stable or unstable conditions, but he also separates the oppositely charged ions from one another and from the undissociated molecules, and he is disturbed, neither by the enormous electrostatic forces which resist such a separation, nor by the circumstance that in reality, from the beginning of the separation, the molecules become in part dissociated while the ions in part again combine. But such ideal processes are necessary throughout in order to make possible the comparison of the entropy of the undissociated molecules with the entropy of the dissociated molecules; for the law of thermodynamic equilibrium does not permit in general of derivation in any other way, in case one wishes to retain pure thermodynamics as a basis. It must be considered remarkable that all these ingenious thought processes have so well found confirmation of their results in experience, as is shown by the examples considered by us in the last lecture.

If now, on the other hand, one reflects that in all these results every reference to the possibility of actually carrying out each ideal process has disappeared—there are certainly left relations between directly measurable quantities only, such as temperature, heat effect, concentration, etc.—the presumption forces itself upon one that perhaps the introduction as above of such ideal processes is at bottom a round-about method, and that the peculiar import of the principle of increase of entropy with all its consequences can be evolved from the original idea of irreversibility or, just as well, from the impossibility of perpetual motion of the second kind, just as the principle of  conservation of energy has been evolved from the law of impossibility of perpetual motion of the first kind.

This step: to have completed the emancipation of the entropy idea from the experimental art of man and the elevation of the second law thereby to a real principle, was the scientific life’s work of Ludwig Boltzmann. Briefly stated, it consisted in general of referring back the idea of entropy to the idea of probability. Thereby is also explained, at the same time, the significance of the above (p. 17) auxiliary term used by me; “preference” of nature for a definite state. Nature prefers the more probable states to the less probable, because in nature processes take place in the direction of greater probability. Heat goes from a body at higher temperature to a body at lower temperature because the state of equal temperature distribution is more probable than a state of unequal temperature distribution.

Through this conception the second law of thermodynamics is removed at one stroke from its isolated position, the mystery concerning the preference of nature vanishes, and the entropy principle reduces to a well understood law of the calculus of probability.

The enormous fruitfulness of so “objective” a definition of entropy for all domains of physics I shall seek to demonstrate in the following lectures. But today we have principally to do with the proof of its admissibility; for on closer consideration we shall immediately perceive that the new conception of entropy at once introduces a great number of questions, new requirements and difficult problems. The first requirement is the introduction of the atomic hypothesis into the system of physics. For, if one wishes to speak of the probability of a physical state, i.e., if he wishes to introduce the probability for a given state as a definite quantity into the calculation, this can only be brought about, as in cases of all probability calculations, by referring the state back to a variety of possibilities; i.e., by considering a finite number of a priori equally likely configurations (complexions) through each of which the state considered may be realized. The greater the number of complexions, the greater is the probability of the state. Thus, e.g., the  probability of throwing a total of four with two ordinary six-sided dice is found through counting the complexions by which the throw with a total of four may be realized. Of these there are three complexions:

 



with the first die, 1, with the second die, 3, 
with the first die, 2, with the second die, 2, 
with the first die, 3, with the second die, 1.

 



On the other hand, the throw of two is only realized through a single complexion. Therefore, the probability of throwing a total of four is three times as great as the probability of throwing a total of two.

Now, in connection with the physical state under consideration, in order to be able to differentiate completely from one another the complexions realizing it, and to associate it with a definite reckonable number, there is obviously no other means than to regard it as made up of numerous discrete homogeneous elements—for in perfectly continuous systems there exist no reckonable elements—and hereby the atomistic view is made a fundamental requirement. We have, therefore, to regard all bodies in nature, in so far as they possess an entropy, as constituted of atoms, and we therefore arrive in physics at the same conception of matter as that which obtained in chemistry for so long previously.

But we can immediately go a step further yet. The conclusions reached hold, not only for thermodynamics of material bodies, but also possess complete validity for the processes of heat radiation, which are thus referred back to the second law of thermodynamics. That radiant heat also possesses an entropy follows from the fact that a body which emits radiation into a surrounding diathermanous medium experiences a loss of heat and, therefore, a decrease of entropy. Since the total entropy of a physical system can only increase, it follows that one part of the entropy of the whole system, consisting of the body and the diathermanous medium, must be contained in the radiated heat. If the entropy of the radiant heat is to be referred back to the notion of probability, we are forced, in a similar way as above, to  the conclusion that for radiant heat the atomic conception possesses a definite meaning. But, since radiant heat is not directly connected with matter, it follows that this atomistic conception relates, not to matter, but only to energy, and hence, that in heat radiation certain energy elements play an essential rôle. Even though this conclusion appears so singular and even though in many circles today vigorous objection is strongly urged against it, in the long run physical research will not be able to withhold its sanction from it, and the less, since it is confirmed by experience in quite a satisfactory manner. We shall return to this point in the lectures on heat radiation. I desire here only to mention that the novelty involved by the introduction of atomistic conceptions into the theory of heat radiation is by no means so revolutionary as, perhaps, might appear at the first glance. For there is, in my opinion at least, nothing which makes necessary the consideration of the heat processes in a complete vacuum as atomic, and it suffices to seek the atomistic features at the source of radiation, i.e., in those processes which have their play in the centres of emission and absorption of radiation. Then the Maxwellian electrodynamic differential equations can retain completely their validity for the vacuum, and, besides, the discrete elements of heat radiation are relegated exclusively to a domain which is still very mysterious and where there is still present plenty of room for all sorts of hypotheses.

Returning to more general considerations, the most important question comes up as to whether, with the introduction of atomistic conceptions and with the reference of entropy to probability, the content of the principle of increase of entropy is exhaustively comprehended, or whether still further physical hypotheses are required in order to secure the full import of that principle. If this important question had been settled at the time of the introduction of the atomic theory into thermodynamics, then the atomistic views would surely have been spared a large number of conceivable misunderstandings and justifiable attacks. For it turns out, in fact—and our further considerations will confirm this conclusion—that there has as yet nothing been done with atomistics which in itself requires much more than  an essential generalization, in order to guarantee the validity of the second law.

We must first reflect that, in accordance with the central idea laid down in the first lecture (p. 7), the second law must possess validity as an objective physical law, independently of the individuality of the physicist. There is nothing to hinder us from imagining a physicist—we shall designate him a “microscopic” observer—whose senses are so sharpened that he is able to recognize each individual atom and to follow it in its motion. For this observer each atom moves exactly in accordance with the elementary laws which general dynamics lays down for it, and these laws allow, so far as we know, of an inverse performance of every process. Accordingly, here again the question is neither one of probability nor of entropy and its increase. Let us imagine, on the other hand, another observer, designated a “macroscopic” observer, who regards an ensemble of atoms as a homogeneous gas, say, and consequently applies the laws of thermodynamics to the mechanical and thermal processes within it. Then, for such an observer, in accordance with the second law, the process in general is an irreversible process. Would not now the first observer be justified in saying: “The reference of the entropy to probability has its origin in the fact that irreversible processes ought to be explained through reversible processes. At any rate, this procedure appears to me in the highest degree dubious. In any case, I declare each change of state which takes place in the ensemble of atoms designated a gas, as reversible, in opposition to the macroscopic observer.” There is not the slightest thing, so far as I know, that one can urge against the validity of these statements. But do we not thereby place ourselves in the painful position of the judge who declared in a trial the correctness of the position of each separately of two contending parties and then, when a third contends that only one of the parties could emerge from the process victorious, was obliged to declare him also correct? Fortunately we find ourselves in a more favorable position. We can certainly mediate between the two parties without its being  necessary for one or the other to give up his principal point of view. For closer consideration shows that the whole controversy rests upon a misunderstanding—a new proof of how necessary it is before one begins a controversy to come to an understanding with his opponent concerning the subject of the quarrel. Certainly, a given change of state cannot be both reversible and irreversible. But the one observer connects a wholly different idea with the phrase “change of state” than the other. What is then, in general, a change of state? The state of a physical system cannot well be otherwise defined than as the aggregate of all those physical quantities, through whose instantaneous values the time changes of the quantities, with given boundary conditions, are uniquely determined. If we inquire now, in accordance with the import of this definition, of the two observers as to what they understand by the state of the collection of atoms or the gas considered, they will give quite different answers. The microscopic observer will mention those quantities which determine the position and the velocities of all the individual atoms. There are present in the simplest case, namely, that in which the atoms may be considered as material points, six times as many quantities as atoms, namely, for each atom the three coordinates and the three velocity components, and in the case of combined molecules, still more quantities. For him the state and the progress of a process is then first determined when all these various quantities are individually given. We shall designate the state defined in this way the “micro-state.” The macroscopic observer, on the other hand, requires fewer data. He will say that the state of the homogeneous gas considered by him is determined by the density, the visible velocity and the temperature at each point of the gas, and he will expect that, when these quantities are given, their time variations and, therefore, the progress of the process, to be completely determined in accordance with the two laws of thermo-dynamics, and therefore accompanied by an increase in entropy. In this connection he can call upon all the experience at his disposal, which will fully confirm his expectation. If we call this state the “macro-state,” it is  clear that the two laws: “the micro-changes of state are reversible” and “the macro-changes of state are irreversible,” lie in wholly different domains and, at any rate, are not contradictory.

But now how can we succeed in bringing the two observers to an understanding? This is a question whose answer is obviously of fundamental significance for the atomic theory. First of all, it is easy to see that the macro-observer reckons only with mean values; for what he calls density, visible velocity and temperature of the gas are, for the micro-observer, certain mean values, statistical data, which are derived from the space distribution and from the velocities of the atoms in an appropriate manner. But the micro-observer cannot operate with these mean values alone, for, if these are given at one instant of time, the progress of the process is not determined throughout; on the contrary: he can easily find with given mean values an enormously large number of individual values for the positions and the velocities of the atoms, all of which correspond with the same mean values and which, in spite of this, lead to quite different processes with regard to the mean values. It follows from this of necessity that the micro-observer must either give up the attempt to understand the unique progress, in accordance with experience, of the macroscopic changes of state—and this would be the end of the atomic theory—or that he, through the introduction of a special physical hypothesis, restrict in a suitable manner the manifold of micro-states considered by him. There is certainly nothing to prevent him from assuming that not all conceivable micro-states are realizable in nature, and that certain of them are in fact thinkable, but never actually realized. In the formularization of such a hypothesis, there is of course no point of departure to be found from the principles of dynamics alone; for pure dynamics leaves this case undetermined. But on just this account any dynamical hypothesis, which involves nothing further than a closer specification of the micro-states realized in nature, is certainly permissible. Which hypothesis is to be given the preference can only be decided through comparison of the results to which the different possible hypotheses lead in the course of experience.

In order to limit the investigation in this way, we must obviously fix our attention only upon all imaginable configurations and velocities of the individual atoms which are compatible with determinate values of the density, the velocity and the temperature of the gas, or in other words: we must consider all the micro-states which belong to a determinate macro-state, and must investigate the various kinds of processes which follow in accordance with the fixed laws of dynamics from the different micro-states. Now, precise calculation has in every case always led to the important result that an enormously large number of these different micro-processes relate to one and the same macro-process, and that only proportionately few of the same, which are distinguished by quite special exceptional conditions concerning the positions and the velocities of neighboring atoms, furnish exceptions. Furthermore, it has also shown that one of the resulting macro-processes is that which the macroscopic observer recognizes, so that it is compatible with the second law of thermodynamics.

Here, manifestly, the bridge of understanding is supplied. The micro-observer needs only to assimilate in his theory the physical hypothesis that all those special cases in which special exceptional conditions exist among the neighboring configurations of interacting atoms do not occur in nature, or, in other words, that the micro-states are in elementary disorder. Then the uniqueness of the macroscopic process is assured and with it, also, the fulfillment of the principle of increase of entropy in all directions.

Therefore, it is not the atomic distribution, but rather the hypothesis of elementary disorder, which forms the real kernel of the principle of increase of entropy and, therefore, the preliminary condition for the existence of entropy. Without elementary disorder there is neither entropy nor irreversible process.ad Therefore, a single atom can never possess an entropy; for we cannot speak of disorder in connection   with it. But with a fairly large number of atoms, say 100 or 1,000, the matter is quite different. Here, one can certainly speak of a disorder, in case that the values of the coordinates and the velocity components are distributed among the atoms in accordance with the laws of accident. Then it is possible to calculate the probability for a given state. But how is it with regard to the increase of entropy? May we assert that the motion of 100 atoms is irreversible? Certainly not; but this is only because the state of 100 atoms cannot be defined in a thermodynamic sense, since the process does not proceed in a unique manner from the standpoint of a macro-observer, and this requirement forms, as we have seen above, the foundation and preliminary condition for the definition of a thermodynamic state.

If one therefore asks: How many atoms are at least necessary in order that a process may be considered irreversible?, the answer is: so many atoms that one may form from them definite mean values which define the state in a macroscopic sense. One must reflect that to secure the validity of the principle of increase of entropy there must be added to the condition of elementary disorder still another, namely, that the number of the elements under consideration be sufficiently large to render possible the formation of definite mean values. The second law has a meaning for these mean values only; but for them, it is quite exact, just as exact as the law of the calculus of probability, that the mean value, so far as it may be defined, of a sufficiently large number of throws with a six-sided die, is 3[image: 059].

These considerations are, at the same time, capable of throwing light upon questions such as the following: Does the principle of increase of entropy possess a meaning for the so-called Brownian molecular movement of a suspended particle? Does the kinetic energy of this motion represent useful work or not? The entropy principle is just as little valid for a single suspended particle as for an atom, and therefore is not valid for a few of them, but only when there is so large a number that definite mean values can be formed. That one is able to see the particles and not the atoms makes no material difference; because the progress of a process does not depend upon the power  of an observing instrument. The question with regard to useful work plays no rôle in this connection; strictly speaking, this possesses, in general, no objective physical meaning. For it does not admit of an answer without reference to the scheme of the physicist or technician who proposes to make use of the work in question. The second law, therefore, has fundamentally nothing to do with the idea of useful work (cf. first lecture, p. 15).

But, if the entropy principle is to hold, a further assumption is necessary, concerning the various disordered elements,—an assumption which tacitly is commonly made and which we have not previously definitely expressed. It is, however, not less important than those referred to above. The elements must actually be of the same kind, or they must at least form a number of groups of like kind, e.g., constitute a mixture in which each kind of element occurs in large numbers. For only through the similarity of the elements does it come about that order and law can result in the larger from the smaller. If the molecules of a gas be all different from one another, the properties of a gas can never show so simple a law-abiding behavior as that which is indicated by thermodynamics. In fact, the calculation of the probability of a state presupposes that all complexions which correspond to the state are a priori equally likely. Without this condition one is just as little able to calculate the probability of a given state as, for instance, the probability of a given throw with dice whose sides are unequal in size. In summing up we may therefore say: the second law of thermodynamics in its objective physical conception, freed from anthropomorphism, relates to certain mean values which are formed from a large number of disordered elements of the same kind.

The validity of the principle of increase of entropy and of the irreversible progress of thermodynamic processes in nature is completely assured in this formularization. After the introduction of the hypothesis of elementary disorder, the microscopic observer can no longer confidently assert that each process considered by him in a collection of atoms is reversible; for the motion occurring in the reverse order will not always obey the requirements of that hypothesis. In  fact, the motions of single atoms are always reversible, and thus far one may say, as before, that the irreversible processes appear reduced to a reversible process, but the phenomenon as a whole is nevertheless irreversible, because upon reversal the disorder of the numerous individual elementary processes would be eliminated. Irreversibility is inherent, not in the individual elementary processes themselves, but solely in their irregular constitution. It is this only which guarantees the unique change of the macroscopic mean values.

Thus, for example, the reverse progress of a frictional process is impossible, in that it would presuppose elementary arrangement of interacting neighboring molecules. For the collisions between any two molecules must thereby possess a certain distinguishing character, in that the velocities of two colliding molecules depend in a definite way upon the place at which they meet. In this way only can it happen that in collisions like directed velocities ensue and, therefore, visible motion.

Previously we have only referred to the principle of elementary disorder in its application to the atomic theory of matter. But it may also be assumed as valid, as I wish to indicate at this point, on quite the same grounds as those holding in the case of matter, for the theory of radiant heat. Let us consider, e.g., two bodies at different temperatures between which exchange of heat occurs through radiation. We can in this case also imagine a microscopic observer, as opposed to the ordinary macroscopic observer, who possesses insight into all the particulars of electromagnetic processes which are connected with emission and absorption, and the propagation of heat rays. The microscopic observer would declare the whole process reversible because all electrodynamic processes can also take place in the reverse direction, and the contradiction may here be referred back to a difference in definition of the state of a heat ray. Thus, while the macroscopic observer completely defines a monochromatic ray through direction, state of polarization, color, and intensity, the microscopic observer, in order to possess a complete knowledge of an electromagnetic state, necessarily requires the specification of all the numerous irregular  variations of amplitude and phase to which the most homogeneous heat ray is actually subject. That such irregular variations actually exist follows immediately from the well known fact that two rays of the same color never interfere, except when they originate in the same source of light. But until these fluctuations are given in all particulars, the micro-observer can say nothing with regard to the progress of the process. He is also unable to specify whether the exchange of heat radiation between the two bodies leads to a decrease or to an increase of their difference in temperature. The principle of elementary disorder first furnishes the adequate criterion of the tendency of the radiation process, i.e., the warming of the colder body at the expense of the warmer, just as the same principle conditions the irreversibility of exchange of heat through conduction. However, in the two cases compared, there is indicated an essential difference in the kind of the disorder. While in heat conduction the disordered elements may be represented as associated with the various molecules, in heat radiation there are the numerous vibration periods, connected with a heat ray, among which the energy of radiation is irregularly distributed. In other words: the disorder among the molecules is a material one, while in heat radiation it is one of energy distribution. This is the most important difference between the two kinds of disorder; a common feature exists as regards the great number of uncoordinated elements required. Just as the entropy of a body is defined as a function of the macroscopic state, only when the body contains so many atoms that from them definite mean values may be formed, so the entropy principle only possesses a meaning with regard to a heat ray when the ray comprehends so many periodic vibrations, i.e., persists for so long a time, that a definite mean value for the intensity of the ray may be obtained from the successive irregular fluctuating amplitudes.

Now, after the principle of elementary disorder has been introduced and accepted by us as valid throughout nature, the fundamental question arises as to the calculation of the probability of a given state, and the actual derivation of the entropy therefrom. From the entropy all the laws of thermodynamic states of equilibrium, for material  substances, and also for energy radiation, may be uniquely derived. With regard to the connection between entropy and probability, this is inferred very simply from the law that the probability of two independent configurations is represented by the product of the individual probabilities:

W = W1 · W2,




while the entropy S is represented by the sum of the individual entropies:

S = S1 + S2.






Accordingly, the entropy is proportional to the logarithm of the probability: 





(1)

[image: 060]

k is a universal constant. In particular, it is the same for atomic as for radiation configurations, for there is nothing to prevent us assuming that the configuration designated by 1 is atomic, while that designated by 2 is a radiation configuration. If k has been calculated, say with the aid of radiation measurements, then k must have the same value for atomic processes. Later we shall follow this procedure, in order to utilize the laws of heat radiation in the kinetic theory of gases. Now, there remains, as the last and most difficult part of the problem, the calculation of the probability W of a given physical configuration in a given macroscopic state. We shall treat today, by way of preparation for the quite general problem to follow, the simple problem: to specify the probability of a given state for a single moving material point, subject to given conservative forces. Since the state depends upon 6 variables: the 3 generalized coordinates [image: 061] ,[image: 062] ,[image: 063] and the three corresponding velocity components [image: 064], [image: 065], [image: 066], and since all possible values of these 6 variables constitute a continuous manifold, the probability sought is, that these 6 quantities shall lie respectively within certain infinitely small intervals, or, if one thinks of these 6 quantities as the rectilinear orthogonal coordinates of a point in an ideal six-dimensional space, that this ideal “state point” shall fall within a given, infinitely small  “state domain.” Since the domain is infinitely small, the probability will be proportional to the magnitude of the domain and therefore proportional to[image: 067]



But this expression cannot serve as an absolute measure of the probability, because in general it changes in magnitude with the time, if each state point moves in accordance with the laws of motion of material points, while the probability of a state which follows of necessity from another must be the same for the one as the other. Now, as is well known, another integral quite similarly formed, may be specified in place of the one above, which possesses the special property of not changing in value with the time. It is only necessary to employ, in addition to the general coordinates [image: 068] ,[image: 069] ,[image: 070] the three so-called momenta ψ1, ψ2, ψ3, in place of the three velocities [image: 071], [image: 072], [image: 073], as the determining coordinates of the state. These are defined in the following way:[image: 074]

wherein H denotes the kinetic potential (Helmholz). Then, in Hamiltonian form, the equations of motion are:[image: 075]

(E is the energy), and from these equations follows the “condition of incompressibility”:[image: 076]



Referring to the six-dimensional space represented by the coordinates ϕ1, ϕ2, ϕ3, ψ 1, ψ 2, ψ 3, this equation states that the magnitude of an arbitrarily chosen state domain, viz.:
[image: 077]



 does not change with the time, when each point of the domain changes its position in accordance with the laws of motion of material points. Accordingly, it is made possible to take the magnitude of this domain as a direct measure for the probability that the state point falls within the domain.

From the last expression, which can be easily generalized for the case of an arbitrary number of variables, we shall calculate later the probability of a thermodynamic state, for the case of radiant energy as well as that for material substances.






 Chapter Two


The question of whether matter is infinitely divisible has troubled philosophers for millennia. In approximately 450 BCE, the Greek philosopher Democritus speculated that there must be some smallest unit of matter from which every material thing is built. He named this the atom, which means “indivisible” in Greek. However, by the end of the nineteenth century, it was known that what we now call atoms are, in fact, divisible. This is not to say that Democritus was wrong, for we have good reasons to believe that elementary particles like electrons are fundamental and indivisible. It simply means what we call an atom was misnamed.

In the latter part of the nineteenth century, atoms were known to be composed of positively charged protons and negatively charged electrons, but it was not known how the protons and electrons were structured in the atom. From 1909 through 1911, Ernest Rutherford and his assistant Hans Geiger conducted experiments to explore this question. The results of their study, are presented in the groundbreaking paper, “The Scattering of α and β Particles by Matter and the Structure of the Atom.” They bombarded gold foil with α particles in the hope that by watching how the α particles interacted with the atoms in the foil they could determine the structure of the gold atoms. α Particles have a strong positive electrical charge, so they are ideally suited to studying where the positive and negative charges reside inside an atom. The experiment seems straightforward, but what Rutherford and Geiger discovered was totally unexpected. They found that all the protons were very tightly clumped together at the center of the atom, in what we now call the nucleus. The electrons were found surrounding the nucleus. Rutherford speculated that the electrons orbit the nucleus in much the same way that planets orbit the sun. Consequently, Rutherford’s model of the atom was called the planetary model. The planetary model was completely unexpected  because it seems to violate well-known physical laws. For example, we know that electrical charges of the same sign repel each other. All protons are positively charged, so the protons in the nucleus should strongly repel each other and blow the nucleus apart—but they don’t! What could be holding it together? Rutherford did not know. He simply postulated that there must be some force holding it together. This force would not be well understood until the 1970s with the advent of quantum chromodynamics.

Another problem with the planetary model of the atom was that the electrons’ orbit around the nucleus should be unstable. We know from the theory of electrodynamics that an orbiting charged particle will radiate electromagnetic waves, causing it to lose energy and spiral into the nucleus. But atoms are stable—the electrons in an atom do not do this. Why not? In 1913 Niels Bohr tackled this question in his paper, “On the Constitution of Atoms and Molecules.” His answer was the next important step in the development of quantum mechanics. He simply postulated that only discrete distances from the nucleus were allowed for an electron orbiting a nucleus. In other words, he assumed the radius of orbit (and equivalently, the energy) of electrons in atoms to be quantized. It is as if the allowed orbits are steps in a staircase. The electron can be on the third step or the fourth step, for example, but it cannot be in between. Electrons can jump between levels but cannot spiral inward because that would involve being in an intermediate space between levels. With this assumption, Bohr’s model could also explain the atomic spectrum of hydrogen. When an electron jumps from a higher to lower energy level it emits electromagnetic radiation with an energy amount given by the difference in energies of the two levels. Since the energy levels are discrete transitions, atomic spectra have distinct, sharp lines.

Bohr’s model was immediately recognized as revolutionary, and it won him the 1922 Nobel prize. However, the Bohr model has a number of shortcomings. It only works for atoms with a single  electron, and even for single-electron atoms it cannot explain the fine structure of atomic spectra, nor does it provide an explanation of why the electron energy levels should be quantized. It was not until the 1920s, when a more complete theory of quantum mechanics was developed, that we understood why we needed to assume energy level quantization.

 


THE SCATTERING OF α AND β PARTICLES BY MATTER AND THE STRUCTURE OF THE ATOM 

BY
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First appeared in Philosophical Magazine, Series 6, vol. 21, May 1911, p. 669–688

 




§ 1. It is well known that the α and the β particles suffer deflexions from their rectilinear paths by encounters with atoms of matter. This scattering is far more marked for the β than for the α particle on account of the much smaller momentum and energy of the former particle. There seems to be no doubt that such swiftly moving particles pass through the atoms in their path, and that the deflexions observed are due to the strong electric field traversed within the atomic system. It has generally been supposed that the scattering of a pencil of α or β rays in passing through a thin plate of matter is the result of a multitude of small scatterings by the atoms of matter traversed. The observations, however, of Geiger and Marsdenaf on the scattering of α rays indicate that some of the α particles, about 1 in 20,000 were turned through an average angle of 90 degrees in passing though a layer of gold-foil about 0.00004 cm. thick, which was equivalent in stopping-power of the α particle to 1.6 millimetres of air. Geigerag showed later that the most probable angle of deflexion for a pencil of α particles being deflected through 90 degrees is vanishingly small. In addition, it will be seen later that the distribution of the α particles for various angles of large deflexion does not follow the probability law  to be expected if such large deflexion are made up of a large number of small deviations. It seems reasonable to suppose that the deflexion through a large angle is due to a single atomic encounter, for the chance of a second encounter of a kind to produce a large deflexion must in most cases be exceedingly small. A simple calculation shows that the atom must be a seat of an intense electric field in order to produce such a large deflexion at a single encounter.

Recently Sir J.J. Thomsonah has put forward a theory to explain the scattering of electrified particles in passing through small thicknesses of matter. The atom is supposed to consist of a number N of negatively charged corpuscles, accompanied by an equal quantity of positive electricity uniformly distributed throughout a sphere. The deflexion of a negatively electrified particle in passing through the atom is ascribed to two causes–(1) the repulsion of the corpuscles distributed through the atom, and (2) the attraction of the positive electricity in the atom. The deflexion of the particle in passing through the atom is supposed to be small, while the average deflexion after a large number m of encounters was taken as [the square root of] m · θ, where θ is the average deflexion due to a single atom. It was shown that the number N of the electrons within the atom could be deduced from observations of the scattering was examined experimentally by Crowtherai in a later paper. His results apparently confirmed the main conclusions of the theory, and he deduced, on the assumption that the positive electricity was continuous, that the number of electrons in an atom was about three times its atomic weight.

The theory of Sir J. J. Thomson is based on the assumption that the scattering due to a single atomic encounter is small, and the particular structure assumed for the atom does not admit of a very large deflexion of diameter of the sphere of positive electricity is minute compared with the diameter of the sphere of influence of the atom.

Since the α and β particles traverse the atom, it should be possible from a close study of the nature of the deflexion to form some idea of the constitution of the atom to produce the effects observed. In fact, the scattering of high-speed charged particles by the atoms of matter is one of the most promising methods of attack of this problem. The development of the scintillation method of counting single α particles affords unusual advantages of investigation, and the researches of H. Geiger by this method have already added much to our knowledge of the scattering of α rays by matter.

§ 2. We shall first examine theoretically the single encountersaj with an atom of simple structure, which is able to produce large deflections of an α particle, and then compare the deductions from the theory with the experimental data available.

Consider an atom which contains a charge ±Ne at its centre surrounded by a sphere of electrification containing a charge ±Ne [N.B. in the original publication, the second plus/minus sign is inverted to be a minus/plus sign] supposed uniformly distributed throughout a sphere of radius R. e is the fundamental unit of charge, which in this paper is taken as 4.65 × 10−10 E.S. unit. We shall suppose that for distances less than 10−12 cm. the central charge and also the charge on the alpha particle may be supposed to be concentrated at a point. It will be shown that the main deductions from the theory are independent of whether the central charge is supposed to be positive or negative. For convenience, the sign will be assumed to be positive. The question of the stability of the atom proposed need not be considered at this stage, for this will obviously depend upon the minute structure of the atom, and on the motion of the constituent charged parts.

In order to form some idea of the forces required to deflect an alpha particle through a large angle, consider an atom containing a positive charge Ne at its centre, and surrounded by a distribution of negative electricity Ne uniformly distributed within a sphere of radius R. The electric force X and the potential V at a distance r from the   centre of an atom for a point inside the atom, are given by[image: 078]



Suppose an α particle of mass m and velocity u and charge E shot directly towards the centre of the atom. It will be brought to rest at a distance b from the centre given by[image: 079]



It will be seen that b is an important quantity in later calculations. Assuming that the central charge is 100 e, it can be calculated that the value of b for an α particle of velocity 2.09 × 109 cms. per second is about 3.4 × 10−12 cm. In this calculation b is supposed to be very small compared with R. Since R is supposed to be of the order of the radius of the atom, viz. 10−8 cm., it is obvious that the α particle before being turned back penetrates so close to the central charge, that the field due to the uniform distribution of negative electricity may be neglected. In general, a simple calculation shows that for all deflexions greater than a degree, we may without sensible error suppose the deflexion due to the field of the central charge alone. Possible single deviations due to the negative electricity, if distributed in the form of corpuscles, are not taken into account at this stage of the theory. It will be shown later that its effect is in general small compared with that due to the central field.

Consider the passage of a positive electrified particle close to the centre of an atom. Supposing that the velocity of the particle is not appreciably changed by its passage through the atom, the path of the particle under the influence of a repulsive force varying inversely as the square of the distance will be an hyperbola with the centre of the atom S as the external focus. Suppose the particle to enter the atom in the direction PO (Fig. 1), and that the direction of motion on escaping the atom is OPʹ. OP and OPʹ make equal angles with the  line SA, where A is the apse of the hyperbola. p = SN = perpendicular distance from centre on direction of initial motion of particle.

 





FIG. 1

[image: 080]

Let angle POA = θ .

Let V = velocity of particle on entering the atom, v its velocity at A, then from consideration of angular momentum

pV = SA · ν.






From conservation of energy[image: 081]



Since the eccentricity is sec θ ,[image: 082]

therefore b = 2 p cot θ.


The angle of deviation θ of the particles in π − 2θ and 






ak(1)

[image: 083]



This gives the angle of deviation of the particle in terms of b, and the perpendicular distance of the direction of projection from the centre of the atom.

For illustration, the angle of deviation φ for different values of p/b are shown in the following table:—

[image: 084]


§ 3. PROBABILITY OF SINGLE DEFLEXION THROUGH ANY ANGLE

Suppose a pencil of electrified particles to fall normally on a thin screen of matter of thickness t. With the exception of the few particles which are scattered through a large angle, the particles are supposed to pass nearly normally through the plate with only a small change of velocity. Let n = number of atoms in unit volume of material. Then the number of collisions of the particle with the atom of radius R is π R2nt in the thickness t.


The probability m of entering an atom within a distance p of its center is given by[image: 085]



Chance dm of striking within radii p and p + dp is given by 





(2)

[image: 086]

since

[image: 087]

The value of dm gives the fraction of the total number of particles which are deviated between the angles φ and φ + dφ.

The fraction p of the total number of particles which are deflected through an angle greater than φ is given by 





(3)

[image: 088]



The fraction p which is deflected between the angles φ1 and φ2 is given by 





(4)

[image: 089]



It is convenient to express the equation (2) in another form for comparison with experiment. In the case of the α rays, the number of scintillations appearing on the constant area of the zinc sulphide screen are counted for different angles with the direction of incidence of the particles. Let r = distance from point of incidence of α rays on scattering material, then if Q be the total number of particles falling on the scattering material, the number y of α particles falling on unit area which are deflected through an angle φ is given by 





(5)

[image: 090]



Since b = 2NeE/mu2, we see from this equation that the number of α particles (scintillations) per unit area of zinc sulphide screen at a given distance r from the point of Incidence of the rays is proportional to
(1) cosec4 φ/2 or 1/φ4 if φ be small;

(2) thickness of scattering material t provided this is small;

(3) magnitude of central charge Ne;

(4) and is inversely proportional to (mu2)2, or to the fourth power of the velocity if m be constant.





In these calculations, it is assumed that the α particles scattered through a large angle suffer only one large deflexion. For this to hold, it is essential that the thickness of the scattering material should be so small that the chance of a second encounter involving another large deflexion is very small. If, for example, the probability of a single deflexion φ in passing through a thickness t is 1/1000, the probability of two successive deflexions each of value φ is 1/106, and is negligibly small.

The angular distribution of the α particles scattered from a thin metal sheet affords one of the simplest methods of testing the general  correctness of this theory of single scattering. This has been done recently for α rays by Dr. Geigeral, who found that the distribution for particles deflected between 30° and 150° from a thin gold-foil was in substantial agreement with the theory. A more detailed account of these and other experiments to test the validity of the theory will be published later.


§ 4. ALTERATION OF VELOCITY IN AN ATOMIC ENCOUNTER

It has so far been assumed that an α or β particle does not suffer an appreciable change of velocity as the result of a single atomic encounter resulting in a large deflexion of the particle. The effect of such an encounter in altering the velocity of the particle can be calculated on certain assumptions. It is supposed that only two systems are involved, viz., the swiftly moving particle and the atom which it traverses supposed initially at rest. It is supposed that the principle of conservation of momentum and of energy applies, and that there is no appreciable loss of energy or momentum by radiation.

Let m be mass of the particle,

 




ν1 = velocity of approach, 
ν2 = velocity of recession, 
M = mass of atom, 
V = velocity communicated to atom as result of encounter.

 



Let OA (Fig. 2) represent in magnitude and direction the momentum mν1 of the entering particle, and OB the momentum of the receding particle which has been turned through an angle AOB = φ. Then BA represents in magnitude and direction the momentum MV of the recoiling atom.

 





(1)

[image: 091]

By conservation of energy 





(2)

[image: 092]



 





FIG. 2

[image: 093]

Suppose M/m = K and ν2 = pν1, where p < 1. From (1) and (2).
(K + 1) ρ2 − 2ρ cosφ = k − 1,




or[image: 094]



Consider the case of an α particle of atomic weight 4, deflected through an angle of 90° by an encounter with an atom of gold of atomic weight 197.

Since K = 49 nearly,[image: 095]

or the velocity of the particle is reduced only about 2 per cent. by the encounter.

In the case of aluminium K = 27/4 and for φ = 90° p = 0.86.

It is seen that the reduction of velocity of the α particle becomes marked on this theory for encounters with the lighter atoms. Since the range of an α particle in air or other matter is approximately proportional to the cube of the velocity, it follows that an α particle of range 7 cms. has its range reduced to 4.5 cms. after incurring a single deviation of 90° in traversing an aluminium atom. This is of a magnitude to be easily detected experimentally. Since the value of K is  very large for an encounter of a β particle with an atom, the reduction of velocity on this formula is very small.

Some very interesting cases of the theory arise in considering the changes of velocity and the distribution of scattered particles when the α particle encounters a light atom, for example a hydrogen or helium atom. A discussion of these and similar cases is reserved until the question has been examined experimentally.


§ 5. COMPARISON OF SINGLE AND COMPOUND SCATTERING

Before comparing the results of theory with experiment, it is desirable to consider the relative importance of single and compound scattering in determining the distribution of the scattered particles. Since the atom is supposed to consist of a central charge surrounded by a uniform distribution of the opposite sign through a sphere of radius R, the chance of encounters with the atom involving small deflexions is very great compared with the change of a single large deflexion.

This question of compound scattering has been examined by Sir J. J. Thomson in the paper previously discussed (§ 1). In the notation of this paper, the average deflexion φ1 due to the field of the sphere of positive electricity of radius R and quantity Ne was found by him to be[image: 096]



The average deflexion φ2 due to the N negative corpuscles supposed distributed uniformly throughout the sphere was found to be[image: 097]



The mean deflexion due to both positive and negative electricity was taken as[image: 098]



In a similar way, it is not difficult to calculate the average deflexion due to the atom with a central charge discussed in this paper.

Since the radial electric field X at any distance r from the centre is given by[image: 099]

it is not difficult to show that the deflexion (supposed small) of an electrified particle due to this field is given by[image: 100]



Where p is the perpendicular from the center on the path of the particles and b has the same value as before. It is seen that the value of θ increases with diminution of p and becomes great for small value of φ.

Since we have already seen that the deflexions become very large for a particle passing near the center of the atom, it is obviously not correct to find the average value by assuming θ is small.

Taking R of the order 10−8 cm., the value of p for a large deflexions is for α and β particles of the order 10−11 cm. Since the chance of an encounter involving a large deflexion is small compared with the chance of small deflexions, a simple consideration shows that the average small deflexion is practically unaltered if the large deflexions are omitted. This is equivalent to integrating over that part of the cross section of the atom where the deflexions are small and neglecting the small central area. It can in this way be simply shown that the average small deflexion is given by[image: 101]



This value of φ1 for the atom with a concentrated central charge is three times the magnitude of the average deflexion for the same value of Ne in the type of atom examined by Sir J. J. Thomson. Combining the deflexions due to the electric field and to the corpuscles, the average deflexion is[image: 102]




It will be seen later that the value of N is nearly proportional to the atomic weight, and is about 100 for gold. The effect due to scattering of the individual corpuscles expressed by the second term of the equation is consequently small for heavy atoms compared with that due to the distributed electric field.

Neglecting the second term, the average deflexion per atom is 3πb/8R. We are now in a position to consider the relative effects on the distribution of particles due to single and to compound scattering. Following J. J. Thomson’s argument, the average deflexion θ after passing through a thickness t of matter is proportional to the square root of the number of encounters and is given by[image: 103]

where n as before is equal to the number of atoms per unit volume.

The probability p1 for compound scattering that the deflexion of the particle is greater than φ is equal to [image: 104]


Consequently[image: 105]



Next suppose that single scattering alone is operative. We have seen (§ 3) that the probability p2 of a deflexion greater than φ is given by[image: 106]



By comparing these two equations[image: 107]

φ is sufficiently small that[image: 108]



If we suppose that

p2 = 0.5, then p1 = 0.24





If

p2 = 0.1, then p1 = 0.0004





It is evident from this comparison, that the probability for any given deflexion is always greater for single than for compound scattering. The difference is especially marked when only a small fraction of the particles are scattered through any given angle. It follows from this result that the distribution of particles due to encounters with the atoms is for small thicknesses mainly governed by single scattering. No doubt compound scattering produces some effect in equalizing the distribution of the scattered particles; but its effect becomes relatively smaller, the smaller the fraction of the particles scattered through a given angle.


§6. COMPARISON OF THEORY WITH EXPERIMENTS

On the present theory, the value of the central charge Ne is an important constant, and it is desirable to determine its value for different atoms. This can be most simply done by determining the small fraction of α or β particles of known velocity falling on a thin metal screen, which are scattered between φ and φ + dφ where φ is the angle of deflexion, The influence of compound scattering should be small when this fraction is small.

Experiments in these directions are in progress, but it is desirable at this stage to discuss in the light of the present theory the data already published on scattering of α and β particles,

The following points will be discussed:—
(a) The ‘diffuse reflexion’ of α particles, i.e. the scattering of α particles through large angles (Geiger and Marsden.)

(b) The variation of diffuse reflexion with atomic weight of the radiator (Geiger and Marsden.)

(c) The average scattering of a pencil of α rays transmitted through a thin metal plate (Geiger.)

(d) The experiments of Crowther on the scattering of β rays of different velocities by various metals.





(a) In the paper of Geiger and Marsden (loc. cit.) on the diffuse reflexion of α particles falling on various substances it was shown that about 1/8000 of the α particles from radium C falling on a thick  plate of platinum are scattered back in the direction of the incidence. This fraction is deduced on the assumption that the α particles are uniformly scattered in all directions, the observation being made for a deflexion of about 90°. The form of experiment is not very suited for accurate calculation, but from the data available it can be shown that the scattering observed is about that to be expected on the theory if the atom of platinum has a central charge of about 100 e.


In their experiments on this subject, Geiger and Marsden gave the relative number of α particles diffusely reflected from thick layers of different metals, under similar conditions. The numbers obtained by them are given in the table below, where z represents the relative number of scattered particles, measured by the of scintillations per minute on a zinc sulphide screen.

[image: 109]

On the theory of single scattering, the fraction of the total number of α particles scattered through any given angle in passing through a thickness t is proportional to n · A2t, assuming that the central charge is proportional to the atomic weight A. In the present case, the thickness of matter from which the scattered α particles are able to emerge and affect the zinc sulphide screen depends on the metal. Since Bragg has shown that the stopping power of an atom for an α particle is proportional to the square root of its atomic weight, the  value of nt for different elements is proportional to 1/[square root of] A. In this case t represents the greatest depth from which the scattered α particles emerge. The number z of α particles scattered back from a thick layer is consequently proportional to A3/2 or z/A3/2 should be a constant.

To compare this deduction with experiment, the relative values of the latter quotient are given in the last column. Considering the difficulty of the experiments, the agreement between theory and experiment is reasonably good.am


The single large scattering of α particles will obviously affect to some extent the shape of the Bragg ionization curve for a pencil of α rays. This effect of large scattering should be marked when the α rays have traversed screens of metals of high atomic weight, but should be small for atoms of light atomic weight.

(c) Geiger made a careful determination of the scattering of α particles passing through thin metal foils, by the scintillation method, and deduced the most probable angle through which the α particles are deflected in passing through known thickness of different kinds of matter.

A narrow pencil of homogeneous α rays was used as a source. After passing through the scattering foil, the total number of α particles are deflected through different angles was directly measured. The angle for which the number of scattered particles was a maximum was taken as the most probable angle. The variation of the most probable angle with thickness of matter was determined, but calculation from these data is somewhat complicated by the variation of velocity of the α particles in their passage through the scattering material. A consideration of the curve of distribution of the α particles given in the paper (loc.cit. p. 498) shows that the angle through which half the particles are scattered is about 20 per cent greater than the most probable angle.

We have already seen that compound scattering may become important when about half the particles are scattered through a given   angle, and it is difficult to disentangle in such cases the relative effects due to the two kinds of scattering. An approximate estimate can be made in the following ways:—From (§ 5) the relation between the probabilities p1 and p2 for compound and single scattering respectively is given by

p2 log p1 = −0.721.






The probability q of the combined effects may as a first approximation be taken as[image: 110]



If q = 0.5, it follows that p1 = 0.2 and p2 = 0.46
p1 = 0.2 and P2 = 0.46





We have seen that the probability P2 of a single deflexion greater than φ is given by[image: 111]



Since in the experiments considered φ is comparatively small[image: 112]



Geiger found that the most probable angle of scattering of the α rays in passing through a thickness of gold equivalent in stopping power to about 0.76 cm. of air was 1° 40’. The angle φ through which half the α particles are tuned thus corresponds to 2° nearly.

[image: 113]

Taking the probability of single scattering = 0.46 and substituting the above value in the formula, the value of N for gold comes out to be 97.

For a thickness of gold equivalent in stopping power to 2.12 cms, of air, Geiger found the most probable angle to be 3° 40’. In this case, t = 0.00047, φ = 4°.4, and average u = 1.7 × 109, and N comes out to be 114.

Geiger showed that the most probable angle of deflexion for an atom was nearly proportional to its atomic weight. It consequently follows that the value for N for different atoms should be nearly proportional to their atomic weights, at any rate for atomic weights between gold and aluminum.

Since the atomic weight of platinum is nearly equal to that of gold, it follows from these considerations that the magnitude of the diffuse reflexion of α particles through more than 90° from gold and the magnitude of the average small angle scattering of a pencil of rays in passing through gold-foil are both explained on the hypothesis of single scattering by supposing the atom of gold has a central charge of about 100 e.


(d) Experiments of a Crowther on scattering of α rays.—We shall now consider how far the experimental results of Crowther on scattering of β particles of different velocities by various materials can be explained on the general theory of single scattering. On this theory, the fraction of β particles p turned through an angel greater than φ is given by

p = (π/4) n · t · b2 (cot2 φ/2).






In most of Crowther’s experiments φ is sufficiently small that tan φ/2 may be put equal to φ/2 without much error. Consequently[image: 114]



On the theory of compound scattering, we have already seen that the chance p1 that the deflexion of the particles is greater than φ is given by[image: 115]



Since in the experiments of Crowther the thickness t of matter was determined for which p1 = 1/2,[image: 116]



For the probability of 1/2, the theories of single and compound scattering are thus identical in general form, but differ by a numerical constant. It is thus clear that the main relations on the theory of  compound scattering of Sir J. J. Thomson, which were verified experimentally by Crowther, hold equally well on the theory of single scattering.

For example, it tm be the thickness for which half the particles are scattered through an angle φ, Crowther showed that φ/[square root of] tm and also mu2/E times [square root of] tm were constants for a given material when φ was fixed. These relations hold also on the theory of single scattering. Notwithstanding this apparent similarity in form, the two theories are fundamentally different. In one case, the effects observed are due to cumulative effects of small deflexion, while in the other the large deflexions are supposed to result from a single encounter. The distribution of scattered particles is entirely different on the two theories when the probability of deflexion greater than φ is small.

We have already seen that the distribution of scattered α particles at various angles has been found by Geiger to be in substantial agreement with the theory of single scattering, but can not be explained on the theory of compound scattering alone. Since there is every reason to believe that the laws of scattering of α and β particles are very similar, the law of distribution of scattered β particles should be the same as for α particles for small thicknesses of matter. Since the value of mu2/E for β particles is in most cases much smaller than the corresponding value for the α particles, the chance of large single deflexions for β particles in passing through a given thickness of matter is much greater than for α particles. Since on the theory of single scattering the fraction of the number of particles which are undeflected through this angle is proportional to kt, where t is the thickness supposed small and k a constant, the number of particles which are undeflected through this angle is proportional to 1 − kt. From considerations based on the theory of compound scattering, Sir J.J. Thomson deduced that the probability of deflexion less than Φ is proportional to 1 − eµ/t is where µ is a constant for any given value of φ.

The correctness of this latter formula was tested by Crowther by measuring electrically the fraction I/Io of the scattered β particles  which passed through a circular opening subtending an angle of 36° with the scattering material. If
I/I0 = 1 − 1 − eµ/t,




the value of I should decrease very slowly at first with increase of t. Crowther, using aluminium as scattering material, states that the variation of I/Io was in good accord with this theory for small values of t. On the other hand, if single scattering be present, as it undoubtedly is for α rays, the curve showing the relation between I/Io and t should be nearly linear in the initial stages. The experiments of Marsdenan on scattering of β rays, although not made with quite so small a thickness of aluminium as that used by Crowther, certainly support such a conclusion. Considering the importance of the point at issue, further experiments on this question are desirable.

From the table given by Crowther of the value φ/[square root of] tm for different elements for β rays of velocity 2.68 × 10−10 cms. per second, the value of the central charge Ne can be calculated on the theory of single scattering. It is supposed, as in the case of the α rays, that for given value of φ/[square root of] tm the fraction of the β particles deflected by single scattering through an angle greater than φ is 0.46 instead of 0.5

The value of N calculated from Crowther’s data are given below.
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It will be remembered that the values of N for gold deduced from scattering of the α rays were in two calculations 97 and 114. These numbers are somewhat smaller than the values given above   for platinum (viz. 138), whose atomic weight is not very different from gold. Taking into account the uncertainties involved in the calculation from the experimental data, the agreement is sufficiently close to indicate that the same general laws of scattering hold for the α and β particles, notwithstanding the wide differences in the relative velocity and mass of these particles.

As in case of the α rays, the value of N should be most simply determined for any given element by measuring the small fraction of the incident β particles scattered through a large angle. In this way, possible errors due to small scattering will be avoided.

The scattering data for the β rays, as well as for the α rays indicate that the central charge in an atom is approximately proportional to its atomic weight. This falls in with the experimental deductions of Schmidt.ao In his theory of absorption of β rays, he supposed that in traversing a thin sheet of matter, a small fraction α of the particles are stopped, and a small fraction β are reflected or scattered back in the direction of incidence. From comparison of the absorption curves of different elements, he deduced that the value of the constant β for different elements is proportional to nA2 where n is the number of atoms per unit volume and A the atomic weight of the element. This is exactly the relation to be expected on the theory of single scattering if the central charge on an atom is proportional to its atomic weight.


§7. GENERAL CONSIDERATIONS

In comparing the theory outlined in this paper with the experimental results, it has been supposed that the atom consists of a central charge supposed concentrated at a point, and that the large single deflexions of the α and β particles are mainly due to their passage through the strong central field. The effect of the equal and opposite compensation charge supposed distributed uniformly throughout a sphere has been neglected. Some of the evidence in support of these assumptions will now be briefly considered. For concreteness, consider the passage of   a high speed α particle through an atom having a positive central charge Ne, and surrounded by a compensating charge of N electrons. Remembering that the mass, momentum, and kinetic energy of the α particle are very large compared with the corresponding values of an electron in rapid motion, it does not seem possible from dynamic considerations that an α particle can be deflected through a large angle by a close approach to an electron, even if the latter be in rapid motion and constrained by strong electrical forces. It seems reasonable to suppose that the chance of single deflexions through a large angle due to this cause, if not zero, must be exceedingly small compared with that due to the central charge.

It is of interest to examine how far the experimental evidence throws light on the question of extent of the distribution of central charge. Suppose, for example, the central charge to be composed of N unit charges distributed over such a volume that the large single deflexions are mainly due to the constituent charges and not to the external field produced by the distribution. It has been shown (§ 3) that the fraction of the α particles scattered through a large angle is proportional to (NeE)2, where Ne is the central charge concentrated at a point and E the charge on the deflected particles, If, however, this charge is distributed in single units, the fraction of the α particles scattered through a given angle is proportional of Ne2 instead of N2e2. In this calculation, the influence of mass of the constituent particle has been neglected, and account has only been taken of its electric field. Since it has been shown that the value of the central point charge for gold must be about 100, the value of the distributed charge required to produce the same proportion of single deflexions through a large angle should be at least 10,000. Under these conditions the mass of the constituent particle would be small compared with that of the α particle, and the difficulty arises of the production of large single deflexions at all. In addition, with such a large distributed charge, the effect of compound scattering is relatively more important than that of single scattering. For example, the probable small angle of deflexion of pencil of α particles passing through a thin gold  foil would be much greater than that experimentally observed by Geiger (§ b–c). The large and small angle scattering could not then be explained by the assumption of a central charge of the same value. Considering the evidence as a whole, it seems simplest to suppose that the atom contains a central charge distributed through a very small volume, and that the large single deflexions are due to the central charge as a whole, and not to its constituents. At the same time, the experimental evidence is not precise enough to negative the possibility that a small fraction of the positive charge may be carried by satellites extending some distance from the centre. Evidence on this point could be obtained by examining whether the same central charge is required to explain the large single deflexions of α and β particles; for the α particle must approach much closer to the center of the atom than the β particle of average speed to suffer the same large deflexion.

The general data available indicate that the value of this central charge for different atoms is approximately proportional to their atomic weights, at any rate of atoms heavier than aluminium. It will be of great interest to examine experimentally whether such a simple relation holds also for the lighter atoms. In cases where the mass of the deflecting atom (for example, hydrogen, helium, lithium) is not very different from that of the α particle, the general theory of single scattering will require modification, for it is necessary to take into account the movements of the atom itself (see § 4).

It is of interest to note that Nagaokaap has mathematically considered the properties of the Saturnian atom which he supposed to consist of a central attracting mass surrounded by rings of rotating electrons. He showed that such a system was stable if the attracting force was large. From the point of view considered in his paper, the chance of large deflexion would practically be unaltered, whether the atom is considered to be disk or a sphere. It may be remarked that the approximate value found for the central charge of the atom of gold (100 e) is about that to be expected if the atom of gold consisted of 49 atoms of   helium, each carrying a charge of 2 e. This may be only a coincidence, but it is certainly suggestive in view of the expulsion of helium atoms carrying two unit charges from radioactive matter.

The deductions from the theory so far considered are independent of the sign of the central charge, and it has not so far been found possible to obtain definite evidence to determine whether it be positive or negative. It may be possible to settle the question of sign by consideration of the difference of the laws of absorption of the β particles to be expected on the two hypothesis, for the effect of radiation in reducing the velocity of the β particle should be far more marked with a positive than with a negative center. If the central charge be positive, it is easily seen that a positively charged mass if released from the center of a heavy atom, would acquire a great velocity in moving through the electric field. It may be possible in this way to account for the high velocity of expulsion of α particles without supposing that they are initially in rapid motion within the atom.

Further consideration of the application of this theory to these and other questions will be reserved for a later paper, when the main deductions of the theory have been tested experimentally. Experiments in this direction are already in progress by Geiger and Marsden.
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In order to explain the results of experiments on scattering of α rays by matter Prof. Rutherfordar has given a theory of the structure of atoms. According to this theory, the atoms consist of a positively charged nucleus surrounded by a system of electrons kept together by attractive forces from the nucleus; the total negative charge of the electrons is equal to the positive charge of the nucleus. Further, the nucleus is assumed to be the seat of the essential part of the mass of the atom, and to have linear dimensions exceedingly small compared with the linear dimensions of the whole atom. The number of electrons in an atom is deduced to be approximately equal to half the atomic weight. Great interest is to be attributed to this atom-model; for, as Rutherford has shown, the assumption of the existence of nuclei, as those in question, seems to be necessary in order to account for the results of the experiments on large angle scattering of the α raysas.

In an attempt to explain some of the properties of matter on the basis of this atom-model we meet however, with difficulties of a serious nature arising from the apparent instability of the system of electrons: difficulties purposely avoided in atom-models previously considered, for instance, in the one proposed by Sir J. J. Thomson.at According to the theory of the latter the atom consists of a sphere of uniform positive electrification, inside which the electrons move in circular orbits.

The principal difference between the atom-models proposed by Thomson and Rutherford consists in the circumstance the forces acting on the electrons in the atom-model of Thomson allow of certain configurations and motions of the electrons for which the system is in a stable equilibrium; such configurations, however, apparently do not exist for the second atom-model. The nature of the difference in question will perhaps be most clearly seen by noticing that among the quantities characterizing the first atom a quantity appears—the radius of the positive sphere—of dimensions of a length and of the same order of magnitude as the linear extension of the atom, while such a length does not appear among the quantities characterizing the second atom, viz. the charges and masses of the electrons and the positive nucleus; nor can it be determined solely by help of the latter quantities.

The way of considering a problem of this kind has, however, undergone essential alterations in recent years owing to the development of the theory of the energy radiation, and the direct affirmation of the new assumptions introduced in this theory, found by experiments on very different phenomena such as specific heats, photoelectric effect, RÃ¶ntgen &c. The result of the discussion of these questions seems to be a general acknowledgment of the inadequacy of the classical electrodynamics in describing the behaviour of systems of atomic size.au Whatever the alteration in the laws of motion of the electrons may be, it seems necessary to introduce in the laws in question a quantity foreign to the classical electrodynamics, i.e. Planck’s constant, or as it often is called the elementary quantum of action. By the introduction of this quantity the question of the stable configuration of the electrons in the atoms is essentially changed as this constant is of such dimensions and magnitude that it, together with the mass and charge of the particles, can determine a length of the order of magnitude required.

This paper is an attempt to show that the application of the above ideas to Rutherford’s atom-model affords a basis for a theory of the   constitution of atoms. It will further be shown that from this theory we are led to a theory of the constitution of molecules.

In the present first part of the paper the mechanism of the binding of electrons by a positive nucleus is discussed in relation to Planck’s theory. It will be shown that it is possible from the point of view taken to account in a simple way for the law of the line spectrum of hydrogen. Further, reasons are given for a principal hypothesis on which the considerations contained in the following parts are based.

I wish here to express my thanks to Prof. Rutherford his kind and encouraging interest in this work.




PART I: BINDING OF ELECTRONS BY POSITIVE NUCLEI 


Â§ 1. GENERAL CONSIDERATIONS

The inadequacy of the classical electrodynamics in accounting for the properties of atoms from an atom-model as Rutherford’s, will appear very clearly if we consider a simple system consisting of a positively charged nucleus of very small dimensions and an electron describing closed orbits around it. For simplicity, let us assume that the mass of the electron is negligibly small in comparison with that of the nucleus, and further, that the velocity of the electron is small compared with that of light.

Let us at first assume that there is no energy radiation. In this case the electron will describe stationary elliptical orbits. The frequency of revolution ω and the major-axis of the orbit 2a will depend on the amount of energy w which must be transferred to the system in order to remove the electron to an infinitely great distance apart from the nucleus. Denoting the charge of the electron and of the nucleus by −e and E respectively and the mass of the electron by m we thus get 





(1)

[image: 118]



Further, it can easily be shown that the mean value of the kinetic energy of the electron taken for a whole revolution is equal to W. We see that if the value of W is not given there will be no values of ω and a characteristic for the system in question.

Let us now, however, take the effect of the energy radiation into account, calculated in the ordinary way from the acceleration of the electron. In this case the electron will no longer describe stationary orbits. W will continuously increase, and the electron will approach the nucleus describing orbits of smaller and smaller dimensions, and with greater and greater frequency; the electron on the average gaining in kinetic energy at the same time as the whole system loses energy.  This process will go on until the dimensions of the orbit are of the same order of magnitude as the dimensions of the electron or those of the nucleus. A simple calculation shows that the energy radiated out during the process considered will be enormously great compared with that radiated out by ordinary molecular processes.

It is obvious that the behaviour of such a system will be very different from that of an atomic system occurring in nature. In the first place, the actual atoms in their permanent state seem to have absolutely fixed dimensions and frequencies. Further, if we consider any molecular process, the result seems always to be that after a certain amount of energy characteristic for the systems in question is radiated out, the systems will again settle down in a stable state of equilibrium, in which the distances apart of the particles are of the same order of magnitude as before the process.

Now the essential point in Planck’s theory of radiation is that the energy radiation from an atomic system does not take place in the continuous way assumed in the ordinary electrodynamics, but that it, on the contrary, takes place in distinctly separated emissions, the amount of energy radiated out from an atomic vibrator of frequency ν in a single emission being equal to τhν where τ is an entire number, and h is a universal constantav.

Returning to the simple case of an electron and a positive nucleus considered above, let us assume that the electron at the beginning of the interaction with the nucleus was at a great distance apart from the nucleus, and bad no sensible velocity relative to the latter. Let us further assume that the electron after the interaction has taken place has settled down in a stationary orbit around the nucleus. We shall, for reasons referred to later, assume that the orbit in question is circular; this assumption will, however, make no alteration in the calculations for systems containing only a single electron.

Let us now assume that, during the binding of the electron, a homogeneous radiation is emitted of a frequency ν, equal to half the   frequency of revolution of the electron in its final orbit; then, from Planck’s theory, we might expect, that the amount of energy emitted by the process considered is equal to τhν, where h is Planck’s constant and τ an entire number. If we assume that the radiation emitted is homogeneous, the second assumption concerning the frequency of the radiation suggests itself, since the frequency of revolution of the electron at the beginning of the emission is 0. The question, however, of the rigorous validity of both assumptions, and also of the application made of Planck’s* theory will be more closely discussed in Â§ 3.

Putting 





(2)
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we can by help of the formula (1)[image: 120]



If in these expressions we give τ different values we get -a series of values for W, ω, and a corresponding to a series of configurations of the system. According to the above considerations, we are led to assume that these configurations will correspond to states of the system in which there is no radiation of energy states which consequently will be stationary as long as the system is not disturbed from outside. We see that the value of W′ is greatest if τ has its smallest value 1. This case will therefore correspond to the most stable state of the system, i.e. will correspond to the binding of the electron for the breaking up of which the greatest amount of energy is required.

Putting in the above expressions τ = l and E = e, and introducing the experimental values

e = 4.7 × 10Â−10, e/m = 5.31 × 1017, h = 6.5 × 10 Â−27




we get
2a = 1.1 × 10 Â−8 cm., ω = 6.2 × 1015 sec Â−1, W/e = 13 volt.






We see that these values are of the same order of magnitude as the linear dimensions of the atoms, the optical frequencies, and the ionization-potentials.

The general importance of Planck’s theory for the discussion of the behaviour of atomic systems was originally pointed out by Einsteinaw. The considerations of Einstein have been developed and applied on a number of different phenomena, especially by Stark, Nernst, and Sommerfield [sic]. The agreement as to the order of magnitude between values observed for the frequencies and dimensions of the atoms, and values for these quantities calculated by considerations similar to those given above, has been the subject of much discussion. It was first pointed out by Haasax, in an attempt to explain the meaning and the value of Planck’s constant on the basis of J.J. Thomson’s atom-model by help of the linear dimensions and frequency of an hydrogen atom.

Systems of the kind considered in this paper, in which the forces between the particles vary inversely as the square of the distance, are discussed in relation to Planck’s theory by J. W. Nicholsonay. In a series of papers this author has shown that it seems to be possible to account for lines of hitherto unknown origin in the spectra of the stellar nebulae and that of the solar corona by assuming the presence in these bodies of certain hypothetical elements of exactly indicated constitution. The atoms of these elements are supposed to consist simply of a ring of a few electrons surrounding a positive nucleus of negligibly small dimensions. The ratios between the frequencies corresponding to the lines in question are compared with the ratios between the frequencies corresponding to different modes of vibration of the ring of electrons. Nicholson has obtained a relation to Planck’s theory showing that the ratios between the wave-length of different sets of lines of the coronal spectrum can be accounted for with great accuracy by assuming that the ratio between the energy of the system   and the frequency of rotation of the ring is equal to an entire multiple of Planck’s constant. The quantity Nicholson refers to as the energy is equal to twice the quantity which we have denoted above by W. In the latest paper cited Nicholson has found it necessary to give the theory a more complicated form, still, however, representing the ratio of energy to frequency by a simple function of whole numbers.

The excellent agreement between the calculated and observed values of the ratios between the wave-lengths in question seems a strong argument in favour of the validity of the foundation of Nicholson’s calculations.

These objections are intimately connected with the problem of the homogeneity of the radiation emitted. In Nicholson’s calculations the frequency of lines in a line-spectrum is identified with the frequency of vibration of a mechanical system, in a distinctly indicated state of equilibrium. As a relation from Planck’s theory is used, we might expect that the radiation is sent out in quanta; but systems like those considered, in which the frequency is a function of the energy, cannot emit a finite amount of a homogeneous radiation; for, as soon as the emission of radiation is started, the energy and also the frequency of the system are altered. Further, according to the calculation of Nicholson, the systems are unstable for some modes of vibration. Apart from such objections—which may be only formal—it must be remarked, that the theory in the form given does not seem to be able to account for the well-known laws of Miner and Rydberg connecting the frequencies of the lines in the line-spectra of the ordinary elements.

It will now be attempted to show that the difficulties in question disappear if we consider the problems from the point of view taken in this paper. Before proceeding it may be useful to restate briefly the ideas characterizing the calculations on p. 5. The principal assumptions used are:
(1) That the dynamical equilibrium of the systems in the stationary states can be discussed by help of the ordinary mechanics, while the passing of the systems between different stationary states cannot be treated on that basis.

(2) That the latter process is followed by the emission of a homogeneous radiation, for which the relation between the frequency and the amount of energy emitted is the one given by Planck’s theory.





The first assumption seems to present itself; for it is known that the ordinary mechanics cannot have an absolute validity, but will only hold in calculations of certain mean values of the motion of the electrons. On the other hand, in the calculations of the dynamical equilibrium in a stationary state in which there is no relative displacement of the particles, we need not distinguish between the actual motions and their mean values. The second assumption is in obvious contrast to the ordinary ideas of electrodynamics but appears to be necessary in order to account for experimental facts.

In the calculations on page 5 we further made use of the more special assumptions, viz. that the different stationary states correspond to the emission of a different number of Planck’s energy-quanta, and that the frequency of the radiation emitted during the passing of the system from a state in which no energy is yet radiated out to one of the stationary states, is equal to half the frequency of revolution of the electron in the latter state. We can, however (see Â§ 3), also arrive at the expressions (3) for the stationary states by using assumptions of somewhat different form. We shall, therefore, postpone the discussion of the special assumptions, and first show how by the help of the above principal assumptions, and of the expressions (3) for the stationary states, we can account for the line-spectrum of hydrogen.


Â§ 2. EMISSION OF LINE-SPECTRA.


Spectrum of Hydrogen.—General evidence indicates that an atom of hydrogen consists simply of a single electron rotating round a positive nucleus of charge eaz. The reformation of a hydrogen atom, when the electron has been removed to great distances away from the   nucleus—e.g. by the effect of electrical discharge in a vacuum tube—will accordingly correspond to the binding of an electron by a positive nucleus considered on p. 5. If in (3) we put E = e, we get for the total amount of energy radiated out by the formation of one of the stationary states,[image: 121]



The amount of energy emitted by the passing of the system from a state corresponding to τ = τ 1 to one corresponding to τ = τ2, is consequently[image: 122]



If now we suppose that the radiation in question is homogeneous, and that the amount of energy emitted is equal to hν, where ν is the frequency of the radiation, we get
Wτ2 − Wτ1 = hν,




and from this 





(3)
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We see that this expression accounts for the law connecting lines in the spectrum of hydrogen. If we put τ2 = 2 and let τ1 vary, we get the ordinary Balmer series. If we put τ2 = 3, we get the series in the ultra-red observed by Paschenba and previously suspected by Ritz. If we put τ2 = 1 and τ2 = 4, 5, . . . , we get series respectively in the extreme ultra-violet and the extreme ultra-red, which are not observed, but the existence of which may be expected.

The agreement in question is quantitative as well as qualitative. Putting

e = 4.7 × 10Â−10, e/m = 5.31 × 1017, h = 6.5 × 10 Â−27




  we get[image: 124]



The observed value for the factor outside the bracket in the formula (4) is
3.290 × 1015.






The agreement between the theoretical and observed values is inside the uncertainty due to experimental errors in the constants entering in the expression for the theoretical value. We shall in Â§ 3 return to consider the possible importance of the agreement in question.

It may be remarked that the fact, that it has not been possible to observe more than 12 lines of the Balmer series in experiments with vacuum tubes, while 33 lines are observed in the spectra of some celestial bodies, is just what we should expect from the above theory. According to the equation (3) the diameter of the orbit of the electron in the different stationary states is proportional to τ2. For τ = 12 the diameter is equal to 1.6 × 10Â−6 cm., or equal to the mean distance between the molecules in a gas at a pressure of about 7 mm. mercury; for τ = 33 the diameter is equal to 1.2 × 10Â−5 cm., corresponding to the mean distance of the molecules at a pressure of about 0.02 mm. mercury. According to the theory the necessary condition for the appearance of a great number of lines is therefore a very small density of the gas; for simultaneously to obtain an intensity sufficient for observation the space filled with the gas must be very great. If the theory is right, we may therefore never expect to be able in experiments with vacuum tubes to observe the lines corresponding to high numbers of the Balmer series of the emission spectrum of hydrogen; it might, however, be possible to observe the lines by investigation of the absorption spectrum of this gas (see Â§ 4).

It will be observed that we in the above way do not obtain other series of lines, generally ascribed to hydrogen; for instance, the series first observed by Pickeringbb in the spectrum of the star ζ Puppis,   and the set of series recently found by Fowlerbc by experiments with vacuum tubes containing a mixture of hydrogen and helium. We shall, however, see that, by help of the above theory, we can account naturally for these series of lines if we ascribe them to helium.

A neutral atom of the latter element consists. according to Rutherford’s theory, of a positive nucleus of charge 2e and two electrons. Now considering the binding of a single electron by a helium nucleus, we get, putting E = 2e in the expressions (3) on page 5, and proceeding in exactly the same way as above,[image: 125]



If we in this formula put, τ2 = 1 or τ2 = 2, we get series of lines in the extreme ultra-violet. If we put τ2 = 3, and let τ1 vary, we get a series which includes 2 of the series observed by Fowler, and denoted by him as the first and second principal series of the hydrogen spectrum. If we put τ2 = 4, we get the series observed by Pickering in the spectrum of ζ Puppis. Every second of the lines in this series is identical with a line in the Balmer series of the hydrogen spectrum; the presence of hydrogen in the star in question may therefore account for the fact that these lines are of a greater intensity than the rest of the lines in the series. The series is also observed in the experiments of Fowler, and denoted in his paper as the Sharp series of the hydrogen spectrum. If we finally in the above formula put τ2 = 5, 6, . . . , we get series, the strong lines of which are to be expected in the ultra-red.

The reason why the spectrum considered is not observed in ordinary helium tubes may be that in such tubes the ionization not so complete as in the star considered or in the experiments of Fowler, where a strong discharge was sent through a mixture of hydrogen and helium. The condition for the appearance of the spectrum is, according to the above theory, that helium atoms are present in a state in which they have lost both their electrons. Now we must assume the amount of energy to be used in removing the second electron from   a helium atom is much greater than that to be used in removing the first. Further, it is known from experiments on positive rays, that hydrogen atoms can acquire a negative charge; therefore the presence of hydrogen in the experiments of Fowler may effect that more electrons are removed from some of the helium atoms than would be the case if only helium were present.


Spectra of other substances.—In case of systems containing more electrons we must—in conformity with the result of experiments—expect more complicated laws for the line-spectra those considered. I shall try to show that the view taken above allows, at any rate, a certain understanding of the laws observed.

According to Rydberg’s theory—with the generalization given by Ritzbd—the frequency corresponding to the lines of the spectrum of an element call be expressed by

ν = Fr(τ1 minus Fs (τ2),




where τ1 and τ2 are entire numbers, and F1, F2, F2, . . . are functions of τ which approximately are equal to K/(τ + a1)2, K/(τ + a2)2, . . . K is a universal constant, equal to the factor outside the bracket in the formula (4) for the spectrum of hydrogen. The different series appear if we put τ1 or τ2 equal to a fixed number and let the other vary.

The circumstance that the frequency can be written as a difference between two functions of entire numbers suggests an origin of the lines in the spectra in question similar to the one we have assumed for hydrogen; i.e. that the lines correspond to a radiation emitted during the passing of the system between two different stationary states. For systems containing more than one electron the detailed discussion may be very complicated, as there will be many different configurations of the electrons which can be taken into consideration as stationary states. This may account for the different sets of series in the line spectra emitted from the substances in question. Here I shall only try to show how, by help of the theory, it can be simply explained   that the constant K entering in Rydberg’s formula is the same for all substances.

Let us assume that the spectrum in question corresponds to the radiation emitted during the binding of an electron; and let us further assume that the system including the electron considered is neutral. The force, on the electron, when at a great distance apart from the nucleus and the electrons previously bound, will be very nearly the same as in the above case of the binding of an electron by a hydrogen nucleus. The energy corresponding to one of the stationary states will therefore for τ great be very nearly equal to that given by the expression (3) on p. 5, if we put E = e. For τ great we consequently get[image: 126]

in conformity with Rydberg’s theory.


Â§ 3. GENERAL CONSIDERATIONS CONTINUED

We shall now return to the discussion (see p. 7) of the special assumptions used in deducing the expressions (3) on p. 5 for the stationary states of a system consisting of an electron rotating round a nucleus.

For one, we have assumed that the different stationary states correspond to an emission of a different number of energy-quanta. Considering systems in which the frequency is a function of the energy, this assumption, however, may be regarded as improbable; for as soon as one quantum is sent out the frequency is altered. We shall now see that we can leave the assumption used and still retain the equation (2) on p. 5, and thereby the formal analogy with Planck’s theory.

Firstly, it will be observed that it has not been necessary, in order to account for the law of the spectra by help of the expressions (3) for the stationary states, to assume that in any case a radiation is sent out corresponding to more than a single energy-quantum, hν. Further information on the frequency of the radiation may be obtained by comparing calculations of the energy radiation in the region of slow vibrations based on the above assumptions with calculations based  on the ordinary mechanics. As is known, calculations on the latter basis are in agreement with experiments on the energy radiation in the named region.

Let us assume that the ratio between the total amount of energy emitted and the frequency of revolution of the electron for the different stationary states is given by the equation W = f(τ) · hν, instead of by the equation (2). Proceeding in the same way as above we get in this case instead of (3)[image: 127]



Assuming as above that the amount of energy emitted during the passing of the system from a state corresponding to τ = τ1 to one for which −r = −r2 is equal to hν, we get instead of (4)[image: 128]



We see that in order to get an expression of the same form as the Balmer series we must put f(τ) = cτ.

In order to determine c let us now consider the passing of the system between two successive stationary states, corresponding to τ = N and τ = N − 1; introducing f(τ) = cτ, we get for the frequency of the radiation emitted[image: 129]



For the frequency of revolution of the electron before and after the emission we have[image: 130]



If N is great the ratio between the frequency before and after the emission will be very near equal to 1; and according to the ordinary electrodynamics we should therefore expect that the ratio between the frequency of radiation and the frequency of revolution also is very nearly equal to 1. This condition will only be satisfied if c = 1/2.  Putting f(τ) = τ/2, we however, again arrive at the equation (2) and consequently at the expression (3) for the stationary states.

If we consider the passing of the system between two states corresponding to τ = N and τ = N − n, where n is small compared with N, we get with the same approximation as above putting f(τ) = τ/2,

ν = nω






The possibility of an emission of a radiation of such a frequency may also be interpreted from analogy with the ordinary elecrodynamics, as in electron rotating round a nucleus in an elliptical orbit will emit a radiation which according to Fourier’s theorem can be resolved into homogeneous components, the frequencies of which are nω, if ω is the frequency of revolution of the electron.

We are thus led to assume that the interpretation of the equation (2) is not that the different stationary states correspond to an emission of different numbers of energy-quanta, but that the frequency of the energy emitted during the passing of the system from a state in which no energy is yet radiated out to one of the different stationary states, is equal to different multiples of ω/2 where ω is the frequency of revolution of the electron in the state considered. From this assumption we get exactly the same expressions as before for the stationary states, and from these by help of the principal assumptions on p. 7 the same expression for the law of the hydrogen spectrum. Consequently we may regard our preliminary considerations on p. 5 only as a simple form of representing the results of the theory.

Before we leave the discussion of this question, we shall for a moment return to the question of the significance of the agreement between the observed and calculated values of the constant entering in the expressions (4) for the Balmer series of the hydrogen spectrum. From the above consideration it will follow that, taking the starting-point in the form of the law of the hydrogen spectrum and assuming that the different lines correspond to a homogeneous radiation emitted during the passing between different stationary states, we shall arrive at exactly the same expression for the constant in question as that  given by (4), if we only assume (1) that th, radiation is sent out in quanta hν and (2) that the frequency of the radiation emitted during the passing of the system between successive stationary states will coincide with the frequency of revolution of the electron in the region of slow vibrations.

As all the assumptions used in this latter way of representing the theory are of what we may call a qualitative character, we are justified in expecting—if the whole way of considering is a sound one—an absolute agreement between the values calculated and observed for the constant in question, and not only an approximate agreement. The formula (4) may therefore be of value in the discussion of the results of experimental determinations of the constants e, m, and h.

While, there obviously can be no question of a mechanical foundation of the calculations given in this paper, it is, however possible to give a very simple interpretation of the result of the calculation on p. 5 by help of symbols taken from the mechanics. Denoting the angular momentum of the electron round the nucleus by M, we have immediately for a circular orbit πM = T/ω where ω is the frequency of revolution and T the kinetic energy of the electron; for a circular orbit we further have T = W (see p. 3) and from (2), p. 5 we consequently get
M = τ Mo, where

 



Mo = h/2π = 1.04 × 10 Â−27






If we therefore assume that the orbit of the electron in the stationary states is circular, the result of the calculation on p. 5 can be expressed by the simple condition: that the angular momentum of the electron round the nucleus in a stationary state of the system is equal to an entire multiple of a universal value, independent of the charge on the nucleus. The possible importance of the angular momentum in the discussion of atomic systems in relation to Planck’s theory is emphasized by Nicholsonbe.

The great number of different stationary states we do not observe except by investigation of the emission and absorption of radiation. In most of the other physical phenomena, however, we only observe the atoms of the matter in a single distinct, state, i.e. the state of the atoms at low temperature. From the preceding considerations we are immediately led to the assumption that the “permanent” state is the one among the stationary states during the formation of which the greatest amount of energy is emitted. According to the equation (3) on p. 5, this state is the one corresponds to τ = 1.


Â§ 4. ABSORPTION OF RADIATION

In order to account for Kirchhoff’s law it is necessary to introduce assumptions on the mechanism of absorption of radiation hich correspond to those we have used considering the emission. Thus we must assume that a system consisting of a nucleus and in electron rotating round it under certain circumstances can absorb a radiation of a frequency equal to the frequency of the homogeneous radiation emitted during the passing of the system between different stationary states. Let us consider the radiation emitted during the passing of the system between two stationary states A1 and A2 corresponding to values for τ equal to τ1 and τ2, τ1 > τ2. As the necessary condition for an emission of the radiation in question was the presence of systems in the state A1, we must assume that the necessary condition for an absorption of the radiation is the presence of systems in the state A2.

These considerations seem to be in conformity with experiments on absorption in gases. In hydrogen gas at ordinary conditions for instance there is no absorption of a radiation of a frequency corresponding to the line-spectrum of this gas; such an absorption is only observed in hydrogen gas in a luminous state. This is what we should expect according to the above. We have on p. 9 assumed that the radiation in question was emitted during the passing of the systems between stationary states corresponding to τ [greater than or equal to] 2. The state of the atoms in hydrogen gas at ordinary conditions  should, however, correspond to τ = 1; furthermore, hydrogen atoms at ordinary conditions combine into molecules, i.e. into systems in which the electrons have frequencies different from those in the atoms (see Part III.). From the circumstance that certain substances in a non-luminous state, as, for instance, sodium vapour, absorb radiation corresponding to lines in the line-spectra of the substances, we may, on the other hand, conclude that the lines in question are emitted during the passing of the system between two states, one of which is the permanent state.

How much the above considerations differ from an interpretation based on the ordinary electrodynamics is perhaps most clearly shown by the fact that we have been forced to assume that a system of electrons will absorb a radiation of a frequency different from the frequency of vibration of the electrons calculated in the ordinary way. It may in this connexion be of interest to mention a generalization of the considerations to which we are led by experiments on the photo-electric effect, and which may be able to throw some light on the problem in question. Let us consider a state of the system in which the electron is free, i.e. in which the electron possesses kinetic energy sufficient to remove to infinite distances from the nucleus. If we assume that the motion of the electron is governed by the ordinary mechanics and that there is no (sensible) energy radiation, the total energy of the system—as in the above considered stationary states will be constant. Further, there will be perfect continuity between the two kinds of states, as the difference between frequency and dimensions of the systems in successive stationary states will diminish without limit if τ increases. In the following considerations we shall for the sake of brevity refer to the two kinds of states in question as “mechanical,” states; by this notation only emphasizing the assumption that the motion of the electron in both cases can be accounted for by the ordinary mechanics.

Tracing the analogy between the two kinds of mechanical states, we might now expect the possibility of an absorption of radiation, not  only corresponding to the passing of the system between two different stationary states, but also corresponding to the passing between one of the stationary states and a state in which the electron is free; and as above, we might expect that the frequency of this radiation was determined by the equation E = hν, where E is the difference between the total energy of the system in the two states. As it will be seen, such an absorption of radiation is just what is observed in experiments on ionization by ultra-violet light and by RÃ¶ntgen rays. Obviously, we get in this way the same expression for the kinetic energy of an electron ejected from an atom by photo-electric effect as that deduced by Einsteinbf, i.e. T = hν − W, where T is the kinetic energy of the electron ejected, and W the total amount of energy emitted during the original binding of the electron.

The above considerations may further account for the result of some experiments of R.W. Woodbg on absorption of light by sodium vapour. In these experiments, an absorption corresponding to a very great number of lines in the principal series of the sodium spectrum is observed, and in addition a continuous absorption which begins at the head of the series and extends to the extreme ultra-violet. This is exactly what we should expect according to the analogy in question, and, as we shall see, a closer consideration of the above experiments allows us to trace the analogy still further. As mentioned on p. 9 the radii of the orbits of the electrons will for stationary states corresponding to high values for τ be very great compared with ordinary atomic dimensions. This circumstance was used as an explanation of the non-appearance in experiments with vacuum-tubes of lines corresponding to the higher numbers in the Balmer series of the hydrogen spectrum. This is also in conformity with experiments on the emission spectrum of sodium; in the principal series of the emission spectrum of this substance rather few lines are observed. Now in Wood’s experiments the pressure was not very low, and the states corresponding to high values for τ could therefore not appear; yet in the absorption spectrum about 50   lines were detected. In the experiments in question we consequently observe an absorption of radiation which is not accompanied by a complete transition between two different stationary states. According to the present theory we must assume that this absorption is followed by an emission of energy during which the systems pass back to tile original stationary state. If there are no collisions between the different systems this energy will be emitted as a radiation of the same frequency as that absorbed, and there will be no true absorption but only a scattering of the original radiation; a true absorption will not occur unless the energy in question is transformed by collisions into kinetic energy of free particles. In analogy we may now from the above experiments conclude that a bound electron—also in cases in which there is no ionization—will have an absorbing (scattering) influence on a homogeneous radiation, as soon as the frequency of the radiation is greater than W/h, where W is the total amount of energy emitted during the binding of the electron. This would be highly in favour of a theory of absorption as the one sketched above, as there can in such a case be no question of a coincidence of the frequency of the radiation and a characteristic frequency of vibration of the electron. It will further be seen that the assumption, that there will be an absorption (scattering) of any radiation corresponding to a transition between two different mechanical states, is in perfect analogy with the assumption generally used that a free electron will have an absorbing (scattering) influence on light of any frequency. Corresponding considerations will hold for the emission of radiation.

In analogy to the assumption used in this paper that the emission of line-spectra is due to the re-formation of atoms after one or more of the lightly bound electrons are removed, we may assume that the homogeneous RÃ¶ntgen radiation is emitted during the settling down of the systems after one of the firmly bound electrons escapes, e.g. by impact of cathode particlesbh. In the next part of this paper, dealing with the constitution of atoms, we shall consider the question more   closely and try to show that a calculation based on this assumption is in quantitative agreement with the results of experiments: here we shall only mention briefly a problem with which we meet in such a calculation.

Experiments on the phenomena of X-rays suggest that not only the emission and absorption of radiation cannot be treated by the help of the ordinary electrodynamics, but not even the result of a collision between two electrons of which the one is bound in an atom. This is perhaps most clearly shown by some very instructive calculations on the energy of β-particles emitted from radioactive substances recently published by Rutherfordbi. These calculations strongly suggest that an electron of great velocity in passing through an atom and colliding with the electrons bound will loose energy in distinct finite quanta. As is immediately seen, this is very different from what we might expect if the result of the collisions was governed by the usual mechanical laws. The failure of the classical mechanics in such a problem might also be expected beforehand from the absence of anything like equipartition of kinetic energy between free electrons and electrons bound in atoms. From the point of view of the “mechanical” states we see, however, that the following assumption—which is in accord with the above analogy—might be able to account for the result of Rutherford calculation and for the absence of equipartition of kinetic energy: two colliding electrons, bound or free, will, after the collision as well as before, be in mechanical states. Obviously, the introduction of such an assumption would not make any alteration necessary in the classical treatment of a collision between two free particles. But, considering a collision between a free and a bound electron, it would follow that the bound electron by the collision could not acquire a less amount of energy than the difference in energy corresponding to successive stationary states, and consequently that the free electron which collides with it could not lose a less amount.

The preliminary and hypothetical character of the above considerations needs not to be emphasized. The intention, however, has been to show that the sketched generalization of the theory of the stationary states possibly may afford a simple basis of representing a number of experimental facts which cannot be explained by help of the ordinary electrodynamics, and that the assumptions used do not seen, to be inconsistent with experiments on phenomena for which a satisfactory explanation has been given by the classical dynamics and the wave theory of light.


Â§ 5. THE PERMANENT STATE OF AN ATOMIC SYSTEM

We shall now return to the main object of this paper—the discussion of the “permanent” state of a system consisting of nuclei and bound electrons. For a system consisting of a nucleus and an electron rotating round it, this state is, according to the above, determined by the condition that the angular momentum of the electron round the nucleus is equal to h/2π.

On the theory of this paper the only neutral atom which contains a single electron is the hydrogen atom. The permanent state of this atom should correspond to the values of a and ω calculated on p. 5. Unfortunately, however, we know very little of the behavior of hydrogen atoms on account of the small dissociation of hydrogen molecules at ordinary temperatures. In order to get a closer comparison with experiments, it is necessary to consider more complicated systems.

Considering systems in which more electrons are bound by a positive nucleus, a configuration of the elections which presents itself as a permanent state is one in which the electrons are arranged in a ring round the nucleus. In the discussion of this problem on the basis of the ordinary electrodynamics, we meet—apart from the question of the energy radiation—with new difficulties due to the question of the stability of the ring. Disregarding for a moment this latter difficulty, we shall first consider the dimensions and frequency of the systems in relation to Planck’s theory of radiation.

Let us consider a ring consisting of n electrons rotating round a nucleus of charge E, the electrons being arranged at equal angular intervals around the circumference of a circle of radius a.

The total potential energy of the system consisting of the electrons and the nucleus is

 



where

 



For the radial force exerted on an electron by the nucleus and the other electrons we get.

Denoting the kinetic energy of an electron by T and neglecting the electromagnetic forces due to the motion of the electrons (see Part II), we get, putting the centrifugal force on an electron equal to the radial force,

 



or

 



From this we get for the frequency of revolution

The total amount of energy W necessary transferred to the system in order to remove the electrons to infinite distances apart from the nucleus and from each other is equal to the total kinetic energy of the electrons.

We see that the only difference in the above formula and those holding for the motion of a single electron in a circular orbit round a nucleus is the exchange of E for E—esn. It is also immediately seen that corresponding to the motion of an electron in an elliptical orbit round a nucleus, there will be a motion of the n electrons in which each rotates in an elliptical orbit with the nucleus in the focus, and the n electrons at any moment are situated at equal angular intervals on a circle with the nucleus as the center. The major axis and frequency of the orbit of the single electrons will for this motion be given by the expressions (1) on p. 3 if we replace E by E—esn and W by W/n.


Let us now suppose that the system of n electrons rotating in a ring round a nucleus is formed in a way analogous to the one assumed for a single electron rotating round a nucleus. It will thus be  assumed that the electrons, before the binding by the nucleus, were at a great distance apart from the latter and possessed no sensible velocities, and also that during the binding a homogeneous radiation is emitted. As in the case of a single electron, we have here that the total amount of energy emitted during the formation of the system is equal to the final kinetic energy of the electrons. If we now suppose that during the formation of the system the electrons at any moment are situated at equal angular intervals on the circumference of a circle with the nucleus in the centre, from analogy with the considerations on p. 5 we are here led to assume the existence of a series of stationary configurations in which the kinetic energy per electron is equal to τh (ω/2), where τ is an entire number, h Planck’s constant, and ω the frequency of revolution. The configuration in which the greatest amount of energy is emitted is, as before, the one in which τ = 1. This configuration we shall assume to be the permanent state of the system if the electrons in this state are arranged in a single ring. As for the case of a single electron, we get that the angular momentum of each of the electrons is equal to h/2π. It may be remarked that instead of considering the single electrons we might have considered the ring as an entity. This would, however, lead to the same result, for in this case the frequency of revolution ω will be replaced by the frequency nω of the radiation from the whole ring calculated from the ordinary electrodynamics, and T by the total kinetic energy nT.

There may be many other stationary states corresponding to other ways of forming the system. The assumption of the existence of such states seems necessary in order to account for the line-spectra of systems containing more than one electron (p. 11); it is also suggested by the theory of Nicholson mentioned on p. 6, to which we shall return in a moment. The consideration of the spectra, however, gives, as far as I can see, no indication of the existence of stationary states in which all the electrons are arranged in a ring and which correspond to greater values for the total energy emmitted than the one we above have assumed to be the permanent state.

Further, there may be stationary configurations of a system of n electrons and a nucleus of charge E in which all the electrons are not arranged in a single ring. The question, however, of the existence of such stationary configurations is not essential for our determination of the permanent state, as long as we assume that the electrons in this state of the system are arranged in a single ring. Systems corresponding to more complicated figurations will be discussed on p. 24.

Using the relation T = h(ω/2) we get, by help of the above expressions for T and ω, values for a and ω corresponding to the permanent state of the system which only differ from those given by the equations (3) on p. 5, by exchange of E for E—esn.

The question of stability of a ring of electrons rotating round a positive charge is discussed in great detail by Sir J.J. Thomsonbj. An adaption of Thomson’s analysis for the case here considered of a ring rotating around a nucleus of negligibly small linear dimensions is given by Nicholsonbk. The investigation of the problem in question naturally divides in two parts: one concerning the stability for displacements of the electrons in the plane of the ring; one concerning displacements perpendicular to this plane. As Nicholson’s calculations show, the answer to the question of stability differs very much in the two cases in question. While the ring for the latter displacements in general is stable if the number of electrons is not great; the ring is in no case considered by Nicholson stable for displacements of the first kind.

According, however, to the point of view taken in this paper, the question of stability for displacements of the electrons in the plane of the ring is most intimately connected with the question of the mechanism of the binding of the electrons, and like the latter cannot be treated on the basis of the ordinary dynamics. The hypothesis of which we shall make use in the following is that the stability of a ring of electrons rotating round a nucleus is secured through the above condition of the universal constancy of the angular momentum, together with the further condition that the configuration of the  
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