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        Introduction to the Electronic Editions
        

         
        
      
        
This e-book edition of The Feynman Lectures on Physics New Millennium Edition derives from the free-to-read online version at www.feynmanlectures.caltech.edu, which in turn derives from the LATEX manuscript used to print the books. Certain adaptations have been made to accommodate the displays of typical e-readers, including narrowing wide equations and tables, and splitting figures into parts for reflowability.



        
The typographical limitations of today’s popular e-book formats are especially evident in science and mathematics texts in which mathematical expressions, formulas and equations clash with the text or degrade when scaled. We consider this unacceptable for The Feynman Lectures on Physics, and so we have created a new kind of e-book especially for this edition – one which seamlessly integrates text, mathematics, figures and tables. 



        
Whenever technically feasible, mathematics are presented using HTML and stylesheet formatting; otherwise, vectorized images are used. Great effort has been put into making the mathematical typography rendered by these two different methods indistinguishable. Vectorized images are used for tables and line-drawn figures so that they also scale without degradation, uniformly with the text and mathematics. 



        
The lasting popularity of The Feynman Lectures on Physics, now more than fifty years in print, stands out as a testament to both the continued relevance of its subject matter and the enthusiastic spirit in which it is presented. It is our sincere hope that the electronic editions of Feynman’s lectures will make them even more accessible, so they may be more widely and better appreciated, and serve as an inspiration and guide to bright eager minds throughout the world, far into the future.




Michael A. Gottlieb, Editor

Rudolf Pfeiffer, Editor

Lars I. Næsheim, Ebook Producer


June 19, 2015
       




        
        
	
        

        

  
    
      
        
        
        About the Authors
        

         
        
        
        Richard Feynman
        

      
        
		
        Born in 1918 in New York City, Richard P. Feynman received his Ph.D from Princeton in 1942.
        Despite his youth, he played an important part in the Manhattan Project at Los Alamos during World
        War II. Subsequently, he taught at Cornell and at the California Institute of Technology. In 1965
        he received the Nobel Prize in Physics, along with Sin-Itiro Tomonaga and Julian Schwinger,
        for his work in quantum electrodynamics.
		

        

        
        
        
		
        Dr. Feynman won his Nobel Prize for successfully resolving problems with the theory of quantum
        electrodynamics. He also created a mathematical theory that accounts for the phenomenon of
        superfluidity in liquid helium. Thereafter, with Murray Gell-Mann, he did fundamental work in the
        area of weak interactions such as beta decay. In later years Feynman played a key role in the
        development of quark theory by putting forward his parton model of high energy proton collision
        processes.
        

        

        
        
		
        Beyond these achievements, Dr. Feynman introduced basic new computational techniques and notations
        into physics—above all, the ubiquitous Feynman diagrams that, perhaps more than any other formalism
        in recent scientific history, have changed the way in which basic physical processes are conceptualized
        and calculated.
        

        

        
        
		
        Feynman was a remarkably effective educator. Of all his numerous awards, he was especially proud of
        the Oersted Medal for Teaching, which he won in 1972. The Feynman Lectures on Physics,
        originally published in 1963, were described by a reviewer in Scientific American as “tough, but
        nourishing and full of flavor. After 25 years it is the guide for teachers and for the best
        of beginning students.” In order to increase the understanding of physics among the lay public,
        Dr. Feynman wrote The Character of Physical Law and QED: The Strange Theory of Light and
        Matter. He also authored a number of advanced publications that have become classic references
        and textbooks for researchers and students.
        

		

		
        
		
        Richard Feynman was a constructive public man. His work on the Challenger commission is well known,
        especially his famous demonstration of the susceptibility of the O-rings to cold, an elegant experiment
        which required nothing more than a glass of ice water and a C-clamp. Less well known were
        Dr. Feynman's efforts on the California State Curriculum Committee in the 1960s, where he protested
        the mediocrity of textbooks.
        

		

		
        
		
        A recital of Richard Feynman's myriad scientific and educational accomplishments cannot adequately
        capture the essence of the man. As any reader of even his most technical publications knows, Feynman's
        lively and multi-sided personality shines through all his work. Besides being a physicist, he was at
        various times a repairer of radios, a picker of locks, an artist, a dancer, a bongo player, and even a
        decipherer of Mayan hieroglyphics. Perpetually curious about his world, he was an exemplary empiricist.
        

		

		
        
		
        Richard Feynman died on February 15, 1988, in Los Angeles.
        

		

        

        
        
        
        Robert Leighton
        

        
        
		
        Born in Detroit in 1919, Robert B. Leighton did ground-breaking work in solid state physics, cosmic ray physics, the beginnings of modern particle physics, solar physics, planetary photography, infrared astronomy, and millimeter- and submillimeter-wave astronomy over the course of his life. He was widely known for his innovative design of scientific instruments, and was deeply admired as a teacher, having authored a highly influential text, Principles of Modern Physics, before joining the team developing The Feynman Lectures on Physics.
        

		


        
		
        In the early 1950s Leighton played a key role in showing the mu-meson decays into two neutrinos and an electron, and  made the first measurement of the energy spectrum of the decay electron.  He was the first to observe strange particle decays after their initial discovery, and elucidated many of the properties of the new strange particles.
        

		


        
		
        In the mid-1950s Leighton devised Doppler-shift and Zeeman-effect solar cameras. With the Zeeman camera, Leighton and his students mapped the sun's magnetic field with excellent resolution, leading to striking discoveries of a five-minute oscillation in local solar surface velocities and of a “super-granulation pattern,” thus opening a new field: solar seismology. Leighton also designed and built equipment to make clearer images of the planets, and opened another new field: adaptive optics. His were considered the best images of the planets until the era of space exploration with probes began in the 1960s.
        

		


        
		
        In the early 1960s, Leighton developed a novel, inexpensive infrared telescope, producing the first survey of the sky at 2.2 microns, which revealed an unexpectedly large number of objects in our galaxy too cool to be seen with the human eye.  During the mid-1960s he was Team Leader at JPL for  Imaging Science Investigations on the Mariner 4, 6, and 7 missions to Mars. Leighton played a key role in the development of JPL's first deep-space digital television system, and contributed to early efforts at image processing and enhancement techniques.
        

		


        
		
        In the 1970s, Leighton's interest shifted to the development of large, inexpensive dish antennae that could be used to pursue millimeter-wave interferometry and submillimeter-wave astronomy. Once again, his remarkable experimental abilities opened a new field of science, which continues to be vigorously pursued at the Owens Valley Radio Observatory and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile.
        

		


        
		
        Robert Leighton died on March 9, 1997, in Pasadena, California.
        

		

        

        

        
        
        Matthew Sands
        

        
        
		
        Born in 1919 in Oxford, Massachusetts, Matthew Sands received his BA from Clark University in 1940 and his MA from Rice University in 1941. During World War II he served on the Manhattan Project at Los Alamos, working on electronics and instrumentation. After the war Sands helped found the Los Alamos Federation of Atomic Scientists, which lobbied against the further use of nuclear weapons. During that period he earned his Ph.D at MIT researching cosmic rays under Bruno Rossi.
        

		


        
		
        In 1950 Sands was recruited by Caltech to build and operate its 1.5 GeV electron synchrotron. He was the first to show, theoretically and experimentally, the importance of quantum effects in electron accelerators.
        

		


        
		
        From 1960 to 1966, Sands served on the Commission on College Physics, spearheading reforms in the Caltech undergraduate physics program that created The Feynman Lectures on Physics. During that time he also served as a consultant on nuclear weapons and disarmament to the President’s Science Advisory Committee, the Arms Control and Disarmament Agency, and the Department of Defense.
        

		


        
		
        In 1963 Sands became Deputy Director for construction and operation of the Stanford Linear Accelerator (SLAC), where he also worked on the Stanford Positron Electron Asymmetric Rings (SPEAR) 3 GeV collider.
        

		


        
		
        From 1969 to 1985 Sands was a physics professor at University of California, Santa Cruz, serving as its Vice Chancellor for Science from 1969 to 1972. He received a Distinguished Service Award from the American Association of Physics Teachers in 1972. As Professor Emeritus, he continued to be active in particle accelerator research until 1994. In 1998 the American Physical Society awarded Sands the Robert R. Wilson Prize “for his many contributions to accelerator physics and the development of electron-positron and proton colliders.”
        

		


        
		
        In his retirement Sands mentored local elementary and high school science teachers in Santa Cruz, helping them set up computer and laboratory activities for their students. He also supervised the editing of Feynman’s Tips on Physics, to which he contributed a memoir describing the creation of The Feynman Lectures on Physics.
        

		


        
		
        Matthew Sands died on September 13, 2014, in Santa Cruz, California.
        

		

        

        
        

   

  
    
        
        
        
        Preface to the New Millennium Edition
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		Nearly fifty years have passed since Richard Feynman taught the introductory
        physics course at Caltech that gave rise to these three volumes, The Feynman
        Lectures on Physics. In those fifty years our understanding of the physical
        world has changed greatly, but The Feynman Lectures on Physics has
        endured. Feynman’s lectures are as powerful today as when first published, thanks
        to Feynman’s unique physics insights and pedagogy. They have been studied
        worldwide by novices and mature physicists alike; they have been translated into
        at least a dozen languages with more than 1.5 millions copies printed in the
        English language alone. Perhaps no other set of physics books has had such wide
        impact, for so long.

        
        
        
		
        This New Millennium Edition ushers in a new era for The Feynman
        Lectures on Physics (FLP): the twenty-first century era of electronic
        publishing. FLP has been converted to eFLP, with the text and
        equations expressed in the LaTeX electronic typesetting language, and all figures
        redone using modern drawing software.

        
        
        
		
        The consequences for the print version of this edition are not
        startling; it looks almost the same as the original red books that physics
        students have known and loved for decades. The main differences are an expanded
        and improved index, the correction of 885 errata found by readers over the five
        years since the first printing of the previous edition, and the ease of
        correcting errata that future readers may find. To this I shall return
        below.

        
        
        
		
        The eBook Version of this edition, and the Enhanced Electronic
        Version are electronic innovations. By contrast with most eBook versions of
        20th century technical books, whose equations, figures and sometimes even text
        become pixellated when one tries to enlarge them, the LaTeX manuscript of the
        New Millennium Edition makes it possible to create eBooks of the highest
        quality, in which all features on the page (except photographs) can be enlarged
        without bound and retain their precise shapes and sharpness. And the Enhanced
        Electronic Version, with its audio and blackboard photos from Feynman’s
        original lectures, and its links to other resources, is an innovation that would
        have given Feynman great pleasure.
        
		

		

		
		
        Memories of Feynman’s Lectures

        
        
		
        These three volumes are a self-contained pedagogical treatise. They are also a
        historical record of Feynman’s 1961–64 undergraduate physics lectures, a course
        required of all Caltech freshmen and sophomores regardless of their majors.

        
        
        
		
        Readers may wonder, as I have, how Feynman’s lectures impacted the students who
        attended them. Feynman, in his Preface to these volumes, offered a somewhat
        negative view.  “I don’t think I did very well by the students,” he wrote.
        Matthew Sands, in his memoir in Feynman’s Tips on Physics expressed a far
        more positive view. Out of curiosity, in spring 2005 I emailed or talked to a
        quasi-random set of 17 students (out of about 150) from Feynman’s 1961–63
        class—some who had great difficulty with the class, and some who mastered it
        with ease; majors in biology, chemistry, engineering, geology, mathematics and
        astronomy, as well as in physics.

        
        
        
		
        The intervening years might have glazed their memories with a euphoric tint, but
        about 80 percent recall Feynman’s lectures as highlights of their college years.
        “It was like going to church.” The lectures were “a transformational
        experience,” “the experience of a lifetime, probably the most important thing I
        got from Caltech.” “I was a biology major but Feynman’s lectures stand out as a
        high point in my undergraduate experience … though I
        must admit I couldn’t do the homework at the time and I hardly turned any of it
        in.” “I was among the least promising of students in this course, and I never
        missed a lecture. … I remember and can still feel
        Feynman’s joy of discovery. … His lectures had an
        … emotional impact that was probably lost in the
        printed Lectures.”

        
        
        
		
        By contrast, several of the students have negative memories due largely to two
        issues: (i) “You couldn’t learn to work the homework problems by attending the
        lectures. Feynman was too slick—he knew tricks and what approximations could be
        made, and had intuition based on experience and genius that a beginning student
        does not possess.” Feynman and colleagues, aware of this flaw in the course,
        addressed it in part with materials that have been incorporated into Feynman’s
        Tips on Physics: three problem-solving lectures by Feynman, and a set of
        exercises and answers assembled by Robert B. Leighton and Rochus Vogt. (ii) “The
        insecurity of not knowing what was likely to be discussed in the next lecture,
        the lack of a text book or reference with any connection to the lecture material,
        and consequent inability for us to read ahead, were very frustrating. 
        …  I found the lectures exciting and understandable in the
        hall, but they were Sanskrit outside [when I tried to reconstruct the details].”
        This problem, of course, was solved by these three volumes, the printed version
        of The Feynman Lectures on Physics. They became the textbook from which
        Caltech students studied for many years thereafter, and they live on today as one
        of Feynman’s greatest legacies.

		

		

		
		
        A History of Errata

        
        
		
        The Feynman Lectures on Physics was produced very quickly by Feynman and
        his co-authors, Robert B. Leighton and Matthew Sands, working from and expanding
        on tape recordings and blackboard photos of Feynman’s course lectures1 (both of
        which are incorporated into the Enhanced Electronic Version of this New
        Millennium Edition). Given the high speed at which Feynman, Leighton and
        Sands worked, it was inevitable that many errors crept into the first edition.
        Feynman accumulated long lists of claimed errata over the subsequent
        years—errata found by students and faculty at Caltech and by readers around the
        world. In the 1960s and early ’70s, Feynman made time in his intense life to
        check most but not all of the claimed errata for Volumes I and II, and insert
        corrections into subsequent printings. But Feynman’s sense of duty never rose
        high enough above the excitement of discovering new things to make him deal with
        the errata in Volume III.2 After his untimely death in 1988,
        lists of errata for all three volumes were deposited in the Caltech Archives, and
        there they lay forgotten.

        
        
        
		
        In 2002 Ralph Leighton (son of the late Robert Leighton and compatriot of
        Feynman) informed me of the old errata and a new long list compiled by Ralph’s
        friend Michael Gottlieb. Leighton proposed that Caltech produce a new edition of
        The Feynman Lectures with all errata corrected, and publish it alongside a
        new volume of auxiliary material, Feynman’s Tips on Physics, which he and
        Gottlieb were preparing.

        
        
        
		
        Feynman was my hero and a close personal friend. When I saw the lists of errata
        and the content of the proposed new volume, I quickly agreed to oversee this
        project on behalf of Caltech (Feynman’s long-time academic home, to which he,
        Leighton and Sands had entrusted all rights and responsibilities for The
        Feynman Lectures). After a year and a half of meticulous work by Gottlieb,
        and careful scrutiny by Dr. Michael Hartl (an outstanding Caltech postdoc who
        vetted all errata plus the new volume), the 2005 Definitive Edition of The
        Feynman Lectures on Physics was born, with about 200 errata corrected and
        accompanied by Feynman’s Tips on Physics by Feynman, Gottlieb and
        Leighton.

        
        
        
		
        I thought that edition was going to be “Definitive”. What I did not
        anticipate was the enthusiastic response of readers around the world to an appeal
        from Gottlieb to identify further errata, and submit them via a website that
        Gottlieb created and continues to maintain, The Feynman Lectures Website,
        www.feynmanlectures.info.  In
        the five years since then, 965 new errata have been submitted and survived the
        meticulous scrutiny of Gottlieb, Hartl, and Nate Bode (an outstanding Caltech
        physics graduate student, who succeeded Hartl as Caltech’s vetter of errata). Of
        these, 965 vetted errata, 80 were corrected in the fourth printing of the
        Definitive Edition (August 2006) and the remaining 885 are corrected in
        the first printing of this New Millennium Edition (332 in volume I, 263 in
        volume II, and 200 in volume III). For details of the errata, see www.feynmanlectures.info.

        
        
        
		
        Clearly, making The Feynman Lectures on Physics error-free has become a
        world-wide community enterprise. On behalf of Caltech I thank the 50 readers who
        have contributed since 2005 and the many more who may contribute over the coming
        years. The names of all contributors are posted at www.feynmanlectures.info/flp_errata.html.

        
        
        
		
        Almost all the errata have been of three types: (i) typographical errors in
        prose; (ii) typographical and mathematical errors in equations, tables and
        figures—sign errors, incorrect numbers (e.g., a 5 that should be a 4), and
        missing subscripts, summation signs, parentheses and terms in equations; (iii)
        incorrect cross references to chapters, tables and figures. These kinds of
        errors, though not terribly serious to a mature physicist, can be frustrating and
        confusing to Feynman’s primary audience: students.

        
        
        
		
        It is remarkable that among the 1165 errata corrected under my auspices, only
        several do I regard as true errors in physics. An example is Volume II, page 5-9,
        which now says “…no static distribution of charges
        inside a closed grounded conductor can produce any [electric] fields
        outside” (the word grounded was omitted in previous editions). This error was
        pointed out to Feynman by a number of readers, including Beulah Elizabeth Cox, a
        student at The College of William and Mary, who had relied on Feynman’s erroneous
        passage in an exam. To Ms. Cox, Feynman wrote in 1975,3  “Your instructor was right
        not to give you any points, for your answer was wrong, as he demonstrated using
        Gauss’s law. You should, in science, believe logic and arguments, carefully
        drawn, and not authorities. You also read the book correctly and understood it. I
        made a mistake, so the book is wrong. I probably was thinking of a grounded
        conducting sphere, or else of the fact that moving the charges around in
        different places inside does not affect things on the outside. I am not sure how
        I did it, but I goofed. And you goofed, too, for believing me.”

		

		

		
		
        How this New Millennium Edition Came to Be

        
        
		
        Between November 2005 and July 2006, 340 errata were submitted to The Feynman
        Lectures Website www.feynmanlectures.info. Remarkably, the
        bulk of these came from one person: Dr. Rudolf Pfeiffer, then a physics
        postdoctoral fellow at the University of Vienna, Austria. The publisher, Addison
        Wesley, fixed 80 errata, but balked at fixing more because of cost: the books
        were being printed by a photo-offset process, working from photographic images of
        the pages from the 1960s. Correcting an error involved re-typesetting the entire
        page, and to ensure no new errors crept in, the page was re-typeset twice by two
        different people, then compared and proofread by several other people—a very
        costly process indeed, when hundreds of errata are involved.

        
        
        
		
        Gottlieb, Pfeiffer and Ralph Leighton were very unhappy about this, so they
        formulated a plan aimed at facilitating the repair of all errata, and also aimed
        at producing eBook and enhanced electronic versions of The Feynman Lectures on
        Physics. They proposed their plan to me, as Caltech’s representative, in
        2007. I was enthusiastic but cautious. After seeing further details, including a
        one-chapter demonstration of the Enhanced Electronic Version, I
        recommended that Caltech cooperate with Gottlieb, Pfeiffer and Leighton in the
        execution of their plan. The plan was approved by three successive chairs of
        Caltech’s Division of Physics, Mathematics and Astronomy—Tom Tombrello, Andrew
        Lange, and Tom Soifer—and the complex legal and contractual details were worked
        out by Caltech’s Intellectual Property Counsel, Adam Cochran. With the
        publication of this New Millennium Edition, the plan has been executed
        successfully, despite its complexity. Specifically:

        
        
        
		
        Pfeiffer and Gottlieb have converted into LaTeX all three volumes of FLP
        (and also more than 1000 exercises from the Feynman course for incorporation into
        Feynman’s Tips on Physics). The FLP figures were redrawn in modern
        electronic form in India, under guidance of the FLP German translator,
        Henning Heinze, for use in the German edition. Gottlieb and Pfeiffer traded
        non-exclusive use of their LaTeX equations in the German edition (published by
        Oldenbourg) for non-exclusive use of Heinze’s figures in this New
        Millennium English edition. Pfeiffer and Gottlieb have meticulously checked
        all the LaTeX text and equations and all the redrawn figures, and made
        corrections as needed. Nate Bode and I, on behalf of Caltech, have done spot
        checks of text, equations, and figures; and remarkably, we have found no errors.
        Pfeiffer and Gottlieb are unbelievably meticulous and accurate. Gottlieb and
        Pfeiffer arranged for John Sullivan at the Huntington Library to digitize the
        photos of Feynman’s 1962–64 blackboards, and for George Blood Audio to digitize
        the lecture tapes—with financial support and encouragement from Caltech
        Professor Carver Mead, logistical support from Caltech Archivist Shelley Erwin,
        and legal support from Cochran.

        
        
        
		
        The legal issues were serious: In the 1960s, Caltech licensed to Addison Wesley
        rights to publish the print edition, and in the 1990s, rights to distribute the
        audio of Feynman’s lectures and a variant of an electronic edition. In the 2000s,
        through a sequence of acquisitions of those licenses, the print rights were
        transferred to the Pearson publishing group, while rights to the audio and the
        electronic version were transferred to the Perseus publishing group. Cochran,
        with the aid of Ike Williams, an attorney who specializes in publishing,
        succeeded in uniting all of these rights with Perseus (Basic Books), making
        possible this New Millennium Edition.
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		These are the lectures in physics that I gave last year and the year before to
        the freshman and sophomore classes at Caltech. The lectures are, of course, not
        verbatim—they have been edited, sometimes extensively and sometimes less so.
        The lectures form only part of the complete course. The whole group of 180
        students gathered in a big lecture room twice a week to hear these lectures and
        then they broke up into small groups of 15 to 20 students in recitation sections
        under the guidance of a teaching assistant. In addition, there was a laboratory
        session once a week.
		

		

		
		
		The special problem we tried to get at with these lectures was to maintain the
        interest of the very enthusiastic and rather smart students coming out of the
        high schools and into Caltech. They have heard a lot about how interesting and
        exciting physics is—the theory of relativity, quantum mechanics, and other
        modern ideas. By the end of two years of our previous course, many would be very
        discouraged because there were really very few grand, new, modern ideas presented
        to them. They were made to study inclined planes, electrostatics, and so forth,
        and after two years it was quite stultifying. The problem was whether or not we
        could make a course which would save the more advanced and excited student by
        maintaining his enthusiasm.
		

		

		
		
		The lectures here are not in any way meant to be a survey course, but are very
        serious. I thought to address them to the most intelligent in the class and to
        make sure, if possible, that even the most intelligent student was unable to
        completely encompass everything that was in the lectures—by putting in
        suggestions of applications of the ideas and concepts in various directions
        outside the main line of attack. For this reason, though, I tried very hard to
        make all the statements as accurate as possible, to point out in every case where
        the equations and ideas fitted into the body of physics, and how—when they
        learned more—things would be modified. I also felt that for such students it is
        important to indicate what it is that they should—if they are sufficiently
        clever—be able to understand by deduction from what has been said before, and
        what is being put in as something new. When new ideas came in, I would try either
        to deduce them if they were deducible, or to explain that it was a
        new idea which hadn’t any basis in terms of things they had already learned and
        which was not supposed to be provable—but was just added in.
		

		

		
		
		At the start of these lectures, I assumed that the students knew something
        when they came out of high school—such things as geometrical optics, simple
        chemistry ideas, and so on. I also didn’t see that there was any reason to make
        the lectures in a definite order, in the sense that I would not be allowed to
        mention something until I was ready to discuss it in detail. There was a great
        deal of mention of things to come, without complete discussions. These more
        complete discussions would come later when the preparation became more advanced.
        Examples are the discussions of inductance, and of energy levels, which are at
        first brought in in a very qualitative way and are later developed more
        completely.
		

		

		
		
		At the same time that I was aiming at the more active student, I also wanted
        to take care of the fellow for whom the extra fireworks and side applications are
        merely disquieting and who cannot be expected to learn most of the material in
        the lecture at all. For such students I wanted there to be at least a central
        core or backbone of material which he could get. Even if he didn’t
        understand everything in a lecture, I hoped he wouldn’t get nervous. I didn’t
        expect him to understand everything, but only the central and most direct
        features. It takes, of course, a certain intelligence on his part to see which
        are the central theorems and central ideas, and which are the more advanced side
        issues and applications which he may understand only in later years.
		

		

		
		
		In giving these lectures there was one serious difficulty: in the way the
        course was given, there wasn’t any feedback from the students to the lecturer to
        indicate how well the lectures were going over. This is indeed a very serious
        difficulty, and I don’t know how good the lectures really are. The whole thing
        was essentially an experiment. And if I did it again I wouldn’t do it the same
        way—I hope I don’t have to do it again! I think, though, that things
        worked out—so far as the physics is concerned—quite satisfactorily in the
        first year.
		

		

		
		
		In the second year I was not so satisfied. In the first part of the course,
        dealing with electricity and magnetism, I couldn’t think of any really unique or
        different way of doing it—of any way that would be particularly more exciting
        than the usual way of presenting it. So I don’t think I did very much in the
        lectures on electricity and magnetism. At the end of the second year I had
        originally intended to go on, after the electricity and magnetism, by giving some
        more lectures on the properties of materials, but mainly to take up things like
        fundamental modes, solutions of the diffusion equation, vibrating systems,
        orthogonal functions, … developing the first
        stages of what are usually called “the mathematical methods of physics.”
        In retrospect, I think that if I were doing it again I would go back to that
        original idea. But since it was not planned that I would be giving these lectures
        again, it was suggested that it might be a good idea to try to give an
        introduction to the quantum mechanics—what you will find in Volume III.
		

		

		
		
		It is perfectly clear that students who will major in physics can wait until
        their third year for quantum mechanics. On the other hand, the argument was made
        that many of the students in our course study physics as a background for their
        primary interest in other fields. And the usual way of dealing with quantum
        mechanics makes that subject almost unavailable for the great majority of
        students because they have to take so long to learn it. Yet, in its real
        applications—especially in its more complex applications, such as in electrical
        engineering and chemistry—the full machinery of the differential equation
        approach is not actually used. So I tried to describe the principles of quantum
        mechanics in a way which wouldn’t require that one first know the mathematics of
        partial differential equations. Even for a physicist I think that is an
        interesting thing to try to do—to present quantum mechanics in this reverse
        fashion—for several reasons which may be apparent in the lectures themselves.
        However, I think that the experiment in the quantum mechanics part was not
        completely successful—in large part because I really did not have enough time
        at the end (I should, for instance, have had three or four more lectures in order
        to deal more completely with such matters as energy bands and the spatial
        dependence of amplitudes). Also, I had never presented the subject this way
        before, so the lack of feedback was particularly serious. I now believe the
        quantum mechanics should be given at a later time. Maybe I’ll have a chance to do
        it again someday. Then I’ll do it right.
		

		

		
		
		The reason there are no lectures on how to solve problems is because there
        were recitation sections. Although I did put in three lectures in the first year
        on how to solve problems, they are not included here. Also there was a lecture on
        inertial guidance which certainly belongs after the lecture on rotating systems,
        but which was, unfortunately, omitted. The fifth and sixth lectures are actually
        due to Matthew Sands, as I was out of town. The question, of course, is how well
        this experiment has succeeded. My own point of view—which, however, does not
        seem to be shared by most of the people who worked with the students—is
        pessimistic. I don’t think I did very well by the students. When I look at the
        way the majority of the students handled the problems on the examinations, I
        think that the system is a failure. Of course, my friends point out to me that
        there were one or two dozen students who—very surprisingly—understood almost
        everything in all of the lectures, and who were quite active in working with the
        material and worrying about the many points in an excited and interested way.
        These people have now, I believe, a first-rate background in physics—and they
        are, after all, the ones I was trying to get at. But then, "The power of
        instruction is seldom of much efficacy except in those happy dispositions where
        it is almost superfluous.” (Gibbon)
		

		

		
		
		Still, I didn’t want to leave any student completely behind, as perhaps I did.
        I think one way we could help the students more would be by putting more hard
        work into developing a set of problems which would elucidate some of the ideas in
        the lectures. Problems give a good opportunity to fill out the material of the
        lectures and make more realistic, more complete, and more settled in the mind the
        ideas that have been exposed.
		

		

		
		
		I think, however, that there isn’t any solution to this problem of education
        other than to realize that the best teaching can be done only when there is a
        direct individual relationship between a student and a good teacher—a situation
        in which the student discusses the ideas, thinks about the things, and talks
        about the things. It’s impossible to learn very much by simply sitting in a
        lecture, or even by simply doing problems that are assigned. But in our modern
        times we have so many students to teach that we have to try to find some
        substitute for the ideal. Perhaps my lectures can make some contribution. Perhaps
        in some small place where there are individual teachers and students, they may
        get some inspiration or some ideas from the lectures. Perhaps they will have fun
        thinking them through—or going on to develop some of the ideas further.
		

        
        Richard P.
        Feynman

        June, 1963
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For some forty years Richard P. Feynman focussed his curiosity on the mysterious workings of the physical world, and bent his intellect to searching out the order in its chaos. Now, he has given two years of his ability and his energy to his Lectures on Physics for beginning students. For them he has distilled the essence of his knowledge, and has created in terms they can hope to grasp a picture of the physicist’s universe. To his lectures he has brought the brilliance and clarity of his thought, the originality and vitality of his approach, and the contagious enthusiasm of his delivery. It was a joy to behold.

        
        
        
		
The first year’s lectures formed the basis for the first volume of this set of books. We have tried in this the second volume to make some kind of a record of a part of the second year’s lectures—which were given to the sophomore class during the 1962–1963 academic year. The rest of the second year’s lectures will make up Volume III.

        
        
        
		
Of the second year of lectures, the first two-thirds were devoted to a fairly complete treatment of the physics of electricity and magnetism. Its presentation was intended to serve a dual purpose. We hoped, first, to give the students a complete view of one of the great chapters of physics—from the early gropings of Franklin, through the great synthesis of Maxwell, on to the Lorentz electron theory of material properties, and ending with the still unsolved dilemmas of the electromagnetic self-energy. And we hoped, second, by introducing at the outset the calculus of vector fields, to give a solid introduction to the mathematics of field theories. To emphasize the general utility of the mathematical methods, related subjects from other parts of physics were sometimes analyzed together with their electric counterparts. We continually tried to drive home the generality of the mathematics. (“The same equations have the same solutions.”) And we emphasized this point by the kinds of exercises and examinations we gave with the course.

        
        
        
		
Following the electromagnetism there are two chapters each on elasticity and fluid flow. In the first chapter of each pair, the elementary and practical aspects are treated. The second chapter on each subject attempts to give an overview of the whole complex range of phenomena which the subject can lead to. These four chapters can well be omitted without serious loss, since they are not at all a necessary preparation for Volume III.

        
        
        
		
The last quarter, approximately, of the second year was dedicated to an introduction to quantum mechanics. This material has been put into the third volume.

        
        
        
		
In this record of the Feynman Lectures we wished to do more than provide a transcription of what was said. We hoped to make the written version as clear an exposition as possible of the ideas on which the original lectures were based. For some of the lectures this could be done by making only minor adjustments of the wording in the original transcript. For others of the lectures a major reworking and rearrangement of the material was required. Sometimes we felt we should add some new material to improve the clarity or balance of the presentation. Throughout the process we benefitted from the continual help and advice of Professor Feynman.

        
        
        
		
The translation of over 1,000,000 spoken words into a coherent text on a tight schedule is a formidable task, particularly when it is accompanied by the other onerous burdens which come with the introduction of a new course—preparing for recitation sections, and meeting students, designing exercises and examinations, and grading them, and so on. Many hands—and heads—were involved. In some instances we have, I believe, been able to render a faithful image—or a tenderly retouched portrait—of the original Feynman. In other instances we have fallen far short of this ideal. Our successes are owed to all those who helped. The failures, we regret.

        
        
        
		
As explained in detail in the Foreword to Volume I, these lectures were but one aspect of a program initiated and supervised by the Physics Course Revision Committee (R. B. Leighton, Chairman, H. V. Neher, and M. Sands) at the California Institute of Technology, and supported financially by the Ford Foundation. In addition, the following people helped with one aspect or another of the preparation of textual material for this second volume: T. K. Caughey, M. L. Clayton, J. B. Curcio, J. B. Hartle, T. W. H. Harvey, M. H. Israel, W. J. Karzas, R. W. Kavanagh, R. B. Leighton, J. Mathews, M. S. Plesset, F. L. Warren, W. Whaling, C. H. Wilts, and B. Zimmerman. Others contributed indirectly through their work on the course: J. Blue, G. F. Chapline, M. J. Clauser, R. Dolen, H. H. Hill, and A. M. Title. Professor Gerry Neugebauer contributed in all aspects of our task with a diligence and devotion far beyond the dictates of duty. The story of physics you find here would, however, not have been, except for the extraordinary ability and industry of Richard P. Feynman.

        
        Matthew Sands

        March, 1964

        (Photograph by Francis Bello © Estate of Francis Bello/Scence Photo Library)


        
   
        
   

      	

      

    

  
    

1 Electromagnetism


	
			
		Review:
		
			
		Chapter 12, Vol. I, Characteristics of Force
		
	





1–1 Electrical forces


Consider a force like gravitation which varies predominantly
inversely as the square of the distance, but which is about a
billion-billion-billion-billion times stronger. And with another
difference. There are two kinds of “matter,” which we can call
positive and negative. Like kinds repel and unlike kinds
attract—unlike gravity where there is only attraction. What would
happen?




A bunch of positives would repel with an enormous force and spread out
in all directions. A bunch of negatives would do the same. But an
evenly mixed bunch of positives and negatives would do something
completely different. The opposite pieces would be pulled together by
the enormous attractions. The net result would be that the terrific
forces would balance themselves out almost perfectly, by forming
tight, fine mixtures of the positive and the negative, and between two
separate bunches of such mixtures there would be practically no
attraction or repulsion at all.




There is such a force: the electrical force. And all matter is a mixture
of positive protons and negative electrons which are attracting and
repelling with this great force. So perfect is the balance, however,
that when you stand near someone else you don’t feel any force at all.
If there were even a little bit of unbalance you would know it. If you
were standing at arm’s length from someone and each of you had one
percent more electrons than protons, the repelling force would be
incredible. How great? Enough to lift the Empire State Building? No! To
lift Mount Everest? No! The repulsion would be enough to lift a
“weight” equal to that of the entire earth!




With such enormous forces so perfectly balanced in this intimate
mixture, it is not hard to understand that matter, trying to keep its
positive and negative charges in the finest balance, can have a great
stiffness and strength. The Empire State Building, for example, swings
less than one inch in the wind because the electrical forces hold every
electron and proton more or less in its proper place. On the other
hand, if we look at matter on a scale small enough that we see only a
few atoms, any small piece will not, usually, have an equal number of
positive and negative charges, and so there will be strong residual
electrical forces. Even when there are equal numbers of both charges
in two neighboring small pieces, there may still be large net
electrical forces because the forces between individual charges vary
inversely as the square of the distance. A net force can arise if a
negative charge of one piece is closer to the positive than to the
negative charges of the other piece. The attractive forces can then be
larger than the repulsive ones and there can be a net attraction
between two small pieces with no excess charges. The force that holds
the atoms together, and the chemical forces that hold molecules
together, are really electrical forces acting in regions where the
balance of charge is not perfect, or where the distances are very
small.




You know, of course, that atoms are made with positive protons in the
nucleus and with electrons outside. You may ask: “If this electrical
force is so terrific, why don’t the protons and electrons just get on
top of each other? If they want to be in an intimate mixture, why
isn’t it still more intimate?” The answer has to do with the quantum
effects. If we try to confine our electrons in a region that is very
close to the protons, then according to the uncertainty
principle they
must have some mean square momentum which is larger the more we try to
confine them. It is this motion, required by the laws of quantum
mechanics, that keeps the electrical attraction from bringing the
charges any closer together.




There is another question: “What holds the nucleus together”? In a
nucleus there are several protons, all of which are positive. Why don’t
they push themselves apart? It turns out that in nuclei there are, in
addition to electrical forces, nonelectrical forces, called nuclear
forces, which are greater than the electrical forces and which are able
to hold the protons together in spite of the electrical repulsion. The
nuclear forces, however, have a short range—their force falls off much
more rapidly than 1/r2. And this has an important consequence. If a
nucleus has too many protons in it, it gets too big, and it will not
stay together. An example is uranium, with 92 protons. The nuclear
forces act mainly between each proton (or neutron) and its nearest
neighbor, while the electrical forces act over larger distances, giving
a repulsion between each proton and all of the others in the nucleus.
The more protons in a nucleus, the stronger is the electrical repulsion,
until, as in the case of uranium, the balance is so delicate that the
nucleus is almost ready to fly apart from the repulsive electrical
force. If such a nucleus is just “tapped” lightly (as can be done by
sending in a slow neutron), it breaks into two pieces, each with
positive charge, and these pieces fly apart by electrical repulsion. The
energy which is liberated is the energy of the atomic bomb. This energy
is usually called “nuclear” energy, but it is really “electrical”
energy released when electrical forces have overcome the attractive
nuclear forces.
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We may ask, finally, what holds a negatively charged electron together
(since it has no nuclear forces). If an electron is all made of one
kind of substance, each part should repel the other parts. Why, then,
doesn’t it fly apart? But does the electron have “parts”? Perhaps we
should say that the electron is just a point and that electrical
forces only act between different point charges, so that the electron does not act
upon itself. Perhaps. All we can say is that the question of what holds
the electron together has produced many difficulties in the attempts to
form a complete theory of electromagnetism. The question has never been
answered. We will entertain ourselves by discussing this subject some
more in later chapters.





As we have seen, we should expect that it is a combination of electrical
forces and quantum-mechanical effects that will determine the detailed
structure of materials in bulk, and, therefore, their properties. Some
materials are hard, some are soft. Some are electrical
“conductors”—because their electrons are free to
move about; others are “insulators”—because their
electrons are held tightly to individual atoms. We shall consider later
how some of these properties come about, but that is a very complicated
subject, so we will begin by looking at the electrical forces only in
simple situations. We begin by treating only the laws of
electricity—including magnetism, which is really a part of the same
subject.





We have said that the electrical force, like a gravitational force,
decreases inversely as the square of the distance between charges. This
relationship is called Coulomb’s law. But it is not precisely true when charges are moving—the
electrical forces depend also on the motions of the charges in a
complicated way. One part of the force between moving charges we call
the magnetic force. It is really one aspect of an electrical effect. That is why we
call the subject “electromagnetism.”





There is an important general principle that makes it possible to
treat electromagnetic forces in a relatively simple way. We find, from
experiment, that the force that acts on a particular charge—no
matter how many other charges there are or how they are
moving—depends only on the position of that particular charge, on
the velocity of the charge, and on the amount of charge. We can write
the force F on a charge q moving with a velocity v as



[image: -*-]

(1.1)






We call E the electric field and B the magnetic
field at the
location of the charge. The important thing is that the electrical
forces from all the other charges in the universe can be summarized by
giving just these two vectors. Their values will depend on where
the charge is, and may change with time. Furthermore, if we
replace that charge with another charge, the force on the new charge
will be just in proportion to the amount of charge so long as all the
rest of the charges in the world do not change their positions or
motions. (In real situations, of course, each charge produces forces on
all other charges in the neighborhood and may cause these other charges
to move, and so in some cases the fields can change if we replace
our particular charge by another.)




We know from Vol. I how to find the motion of a particle if we know
the force on it. Equation (1.1) can be combined with the
equation of motion to give
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(1.2)






So if E and B are given, we can find the motions. Now we
need to know how the E’s and B’s are produced.




One of the most important simplifying principles about the way the
fields are produced is this: Suppose a number of charges moving in
some manner would produce a field E1, and another set of
charges would produce E2. If both sets of charges are in place
at the same time (keeping the same locations and motions they had when
considered separately), then the field produced is just the sum
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(1.3)






This fact is called the principle of
superposition of fields. It
holds also for magnetic fields.





This principle means that if we know the law for the electric and
magnetic fields produced by a single charge moving in an
arbitrary way, then all the laws of
electrodynamics are complete. If we want to know
the force on charge A we need only calculate the E and B
produced by each of the charges B, C, D, etc., and then add the
E’s and B’s from all the charges to find the fields, and
from them the forces acting on charge A. If it had only turned out
that the field produced by a single charge was simple, this would be the
neatest way to describe the laws of electrodynamics. We have already
given a description of this law (Chapter 28, Vol. I) and
it is, unfortunately, rather complicated.





It turns out that the form in which the laws of electrodynamics are
simplest are not what you might expect. It is not simplest to
give a formula for the force that one charge produces on another. It
is true that when charges are standing still the Coulomb force
law is
simple, but when charges are moving about the relations are
complicated by delays in time and by the effects of acceleration,
among others. As a result, we do not wish to present electrodynamics
only through the force laws between charges; we find it more
convenient to consider another point of view—a point of view in
which the laws of electrodynamics appear to be the most easily
manageable.







1–2 Electric and magnetic fields


First, we must extend, somewhat, our ideas of the electric and
magnetic vectors, E and B. We have defined them in terms
of the forces that are felt by a charge. We wish now to speak of
electric and magnetic fields at a point even when there is no
charge present. We are saying, in effect, that since there are forces
“acting on” the charge, there is still “something” there when the
charge is removed. If a charge located at the point (x,y,z) at the
time t feels the force F given by Eq. (1.1) we
associate the vectors E and B with the point in
space (x,y,z). We may think of E (x,y,z,t) and B (x,y,z,t)
as giving the forces that would be experienced at the time t
by a charge located at (x,y,z), with the condition that
placing the charge there did not disturb the positions or
motions of all the other charges responsible for the fields.




Following this idea, we associate with every point (x,y,z) in
space two vectors E and B, which may be changing with
time. The electric and magnetic fields are, then, viewed as
vector functions of x, y, z, and t. Since a vector is
specified by its components, each of the fields E (x,y,z,t)
and B (x,y,z,t) represents three mathematical functions of
x, y, z, and t.




It is precisely because E (or B) can be specified at every
point in space that it is called a “field.” A “field” is any
physical quantity which takes on different values at different points
in space. Temperature, for example, is a field—in this case a scalar
field, which we write as T (x,y,z). The temperature could also vary
in time, and we would say the temperature field is time-dependent, and
write T (x,y,z,t). Another example is the “velocity field” of a
flowing liquid. We write v (x,y,z,t) for the velocity of the
liquid at each point in space at the time t. It is a vector field.




Returning to the electromagnetic fields—although they are produced
by charges according to complicated formulas, they have the following
important characteristic: the relationships between the values of the
fields at one point and the values at a nearby point are
very simple. With only a few such relationships in the form of
differential equations we can describe the fields completely. It is in
terms of such equations that the laws of electrodynamics are most
simply written.




There have been various inventions to help the mind visualize the
behavior of fields. The most correct is also the most abstract: we
simply consider the fields as mathematical functions of position and
time. We can also attempt to get a mental picture of the field by
drawing vectors at many points in space, each of which gives the field
strength and direction at that point. Such a representation is shown
in Fig. 1–1. We can go further, however, and draw lines
which are everywhere tangent to the vectors—which, so to speak,
follow the arrows and keep track of the direction of the field. When
we do this we lose track of the lengths of the vectors, but we
can keep track of the strength of the field by drawing the lines far
apart when the field is weak and close together when it is strong. We
adopt the convention that the number of lines per unit area at
right angles to the lines is proportional to the field
strength. This is, of course, only an
approximation, and it will require, in general, that new lines sometimes
start up in order to keep the number up to the strength of the field.
The field of Fig. 1–1 is represented by field lines in
Fig. 1–2.




[image: -]
Fig. 1–1. A vector field may be represented by drawing a set of arrows
whose magnitudes and directions indicate the values of the vector
field at the points from which the arrows are drawn.
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Fig. 1–2. A vector field can be represented by drawing lines which are
tangent to the direction of the field vector at each point, and by
drawing the density of lines proportional to the magnitude of the
field vector.








1–3 Characteristics of vector fields


There are two mathematically important properties of a vector field
which we will use in our description of the laws of electricity from
the field point of view. Suppose we imagine a closed surface of some
kind and ask whether we are losing “something” from the inside; that
is, does the field have a quality of “outflow”?  For instance, for a
velocity field we might ask whether the velocity is always outward on
the surface or, more generally, whether more fluid flows out (per unit
time) than comes in. We call the net amount of fluid going out through
the surface per unit time the “flux of velocity” through the
surface. The flow through an element of a surface is just equal to the
component of the velocity perpendicular to the surface times the area
of the surface. For an arbitrary closed surface, the net outward
flow—or flux—is the average outward normal component of
the velocity, times the area of the surface:
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(1.4)
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Fig. 1–3. The flux of a vector field through a surface is defined as
the average value of the normal component of the vector times the area
of the surface.





In the case of an electric field, we can mathematically define
something analogous to an outflow, and we again call it the flux, but
of course it is not the flow of any substance, because the electric
field is not the velocity of anything. It turns out, however, that the
mathematical quantity which is the average normal component of the
field still has a useful significance. We speak, then, of the
electric flux—also defined by Eq. (1.4). Finally, it is also
useful to speak of the flux not only through a completely closed
surface, but through any bounded surface. As before, the flux through
such a surface is defined as the average normal component of a vector
times the area of the surface. These ideas are illustrated in
Fig. 1–3.




[image: -][image: -][image: -]
Fig. 1–4. (a) The velocity field in a liquid. Imagine a tube of uniform
cross section that follows an arbitrary closed curve as in (b). If the
liquid were suddenly frozen everywhere except inside the tube, the
liquid in the tube would circulate as shown in (c).





There is a second property of a vector field that has to do with a
line, rather than a surface. Suppose again that we think of a velocity
field that describes the flow of a liquid. We might ask this
interesting question: Is the liquid circulating? By that we mean: Is
there a net rotational motion around some loop? Suppose that we
instantaneously freeze the liquid everywhere except inside of a tube
which is of uniform bore, and which goes in a loop that closes back on
itself as in Fig. 1–4. Outside of the tube the liquid
stops moving, but inside the tube it may keep on moving because of the
momentum in the trapped liquid—that is, if there is more momentum
heading one way around the tube than the other. We define a quantity
called the circulation as the resulting speed of the
liquid in
the tube times its circumference. We can again extend our ideas and
define the “circulation” for any vector field (even when there isn’t
anything moving). For any vector field the circulation around
any imagined closed curve is defined as the average tangential
component of the vector (in a consistent sense) multiplied by the
circumference of the loop (Fig. 1–5):
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(1.5)







You will see that this definition does indeed give a number which is
proportional to the circulation velocity in the quickly frozen tube
described above.




[image: -]
Fig. 1–5. The circulation of a vector field is the average tangential
component of the vector (in a consistent sense) times the
circumference of the loop.





With just these two ideas—flux and circulation—we can describe all
the laws of electricity and magnetism at once. You may not understand
the significance of the laws right away, but they will give you some
idea of the way the physics of electromagnetism will be ultimately
described.







1–4 The laws of electromagnetism


The first law of electromagnetism describes the flux of the electric
field:
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(1.6)







where ϵ0 is a convenient constant. (The constant ϵ0 is
usually read as “epsilon-zero” or “epsilon-naught”.) If there are
no charges inside the surface, even though there are charges nearby
outside the surface, the average normal component of E is
zero, so there is no net flux through the surface. To show the power
of this type of statement, we can show that Eq. (1.6) is
the same as Coulomb’s law,
provided only that we also add the idea
that the field from a single charge is spherically symmetric. For a
point charge, we draw a sphere around the charge. Then the average
normal component is just the value of the magnitude of E at any
point, since the field must be directed radially and have the same
strength for all points on the sphere. Our rule now says that the
field at the surface of the sphere, times the area of the
sphere—that is, the outgoing flux—is proportional to the charge
inside. If we were to make the radius of the sphere bigger, the area
would increase as the square of the radius. The average normal
component of the electric field times that area must still be equal to
the same charge inside, and so the field must decrease as the square
of the distance—we get an “inverse square” field.




If we have an arbitrary stationary curve in space and measure the
circulation of the electric field around the curve, we will find that
it is not, in general, zero (although it is for the Coulomb
field). Rather, for electricity there is a second law that states: for
any surface S (not closed) whose edge is the curve C,
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(1.7)












We can complete the laws of the electromagnetic field by writing two
corresponding equations for the magnetic field B:
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(1.8)







For a surface S bounded by the curve C,
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(1.9)












The constant c2 that appears in Eq. (1.9) is the
square of the velocity of light. It appears because magnetism is in
reality a relativistic effect of electricity. The constant ϵ0 has
been stuck in to make the units of electric current come out in a
convenient way.




Equations (1.6) through (1.9), together with
Eq. (1.1), are all the laws of
electrodynamics1. As you remember,
the laws of Newton were very simple to write down, but they had a lot
of complicated consequences and it took us a long time to learn about
them all. These laws are not nearly as simple to write down, which
means that the consequences are going to be more elaborate and it will
take us quite a lot of time to figure them all out.
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Fig. 1–6. A bar magnet gives a field B at a wire. When there is a
current along the wire, the wire moves because of the force F=qv×B.





We can illustrate some of the laws of electrodynamics by a series of
small experiments which show qualitatively the interrelationships of
electric and magnetic fields. You have experienced the first term of
Eq. (1.1) when combing your hair, so we won’t show that
one. The second part of Eq. (1.1) can be demonstrated by
passing a current through a wire which hangs above a bar magnet, as
shown in Fig. 1–6. The wire will move when a current is
turned on because of the force F=q v×B. When a
current exists, the charges inside the wire are moving, so they have a
velocity v, and the magnetic field from the magnet exerts a
force on them, which results in pushing the wire sideways.




When the wire is pushed to the left, we would expect that the magnet
must feel a push to the right. (Otherwise we could put the whole thing
on a wagon and have a propulsion system that didn’t conserve
momentum!) Although the force is too small to make movement of the bar
magnet visible, a more sensitively supported magnet, like a compass
needle, will show the movement.




How does the wire push on the magnet? The current in the wire produces
a magnetic field of its own that exerts forces on the
magnet. According to the last term in Eq. (1.9), a
current must have a circulation of B—in this case, the
lines of B are loops around the wire, as shown in
Fig. 1–7. This B-field is responsible for the force
on the magnet.
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Fig. 1–7. The magnetic field of the wire exerts a force on the magnet.





Equation (1.9) tells us that for a fixed current through
the wire the circulation of B is the same for any curve
that surrounds the wire. For curves—say circles—that are farther
away from the wire, the circumference is larger, so the tangential
component of B must decrease. You can see that we would, in
fact, expect B to decrease linearly with the distance from a
long straight wire.




Now, we have said that a current through a wire produces a magnetic
field, and that when there is a magnetic field present there is a
force on a wire carrying a current. Then we should also expect that if
we make a magnetic field with a current in one wire, it should exert a
force on another wire which also carries a current. This can be shown
by using two hanging wires as shown in Fig. 1–8. When
the currents are in the same direction, the two wires attract, but
when the currents are opposite, they repel.




[image: -]
Fig. 1–8. Two wires, carrying current, exert forces on each other.





In short, electrical currents, as well as magnets, make magnetic
fields. But wait, what is a magnet, anyway? If magnetic fields are
produced by moving charges, is it not possible that the magnetic field
from a piece of iron is really the result of currents? It appears to
be so. We can replace the bar magnet of our experiment with a coil of
wire, as shown in Fig. 1–9. When a current is passed
through the coil—as well as through the straight wire above it—we
observe a motion of the wire exactly as before, when we had a magnet
instead of a coil. In other words, the current in the coil imitates a
magnet. It appears, then, that a piece of iron acts as though it
contains a perpetual circulating current. We can, in fact, understand
magnets in terms of permanent currents in the atoms of the iron. The
force on the magnet in Fig. 1–7 is due to the second
term in Eq. (1.1).




[image: -]
Fig. 1–9. The bar magnet of Fig. 1–6 can be replaced by a coil
carrying an electrical current. A similar force acts on the wire.





Where do the currents come from? One possibility would be from the
motion of the electrons in atomic orbits.
Actually, that is not the case for iron, although it is for
some materials. In addition to moving around in an atom, an electron
also spins about on its own axis—something like the spin of the
earth—and it is the current from this spin that gives the magnetic
field in iron. (We say “something like the spin of the earth”
because the question is so deep in quantum mechanics that the
classical ideas do not really describe things too well.) In most
substances, some electrons spin one way and some spin the other, so
the magnetism cancels out, but in iron—for a mysterious reason which
we will discuss later—many of the electrons are spinning with their
axes lined up, and that is the source of the magnetism.





Since the fields of magnets are from currents, we do not have to add any extra
term to Eqs. (1.8) or (1.9) to take care of
magnets. We just take all currents, including the circulating currents of
the spinning electrons, and then the law is right. You should also notice that
Eq. (1.8) says that there are no magnetic “charges” analogous to
the electrical charges appearing on the right side of Eq. (1.6).
None has been found.
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Fig. 1–10. The circulation of B around the curve C is given
either by the current passing through the surface S1, or by the
rate of change of the flux of E through the surface S2.





The first term on the right-hand side of Eq. (1.9) was
discovered theoretically by
Maxwell and is of great importance.
It
says that changing electric fields produce magnetic effects. In
fact, without this term the equation would not make sense, because
without it there could be no currents in circuits that are not
complete loops. But such currents do exist, as we can see in the
following example. Imagine a capacitor made of two flat plates. It is
being charged by a current that flows toward one plate and away from
the other, as shown in Fig. 1–10. We draw a curve C
around one of the wires and fill it in with a surface which crosses
the wire, as shown by the surface S1 in the figure. According to
Eq. (1.9), the circulation of B around C
(times c2) is given by the current in the wire (divided by ϵ0). But
what if we fill in the curve with a different surface S2,
which is shaped like a bowl and passes between the plates of the
capacitor, staying always away from the wire? There is certainly no
current through this surface. But, surely, just changing the location
of an imaginary surface is not going to change a real magnetic field!
The circulation of B must be what it was before. The first term
on the right-hand side of Eq. (1.9) does, indeed,
combine with the second term to give the same result for the two
surfaces S1 and S2. For S2 the circulation of B is
given in terms of the rate of change of the flux of E between
the plates of the capacitor. And it works out that the changing E
is related to the current in just the way required for
Eq. (1.9) to be correct.
Maxwell saw that it was needed, and
he was the first to write the complete equation.




With the setup shown in Fig. 1–6 we can demonstrate
another of the laws of electromagnetism. We disconnect the ends of the
hanging wire from the battery and connect them to a
galvanometer which
tells us when there is a current through the wire. When we push
the wire sideways through the magnetic field of the magnet, we observe
a current. Such an effect is again just another consequence of
Eq. (1.1)—the electrons in the wire feel the
force F=q v×B. The electrons have a sidewise velocity
because they move with the wire. This v with a vertical B
from the magnet results in a force on the electrons directed
along the wire, which starts the electrons moving toward the
galvanometer.




Suppose, however, that we leave the wire alone and move the magnet. We
guess from relativity that it should make no difference, and indeed,
we observe a similar current in the galvanometer. How does the
magnetic field produce forces on charges at rest? According to
Eq. (1.1) there must be an electric field. A moving magnet
must make an electric field. How that happens is said quantitatively by
Eq. (1.7). This equation describes many phenomena of great
practical interest, such as those that occur in electric generators and
transformers.




The most remarkable consequence of our equations is that the
combination of Eq. (1.7) and Eq. (1.9)
contains the explanation of the radiation of electromagnetic effects
over large distances. The reason is roughly something like this:
suppose that somewhere we have a magnetic field which is increasing
because, say, a current is turned on suddenly in a wire. Then by
Eq. (1.7) there must be a circulation of an electric field.
As the electric field builds up to produce its circulation, then
according to Eq. (1.9) a magnetic circulation will be
generated. But the building up of this magnetic field will
produce a new circulation of the electric field, and so on. In this way
fields work their way through space without the need of charges or
currents except at their source. That is the way we see each
other! It is all in the equations of the electromagnetic fields.







1–5 What are the fields?


We now make a few remarks on our way of looking at this subject. You
may be saying: “All this business of fluxes and circulations is
pretty abstract. There are electric fields at every point in space;
then there are these ‘laws.’ But what is actually happening?
Why can’t you explain it, for instance, by whatever it is that
goes between the charges.” Well, it depends on your prejudices. Many
physicists used to say that direct action with nothing in between was
inconceivable. (How could they find an idea inconceivable when it had
already been conceived?) They would say: “Look, the only forces we
know are the direct action of one piece of matter on another. It is
impossible that there can be a force with nothing to transmit it.”
But what really happens when we study the “direct action” of one
piece of matter right against another? We discover that it is not one
piece right against the other; they are slightly separated, and there
are electrical forces acting on a tiny scale. Thus we find that we are
going to explain so-called direct-contact action in terms of the
picture for electrical forces. It is certainly not sensible to try to
insist that an electrical force has to look like the old, familiar,
muscular push or pull, when it will turn out that the muscular pushes
and pulls are going to be interpreted as electrical forces! The only
sensible question is what is the most convenient way to look at
electrical effects. Some people prefer to represent them as the
interaction at a distance of charges, and to use a complicated
law. Others love the field lines. They draw field lines all the time,
and feel that writing E’s and B’s is too abstract. The
field lines, however, are only a crude way of describing a field, and
it is very difficult to give the correct, quantitative laws directly
in terms of field lines. Also, the ideas of the field lines do not
contain the deepest principle of electrodynamics, which is the
superposition principle. Even though we know how the field lines look
for one set of charges and what the field lines look like for another
set of charges, we don’t get any idea about what the field line
patterns will look like when both sets are present together. From the
mathematical standpoint, on the other hand, superposition is easy—we
simply add the two vectors. The field lines have some advantage in
giving a vivid picture, but they also have some disadvantages. The
direct interaction way of thinking has great advantages when thinking
of electrical charges at rest, but has great disadvantages when
dealing with charges in rapid motion.




The best way is to use the abstract field idea. That it is abstract is
unfortunate, but necessary. The attempts to try to represent the
electric field as the motion of some kind of gear wheels, or in terms
of lines, or of stresses in some kind of material have used up more
effort of physicists than it would have taken simply to get the right
answers about electrodynamics. It is interesting that the correct
equations for the behavior of light were worked out by
MacCullagh in 1839.
But people said to him: “Yes, but there is no real material
whose mechanical properties could possibly satisfy those equations,
and since light is an oscillation that must vibrate in
something, we cannot believe this abstract equation business.”
If people had been more open-minded, they might have believed in the
right equations for the behavior of light a lot earlier than they did.




In the case of the magnetic field we can make the following point:
Suppose that you finally succeeded in making up a picture of the
magnetic field in terms of some kind of lines or of gear wheels
running through space. Then you try to explain what happens to two
charges moving in space, both at the same speed and parallel to each
other. Because they are moving, they will behave like two currents and
will have a magnetic field associated with them (like the currents in
the wires of Fig. 1–8). An observer who was riding
along with the two charges, however, would see both charges as
stationary, and would say that there is no magnetic field. The
“gear wheels” or “lines” disappear when you ride along with the
object! All we have done is to invent a new problem. How can
the gear wheels disappear?! The people who draw field lines are in a
similar difficulty. Not only is it not possible to say whether the
field lines move or do not move with charges—they may disappear
completely in certain coordinate frames.




What we are saying, then, is that magnetism is really a relativistic
effect. In the case of the two charges we just considered, travelling
parallel to each other, we would expect to have to make relativistic
corrections to their motion, with terms of order v2/c2. These
corrections must correspond to the magnetic force. But what about the
force between the two wires in our experiment (Fig. 1–8).
There the magnetic force is the whole force. It didn’t look like
a “relativistic correction.” Also, if we estimate the velocities of
the electrons in the wire (you can do this yourself), we find that their
average speed along the wire is about 0.01 centimeter per second.
So v2/c2 is about 10−25. Surely a negligible “correction.” But
no! Although the magnetic force is, in this case, 10−25 of the
“normal” electrical force between the moving electrons, remember that
the “normal” electrical forces have disappeared because of the almost
perfect balancing out—because the wires have the same number of
protons as electrons. The balance is much more precise than one part
in 1025, and the small relativistic term which we call the magnetic
force is the only term left. It becomes the dominant term.




It is the near-perfect cancellation of electrical effects which
allowed relativity effects (that is, magnetism) to be studied and the
correct equations—to order v2/c2—to be discovered, even though
physicists didn’t know that’s what was happening. And that is
why, when relativity was discovered, the electromagnetic laws didn’t
need to be changed. They—unlike mechanics—were already correct to
a precision of v2/c2.







1–6 Electromagnetism in science and technology


Let us end this chapter by pointing out that among the many phenomena
studied by the Greeks there were two very strange ones: that if you
rubbed a piece of amber you could lift up little pieces
of papyrus, and that there was a strange rock from the island of
Magnesia which attracted iron. It is amazing to think that these were
the only phenomena known to the Greeks in which the effects of
electricity or magnetism were apparent. The reason that these were the
only phenomena that appeared is due primarily to the fantastic
precision of the balancing of charges that we mentioned earlier. Study
by scientists who came after the Greeks uncovered one new phenomenon
after another that were really some aspect of these amber
and/or lodestone effects. Now we realize that the phenomena of
chemical interaction and, ultimately, of life itself are to be
understood in terms of electromagnetism.





At the same time that an understanding of the subject of
electromagnetism was being developed, technical possibilities that
defied the imagination of the people that came before were appearing:
it became possible to signal by telegraph over long distances, and to
talk to another person miles away without any connections between, and
to run huge power systems—a great water wheel, connected by
filaments over hundreds of miles to another engine that turns in
response to the master wheel—many thousands of branching
filaments—ten thousand engines in ten thousand places running the
machines of industries and homes—all turning because of the
knowledge of the laws of electromagnetism.




Today we are applying even more subtle effects. The electrical forces,
enormous as they are, can also be very tiny, and we can control them
and use them in very many ways. So delicate are our instruments that
we can tell what a man is doing by the way he affects the electrons in
a thin metal rod hundreds of miles away. All we need to do is to use
the rod as an antenna for a television receiver!




From a long view of the history of mankind—seen from, say, ten
thousand years from now—there can be little doubt that the most
significant event of the 19th century will be judged as
Maxwell’s
discovery of the laws of electrodynamics. The American Civil War will
pale into provincial insignificance in comparison with this important
scientific event of the same decade.





	
  
  We need only to add a remark about some
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2–1 Understanding physics


The physicist needs a facility in looking at problems from several
points of view. The exact analysis of real physical problems is
usually quite complicated, and any particular physical situation may
be too complicated to analyze directly by solving the differential
equation. But one can still get a very good idea of the behavior of a
system if one has some feel for the character of the solution in
different circumstances. Ideas such as the field lines, capacitance,
resistance, and inductance are, for such purposes, very useful. So we
will spend much of our time analyzing them. In this way we will get a
feel as to what should happen in different electromagnetic
situations. On the other hand, none of the heuristic models, such as
field lines, is really adequate and accurate for all situations. There
is only one precise way of presenting the laws, and that is by means
of differential equations. They have the advantage of being
fundamental and, so far as we know, precise. If you have learned the
differential equations you can always go back to them. There is
nothing to unlearn.





It will take you some time to understand what should happen in
different circumstances. You will have to solve the equations. Each
time you solve the equations, you will learn something about the
character of the solutions. To keep these solutions in mind, it will
be useful also to study their meaning in terms of field lines and of
other concepts. This is the way you will really “understand” the
equations. That is the difference between mathematics and
physics. Mathematicians, or people who have very mathematical minds,
are often led astray when “studying” physics because they lose sight
of the physics. They say: “Look, these differential equations—the
Maxwell equations—are all there is to electrodynamics; it is admitted by the
physicists that there is nothing which is not contained in the
equations. The equations are complicated, but after all they are only
mathematical equations and if I understand them mathematically inside
out, I will understand the physics inside out.” Only it doesn’t work
that way. Mathematicians who study physics with that point of view—and
there have been many of them—usually make little contribution to
physics and, in fact, little to mathematics. They fail because the
actual physical situations in the real world are so complicated that it
is necessary to have a much broader understanding of the equations.





What it means really to understand an equation—that is, in more than
a strictly mathematical sense—was described by
Dirac. He said: “I
understand what an equation means if I have a way of figuring out the
characteristics of its solution without actually solving it.” So if
we have a way of knowing what should happen in given circumstances
without actually solving the equations, then we “understand” the
equations, as applied to these circumstances. A physical understanding
is a completely unmathematical, imprecise, and inexact thing, but
absolutely necessary for a physicist.





Ordinarily, a course like this is given by developing gradually the
physical ideas—by starting with simple situations and going on to
more and more complicated situations. This requires that you
continuously forget things you previously learned—things that are
true in certain situations, but which are not true in general. For
example, the “law” that the electrical force depends on the square
of the distance is not always true. We prefer the opposite
approach. We prefer to take first the complete laws, and then
to step back and apply them to simple situations, developing the
physical ideas as we go along. And that is what we are going to do.





Our approach is completely opposite to the historical approach in
which one develops the subject in terms of the experiments by which
the information was obtained. But the subject of physics has been
developed over the past 200 years by some very ingenious people, and
as we have only a limited time to acquire our knowledge, we cannot
possibly cover everything they did. Unfortunately one of the things
that we shall have a tendency to lose in these lectures is the
historical, experimental development. It is hoped that in the
laboratory some of this lack can be corrected. You can also fill in
what we must leave out by reading the Encyclopedia Britannica, which
has excellent historical articles on electricity and on other parts of
physics. You will also find historical information in many textbooks
on electricity and magnetism.





 


2–2 Scalar and vector fields—T and h



We begin now with the abstract, mathematical view of the theory of
electricity and magnetism. The ultimate idea is to explain the meaning
of the laws given in Chapter 1. But to do this we must
first explain a new and peculiar notation that we want to use. So let
us forget electromagnetism for the moment and discuss the mathematics
of vector fields. It is of very great importance, not only for
electromagnetism, but for all kinds of physical circumstances. Just as
ordinary differential and integral calculus is so important to all
branches of physics, so also is the differential calculus of
vectors. We turn to that subject.





Listed below are a few facts from the algebra of vectors. It is
assumed that you already know them.
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(2.1)


(2.2)
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(2.3)


(2.4)


(2.5)


(2.6)














Also we will want to use the two following equalities from the calculus:
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(2.7)


(2.8)







The first equation (2.7) is, of course, true only in the
limit that Δ x, Δ y, and Δ z go toward zero.
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The simplest possible physical field is a scalar field. By a field,
you remember, we mean a quantity which depends upon position in
space. By a scalar field we merely mean a field which is
characterized at each point by a single number—a scalar. Of course
the number may change in time, but we need not worry about that for
the moment. We will talk about what the field looks like at a given
instant. As an example of a scalar field, consider a solid block of
material which has been heated at some places and cooled at others, so
that the temperature of the body varies from point to point in a
complicated way. Then the temperature will be a function of x, y,
and z, the position in space measured in a rectangular coordinate
system. Temperature is a scalar field.
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Fig. 2–1. 
Temperature T is an example of a scalar field. With each
point (x,y,z) in space there is associated a number T (x,y,z). All
points on the surface marked T=20° (shown as a curve at z=0)
are at the same temperature. The arrows are samples of the heat flow
vector h.





One way of thinking about scalar fields is to imagine “contours” which
are imaginary surfaces drawn through all points for which the field has
the same value, just as contour lines on a map connect points with the
same height. For a temperature field the contours are called
“isothermal surfaces” or
isotherms. Figure 2–1 illustrates a
temperature field and shows the dependence of T on x and y when
z=0. Several isotherms are drawn.
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Fig. 2–2. 
The velocity of the atoms in a rotating object is an example
of a vector field.





There are also vector fields. The idea is very simple. A vector is
given for each point in space. The vector varies from point to
point. As an example, consider a rotating body. The velocity of the
material of the body at any point is a vector which is a function of
position (Fig. 2–2). As a second example, consider the
flow of heat in a block of material. If the temperature in the block
is high at one place and low at another, there will be a flow of heat
from the hotter places to the colder. The heat will be flowing in
different directions in different parts of the block. The heat flow is
a directional quantity which we call h. Its magnitude is a
measure of how much heat is flowing. Examples of the heat flow vector
are also shown in Fig. 2–1.
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Fig. 2–3. 
Heat flow is a vector field. The vector h points along
the direction of the flow. Its magnitude is the energy transported per
unit time across a surface element oriented perpendicular to the flow,
divided by the area of the surface element.





Let’s make a more precise definition of h: The magnitude of the
vector heat flow at a point is the amount of thermal energy that
passes, per unit time and per unit area, through an infinitesimal
surface element at right angles to the direction of flow. The vector
points in the direction of flow (see Fig. 2–3). In
symbols: If Δ J is the thermal energy that passes per unit time
through the surface element Δ a, then
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(2.9)






where ef is a unit vector in the direction of flow.
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Fig. 2–4. 
The heat flow through Δ a2 is the same as
through Δ a1.





The vector h can be defined in another way—in terms of its
components. We ask how much heat flows through a small surface at
any angle with respect to the flow. In Fig. 2–4
we show a small surface Δ a2 inclined with respect to Δ a1, which is perpendicular to the flow. The unit vector n
is normal to the surface Δ a2. The angle θ between
n and h is the same as the angle between the surfaces
(since h is normal to Δ a1). Now what is the heat flow per
unit area through Δ a2? The flow through Δ a2 is the
same as through Δ a1; only the areas are different. In
fact, Δ a1=Δ a2 cosθ. The heat flow through Δ a2 is
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(2.10)






We interpret this equation: the heat flow (per unit time and per unit
area) through any surface element whose unit normal is n,
is given by h⋅n. Equally, we could say: the component of
the heat flow perpendicular to the surface element Δ a2
is h⋅n. We can, if we wish, consider that these statements
define h. We will be applying the same ideas to other
vector fields.





 


2–3 Derivatives of fields—the gradient


When fields vary in time, we can describe the variation by giving
their derivatives with respect to t. We want to describe the
variations with position in a similar way, because we are interested
in the relationship between, say, the temperature in one place and the
temperature at a nearby place. How shall we take the derivative of the
temperature with respect to position? Do we differentiate the
temperature with respect to x? Or with respect to y, or z?





Useful physical laws do not depend upon the orientation of the
coordinate system. They should, therefore, be written in a form in
which either both sides are scalars or both sides are vectors. What is
the derivative of a scalar field, say ∂T/∂x? Is it a scalar,
or a vector, or what? It is neither a scalar nor a vector, as you can
easily appreciate, because if we took a different x-axis, ∂T/∂x
would certainly be different. But notice: We have three
possible derivatives: ∂T/∂x, ∂T/∂y, and ∂T/∂z.
Since there are three kinds of derivatives and we know
that it takes three numbers to form a vector, perhaps these three
derivatives are the components of a vector:
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(2.11)











Of course it is not generally true that any three numbers form
a vector. It is true only if, when we rotate the coordinate system,
the components of the vector transform among themselves in the correct
way. So it is necessary to analyze how these derivatives are changed
by a rotation of the coordinate system. We shall show
that (2.11) is indeed a vector. The derivatives do transform
in the correct way when the coordinate system is rotated.





We can see this in several ways. One way is to ask a question whose
answer is independent of the coordinate system, and try to express the
answer in an “invariant” form. For instance, if S=A⋅B,
and if A and B are vectors, we know—because we proved it
in Chapter 11 of Vol. I—that S is a scalar. We
know that S is a scalar without investigating whether it
changes with changes in coordinate systems. It can’t, because
it’s a dot product of two vectors. Similarly, if we
have three numbers B1, B2, and B3 and we find out that for
every vector A
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(2.12)






where S is the same for any coordinate system, then it must
be that the three numbers B1, B2, B3 are the components
Bx, By, Bz of some vector B.





Now let’s think of the temperature field. Suppose we take two points
P1 and P2, separated by the small interval Δ R. The
temperature at P1 is T1 and at P2 is T2, and the
difference Δ T=T2−T1. The temperatures at these real,
physical points certainly do not depend on what axis we choose for
measuring the coordinates. In particular, Δ T is a number
independent of the coordinate system. It is a scalar.
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Fig. 2–5. 
The vector Δ R, whose components are Δ x, Δ y, and Δ z.





If we choose some convenient set of axes, we could write
T1=T (x,y,z) and T2=T (x+Δ x,y+Δ y,z+Δ z), where
Δ x, Δ y, and Δ z are the components of the
vector Δ R (Fig. 2–5). Remembering
Eq. (2.7), we can write
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(2.13)






The left side of Eq. (2.13) is a scalar. The right side
is the sum of three products with Δ x, Δ y, and Δ z, which are the components of a vector. It follows that the three
numbers
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are also the x-, y-, and z-components of a vector. We write this
new vector with the symbol ∇T. The symbol ∇
(called “del”) is an upside-down Δ, and is supposed to remind
us of differentiation. People read ∇T in various ways:
“del-T,” or “gradient of T,” or “gradT;”1
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(2.14)











Using this notation, we can rewrite Eq. (2.13) in the
more compact form
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(2.15)






In words, this equation says that the difference in temperature
between two nearby points is the dot product of the gradient of T
and the vector displacement between the points. The form of
Eq. (2.15) also illustrates clearly our proof above
that ∇T is indeed a vector.





Perhaps you are still not convinced? Let’s prove it in a different
way. (Although if you look carefully, you may be able to see that it’s
really the same proof in a longer-winded form!) We shall show that the
components of ∇T transform in just the same way that
components of R do. If they do, ∇T is a vector
according to our original definition of a vector in
Chapter 11 of Vol. I. We take a new coordinate system
x′, y′, z′, and in this new system we calculate
∂T/∂x′, ∂T/∂y′, and ∂T/∂z′. To make things a
little simpler, we let z=z′, so that we can forget about the
z-coordinate. (You can check out the more general case for yourself.)
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Fig. 2–6. 
(a) Transformation to a rotated coordinate system. (b) Special
case of an interval Δ R parallel to the x-axis.





We take an x′ y′-system rotated an angle θ with respect to the
x y-system, as in Fig. 2–6(a). For a point (x,y) the
coordinates in the prime system are
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(2.16)


(2.17)







Or, solving for x and y,



[image: -*-]


(2.18)


(2.19)







If any pair of numbers transforms with these equations in the same way
that x and y do, they are the components of a vector.





Now let’s look at the difference in temperature between the two nearby
points P1 and P2, chosen as in Fig. 2–6(b). If we
calculate with the x- and y-coordinates, we would write
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(2.20)






—since Δ y is zero.





What would a computation in the prime system give? We would have
written
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(2.21)






Looking at Fig. 2–6(b), we see that
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(2.22)






and
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(2.23)






since Δ y′ is negative when Δ x is
positive. Substituting these in Eq. (2.21), we find that
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(2.24)


(2.25)







Comparing Eq. (2.25) with (2.20), we see that
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(2.26)






This equation says that ∂T/∂x is obtained from ∂T/∂x′
and ∂T/∂y′, just as x is obtained from x′ and y′ in
Eq. (2.18). So ∂T/∂x is the x-component of a
vector. The same kind of arguments would show that ∂T/∂y
and ∂T/∂z are y- and z-components. So ∇T is
definitely a vector. It is a vector field derived from the scalar field T.





 


2–4 The operator ∇



Now we can do something that is extremely amusing and ingenious—and
characteristic of the things that make mathematics beautiful. The
argument that gradT, or ∇T, is a vector did not depend
upon what scalar field we were differentiating. All the
arguments would go the same if T were replaced by any scalar
field. Since the transformation equations are the same no matter what
we differentiate, we could just as well omit the T and replace
Eq. (2.26) by the operator equation
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(2.27)






We leave the operators, as Jeans
said, “hungry for something to differentiate.”





Since the differential operators themselves transform as the components
of a vector should, we can call them components of a vector
operator. We can
write
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(2.28)






which means, of course,
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(2.29)






We have abstracted the gradient away from the T—that is the
wonderful idea.





You must always remember, of course, that ∇ is an
operator. Alone, it means nothing. If ∇ by itself means
nothing, what does it mean if we multiply it by a scalar—say T—to
get the product T ∇? (One can always multiply a
vector by a scalar.) It still does not mean anything. Its
x-component is
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(2.30)






which is not a number, but is still some kind of operator. However,
according to the algebra of vectors we would still call T ∇ a
vector.





Now let’s multiply ∇ by a scalar on the other side, so that
we have the product (∇T). In ordinary algebra
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(2.31)






but we have to remember that operator algebra is a little different
from ordinary vector algebra.
With operators we must always keep the
sequence right, so that the operations make proper sense. You will
have no difficulty if you just remember that the operator ∇
obeys the same convention as the derivative notation. What is to be
differentiated must be placed on the right of the ∇. The
order is important.





Keeping in mind this problem of order, we understand that T ∇
is an operator, but the product ∇T is no longer a hungry
operator; the operator is completely satisfied. It is indeed a
physical vector having a meaning. It represents the spatial rate of
change of T. The x-component of ∇T is how fast T
changes in the x-direction. What is the direction of the
vector ∇T? We know that the rate of change of T in any direction
is the component of ∇T in that direction (see
Eq. (2.15)). It follows that the direction of ∇T is
that in which it has the largest possible component—in other words,
the direction in which T changes the fastest. The gradient of T has
the direction of the steepest uphill slope (in T).





 


2–5 Operations with ∇



Can we do any other algebra with the vector operator ∇? Let
us try combining it with a vector. We can combine two vectors by
making a dot product. We could make the products
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The first one doesn’t mean anything yet, because it is still an
operator. What it might ultimately mean would depend on what it is
made to operate on. The second product is some scalar
field. (A⋅B is always a scalar.)





Let’s try the dot product of ∇ with a vector field we know,
say h. We write out the components:
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(2.32)






or
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(2.33)






The sum is invariant under a coordinate transformation. If we were to
choose a different system (indicated by primes), we would
have2
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(2.34)






which is the same number as would be gotten from
Eq. (2.33), even though it looks different. That is,
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(2.35)






for every point in space. So ∇⋅h is a scalar field, which
must represent some physical quantity. You should realize that the
combination of derivatives in ∇⋅h is rather
special. There are all sorts of other combinations like ∂hy/∂x,
which are neither scalars nor components of vectors.





The scalar quantity ∇⋅(a vector) is extremely useful in
physics. It has been given the name the
divergence. For example,
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(2.36)






As we did for ∇T, we can ascribe a physical significance
to ∇⋅h. We shall, however, postpone that until later.





First, we wish to see what else we can cook up with the vector
operator ∇. What about a cross product? We must expect that
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(2.37)






It is a vector whose components we can write by the usual rule for
cross products (see Eq. (2.2)):
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(2.38)






Similarly,
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(2.39)






and
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(2.40)











The combination ∇×h is called “the curl of h.” The reason for the
name and the physical meaning of the combination will be discussed
later.





Summarizing, we have three kinds of combinations with ∇:
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Using these combinations, we can write about the spatial variations of
fields in a convenient way—in a way that is general, in that it
doesn’t depend on any particular set of axes.





As an example of the use of our vector differential operator ∇,
we write a set of vector equations which contain the same
laws of electromagnetism that we gave in words in
Chapter 1. They are called Maxwell’s
equations.
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(2.41)






where ρ (rho), the “electric charge density,” is the amount of 
charge per unit volume, and j, the
“electric current density,” is the
rate at which charge flows through a unit area per second. These four
equations contain the complete classical theory of the electromagnetic
field. You see what an elegantly simple form we can get with our new
notation!





 


2–6 The differential equation of heat flow


Let us give another example of a law of physics written in vector
notation. The law is not a precise one, but for many metals and a
number of other substances that conduct heat it is quite accurate. You
know that if you take a slab of material and heat one face to
temperature T2 and cool the other to a different temperature T1
the heat will flow through the material from T2 to T1
[Fig. 2–7(a)]. The heat flow is proportional to the
area A of the faces, and to the temperature difference. It is also
inversely proportional to d, the distance between the plates. (For a
given temperature difference, the thinner the slab the greater the heat
flow.) Letting J be the thermal energy that passes per unit time
through the slab, we write
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(2.42)






The constant of proportionality κ (kappa) is called the
thermal conductivity.





[image: -][image: -]
Fig. 2–7. 
(a) Heat flow through a slab. (b) An infinitesimal slab
  parallel to an isothermal surface in a large block.





What will happen in a more complicated case? Say in an odd-shaped
block of material in which the temperature varies in peculiar ways?
Suppose we look at a tiny piece of the block and imagine a slab like
that of Fig. 2–7(a) on a miniature scale. We orient the
faces parallel to the isothermal surfaces, as in
Fig. 2–7(b), so that Eq. (2.42) is correct
for the small slab.





If the area of the small slab is Δ A, the heat flow per unit
time is
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(2.43)






where Δ s is the thickness of the slab. Now Δ J/Δ A
we have defined earlier as the magnitude of h, whose direction
is the heat flow. The heat flow will be from T1+Δ T
toward T1 and so it will be perpendicular to the isotherms, as drawn in
Fig. 2–7(b). Also, Δ T/Δ s is just the rate
of change of T with position. And since the position change is
perpendicular to the isotherms, our Δ T/Δ s is the maximum
rate of change. It is, therefore, just the magnitude of ∇T.
Now since the direction of ∇T is opposite to
that of h, we can write (2.43) as a vector equation:
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(2.44)






(The minus sign is necessary because heat flows “downhill” in
temperature.) Equation (2.44) is the differential equation
of heat conduction in bulk materials. You see that it is a proper
vector equation. Each side is a vector if κ is just a
number. It is the generalization to arbitrary cases of the special
relation (2.42) for rectangular slabs. Later we should
learn to write all sorts of elementary physics relations
like (2.42) in the more sophisticated vector notation. This
notation is useful not only because it makes the equations look
simpler. It also shows most clearly the physical content of the
equations without reference to any arbitrarily chosen coordinate system.





 


2–7 Second derivatives of vector fields


So far we have had only first derivatives. Why not second derivatives?
We could have several combinations:



[image: -*-]

(2.45)






You can check that these are all the possible combinations.





Let’s look first at the second one, (b). It has the same form as
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since A×A is always zero. So we should have
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(2.46)






We can see how this equation comes about if we go through once with
the components:
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(2.47)






which is zero (by Eq. (2.8)). It goes the same for the
other components. So ∇×(∇T)=0, for any
temperature distribution—in fact, for any scalar function.





Now let us take another example. Let us see whether we can find
another zero. The dot product of a vector with a cross product which
contains that vector is zero:
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(2.48)






because A×B is perpendicular to A, and so has no
components in the direction A. The same combination appears
in (d) of (2.45), so we have
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(2.49)






Again, it is easy to show that it is zero by carrying through the
operations with components.





Now we are going to state two mathematical theorems that we will not
prove. They are very interesting and useful theorems for physicists to
know.





In a physical problem we frequently find that the curl of some
quantity—say of the vector field A—is zero. Now we have seen
(Eq. (2.46)) that the curl of a gradient is zero, which is
easy to remember because of the way the vectors work. It could
certainly be, then, that A is the gradient of some quantity,
because then its curl would necessarily be zero. The interesting
theorem is that if the curlA is zero, then A is
always the gradient of something—there is some scalar
field ψ (psi) such that A is equal to gradψ. In other
words, we have the
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(2.50)











There is a similar theorem if the divergence of A is zero. We
have seen in Eq. (2.49) that the divergence of a curl of
something is always zero. If you come across a vector field D
for which divD is zero, then you can conclude that D is
the curl of some vector field C.
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(2.51)











In looking at the possible combinations of two ∇ operators,
we have found that two of them always give zero. Now we look at the
ones that are not zero. Take the combination
∇⋅(∇T), which was first on our list. It is not, in
general, zero. We write out the components:
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Then
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(2.52)






which would, in general, come out to be some number. It is a scalar
field.





You see that we do not need to keep the parentheses, but can write,
without any chance of confusion,
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(2.53)






We look at ∇2 as a new operator. It is a scalar operator.
Because it appears often in physics, it has been given a special
name—the Laplacian.
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(2.54)











Since the Laplacian is a scalar operator, we may operate with it on a
vector—by which we mean the same operation on each component in
rectangular coordinates:
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Let’s look at one more possibility: ∇×(∇×h),
which was (e) in the list (2.45). Now the curl of the curl
can be written differently if we use the vector
equality (2.6):
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(2.55)






In order to use this formula, we should replace A and B by
the operator ∇ and put C=h. If we do that, we get
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Wait a minute! Something is wrong. The first two terms are vectors all
right (the operators are satisfied), but the last term doesn’t come
out to anything. It’s still an operator. The trouble is that we
haven’t been careful enough about keeping the order of our terms
straight. If you look again at Eq. (2.55), however, you
see that we could equally well have written it as
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(2.56)






The order of terms looks better. Now let’s make our substitution
in (2.56). We get
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(2.57)






This form looks all right. It is, in fact, correct, as you can verify
by computing the components. The last term is the Laplacian, so we can
equally well write
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(2.58)











We have had something to say about all of the combinations in our list
of double ∇'s, except for (c),
∇(∇⋅h). It is a possible vector field, but there
is nothing special to say about it. It’s just some vector field which
may occasionally come up.





It will be convenient to have a table of our conclusions:
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(2.59)






You may notice that we haven’t tried to invent a new vector
operator (∇×∇). Do you see why?





 


2–8 Pitfalls


We have been applying our knowledge of ordinary
vector algebra to the
algebra of the operator ∇. We have to be careful, though,
because it is possible to go astray. There are two pitfalls which we
will mention, although they will not come up in this course. What
would you say about the following expression, that involves the two
scalar functions ψ and ϕ (phi):
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You might want to say: it must be zero because it’s just like


[image: -*-]



which is zero because the cross product of two equal
vectors A×A is always zero. But in our example the two
operators ∇ are not equal! The first one operates on one
function, ψ; the other operates on a different function, ϕ.
So although we represent them by the same symbol ∇,
they must be considered as different operators. Clearly, the direction
of ∇ψ depends on the function ψ, so it is not
likely to be parallel to ∇ϕ:
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Fortunately, we won’t have to use such expressions. (What we have said
doesn’t change the fact that ∇×∇ψ=0 for
any scalar field, because here both ∇’s operate on the same
function.)





Pitfall number two (which, again, we need not get into in our course)
is the following: The rules that we have outlined here are simple and
nice when we use rectangular coordinates. For example, if we
have ∇2h and we want the x-component, it is
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(2.60)






The same expression would not work if we were to ask for the
radial component of ∇2h. The radial component
of ∇2h is not equal to ∇2hr. The reason is that when
we are dealing with the algebra of
vectors,
the directions of the
vectors are all quite definite. But when we are dealing with vector
fields, their directions are different at different places. If we try
to describe a vector field in, say, polar coordinates, what we call
the “radial” direction varies from point to point. So we can get
into a lot of trouble when we start to differentiate the
components. For example, even for a constant vector field, the
radial component changes from point to point.





It is usually safest and simplest just to stick to rectangular
coordinates and avoid trouble, but there is one exception worth
mentioning: Since the Laplacian ∇2, is a scalar, we can write
it in any coordinate system we want to (for example, in polar
coordinates). But since it is a differential operator, we should use
it only on vectors whose components are in a fixed direction—that
means rectangular coordinates. So we shall express all of our vector
fields in terms of their x-, y-, and z-components when we write
our vector differential equations out in components.





 

		
		
		In our
		notation, the expression (a,b,c) represents a vector with components
		a, b, and c. If you like to use the unit vectors i, j,
		and k, you may write
		[image: -*-]


        ^
  

  	
	    
		We think of h as a physical quantity that
		depends on position in space, and not strictly as a mathematical
		function of three variables. When h is “differentiated” with
		respect to x, y, and z, or with respect to x′, y′, and z′,
		the mathematical expression for h must first be expressed as a
		function of the appropriate variables.
	  ^
  





  
    

3 Vector Integral Calculus



3–1 Vector integrals; the line integral of ∇ψ



We found in Chapter 2 that there were various ways of
taking derivatives of fields. Some gave vector fields; some gave
scalar fields. Although we developed many different formulas,
everything in Chapter 2 could be summarized in one rule:
the operators ∂/∂x, ∂/∂y, and ∂/∂z are the
three components of a vector operator ∇. We would now like
to get some understanding of the significance of the derivatives of
fields. We will then have a better feeling for what a vector field
equation means.





We have already discussed the meaning of the gradient
operation
(∇ on a scalar). Now we turn to the meanings of the
divergence
and curl operations.
The interpretation of these quantities is best done in terms of certain
vector integrals and equations relating such integrals. These equations
cannot, unfortunately, be obtained from vector
algebra by
some easy substitution, so you will just have to learn them as something
new. Of these integral formulas, one is practically trivial, but the
other two are not. We will derive them and explain their implications.
The equations we shall study are really mathematical theorems. They will
be useful not only for interpreting the meaning and the content of the
divergence and the curl, but also in working out general physical
theories. These mathematical theorems are, for the theory of fields,
what the theorem of the conservation of energy is to the mechanics of
particles. General theorems like these are important for a deeper
understanding of physics. You will find, though, that they are not very
useful for solving problems—except in the simplest cases. It is
delightful, however, that in the beginning of our subject there will be
many simple problems which can be solved with the three integral
formulas we are going to treat. We will see, however, as the problems
get harder, that we can no longer use these simple methods.





[image: -]
Fig. 3–1. The terms used in Eq. (3.1). The vector ∇ψ is
evaluated at the line elements d s.





We take up first an integral formula involving the gradient. The
relation contains a very simple idea: Since the gradient represents the
rate of change of a field quantity, if we integrate that rate of change,
we should get the total change. Suppose we have the scalar
field ψ (x,y,z). At any two points (1) and (2), the
function ψ will have the values ψ (1) and ψ (2),
respectively. [We use a convenient notation, in which (2) represents
the point (x2,y2,z2) and ψ (2) means the same thing
as ψ (x2,y2,z2).]  If Γ (gamma) is any curve joining (1)
and (2), as in Fig. 3–1, the following relation is true:



  THEOREM 1.
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(3.1)






The integral is a line integral, from (1) to (2) along the
curve Γ, of the dot product of ∇ψ—a
vector—with d s—another vector which is an infinitesimal line
element of the curve Γ (directed away from (1) and
toward (2)).




[image: -]
Fig. 3–2. The line integral is the limit of a sum.





First, we should review what we mean by a line integral. Consider a
scalar function f (x,y,z), and the curve Γ joining two points
(1) and (2). We mark off the curve at a number of points and join
these points by straight-line segments, as shown in
Fig. 3–2. Each segment has the length Δ si, where i
is an index that runs 1, 2, 3, … By the line integral
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we mean the limit of the sum
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where fi is the value of the function at the ith segment. The
limiting value is what the sum approaches as we add more and more
segments (in a sensible way, so that the largest Δ si→0).




The integral in our theorem, Eq. (3.1), means the same
thing, although it looks a little different. Instead of f, we have
another scalar—the component of ∇ψ in the direction
of Δ s. If we write (∇ψ)t for this tangential
component, it is clear that
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(3.2)






The integral in Eq. (3.1) means the sum of such terms.




Now let’s see why Eq. (3.1) is true. In
Chapter 2, we showed that the component of ∇ψ
along a small displacement Δ R was the rate
of change of ψ in the direction of Δ R. Consider the line
segment Δ s from (1) to point a in Fig. 3–2.
According to our definition,
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(3.3)






Also, we have
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(3.4)






where, of course, (∇ψ)1 means the gradient evaluated at the segment Δ s1, and (∇ψ)2, the gradient evaluated at Δ s2. If we add Eqs. (3.3) and (3.4), we get
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(3.5)






You can see that if we keep adding such terms, we get the result
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(3.6)






The left-hand side doesn’t depend on how we choose our intervals—if
(1) and (2) are kept always the same—so we can take the limit of
the right-hand side. We have therefore proved Eq. (3.1).




You can see from our proof that just as the equality doesn’t depend on
how the points a b, c, …, are chosen, similarly it doesn’t
depend on what we choose for the curve Γ to join (1) and (2).
Our theorem is correct for any curve from (1) to (2).




One remark on notation: You will see that there is no confusion if we
write, for convenience,
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(3.7)






With this notation, our theorem is



  THEOREM 1.
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(3.8)














3–2 The flux of a vector field


Before we consider our next integral theorem—a theorem about the
divergence—we would like to study a certain idea which has
an easily understood physical significance in the case of heat
flow. We have defined the vector h, which represents the heat
that flows through a unit area in a unit time. Suppose that inside a
block of material we have some closed surface S which encloses the
volume V (Fig. 3–3). We would like to find out how
much heat is flowing out of this volume. We can, of course,
find it by calculating the total heat flow out of the
surface S.




[image: -]
Fig. 3–3. The closed surface S defines the volume V. The unit
vector n is the outward normal to the surface element d a,
and h is the heat-flow vector at the surface element.





We write d a for the area of an element of the surface. The symbol
stands for a two-dimensional differential. If, for instance, the area
happened to be in the x y-plane we would have
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Later we shall have integrals over volume and for these it is
convenient to consider a differential volume that is a little cube. So
when we write d V we mean
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Some people like to write d2 a instead of d a to remind themselves
that it is kind of a second-order quantity. They would also write d3 V
instead of d V. We will use the simpler notation, and assume that you
can remember that an area has two dimensions and a volume has three.




The heat flow out through the surface element d a is the area times
the component of h perpendicular to d a. We have already
defined n as a unit vector pointing outward at right angles to
the surface (Fig. 3–3). The component of h that
we want is
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(3.9)






The heat flow out through d a is then
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(3.10)






To get the total heat flow through any surface we sum the
contributions from all the elements of the surface. In other words, we
integrate (3.10) over the whole surface:
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(3.11)












We are also going to call this surface integral “the flux of h
through the surface.” Originally the word flux meant flow, so that
the surface integral just means the flow of h through the
surface. We may think: h is the “current density” of heat flow
and the surface integral of it is the total heat current directed out
of the surface; that is, the thermal energy per unit time (joules per
second).




We would like to generalize this idea to the case where the vector
does not represent the flow of anything; for instance, it might be the
electric field. We can certainly still integrate the normal component
of the electric field over an area if we wish. Although it is not the
flow of anything, we still call it the “flux.” We say
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(3.12)







We generalize the word “flux” to mean the “surface integral of the
normal component” of a vector. We will also use the same definition
even when the surface considered is not a closed one, as it is here.




Returning to the special case of heat flow, let us take a situation in
which heat is conserved. For example, imagine some material in
which after an initial heating no further heat energy is generated or
absorbed. Then, if there is a net heat flow out of a closed surface,
the heat content of the volume inside must decrease. So, in
circumstances in which heat would be conserved, we say that
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(3.13)






where Q is the heat inside the surface. The heat flux out of S is
equal to minus the rate of change with respect to time of the total
heat Q inside of S. This interpretation is possible because we are
speaking of heat flow and also because we supposed that the heat was
conserved. We could not, of course, speak of the total heat inside the
volume if heat were being generated there.




[image: -]
Fig. 3–4. A volume V contained inside the surface S is divided into
two pieces by a “cut” at the surface Sa b. We now have the
volume V1 enclosed in the surface S1=Sa+Sa b and the
volume V2 enclosed in the surface S2=Sb+Sa b.





Now we shall point out an interesting fact about the flux of any
vector. You may think of the heat flow vector if you wish, but what we
say will be true for any vector field C. Imagine that we have a
closed surface S that encloses the volume V. We now separate the
volume into two parts by some kind of a “cut,” as in
Fig. 3–4. Now we have two closed surfaces and volumes. The
volume V1 is enclosed in the surface S1, which is made up of part
of the original surface Sa and of the surface of the cut, Sa b.
The volume V2 is enclosed by S2, which is made up of the rest of
the original surface Sb and closed off by the cut Sa b. Now
consider the following question: Suppose we calculate the flux out
through surface S1 and add to it the flux through surface S2. Does
the sum equal the flux through the whole surface that we started with?
The answer is yes. The flux through the part of the surfaces Sa b
common to both S1 and S2 just exactly cancels out. For the flux of
the vector C out of V1 we can write
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(3.14)







and for the flux out of V2,
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(3.15)







Note that in the second integral we have written n1 for the
outward normal for Sa b when it belongs to S1, and n2
when it belongs to S2, as shown in Fig. 3–4. Clearly,
n1=−n2, so that
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(3.16)






If we now add Eqs. (3.14) and (3.15), we see that the sum of the fluxes through S1 and S2 is just the sum of two integrals which, taken together, give the flux through the original surface S=Sa+Sb.




We see that the flux through the complete outer surface S can be
considered as the sum of the fluxes from the two pieces into which the
volume was broken. We can similarly subdivide again—say by
cutting V1 into two pieces. You see that the same arguments apply. So
for any way of dividing the original volume, it must be generally
true that the flux through the outer surface, which is the original
integral, is equal to a sum of the fluxes out of all the little interior
pieces.







3–3 The flux from a cube; Gauss’ theorem


[image: -]
Fig. 3–5. Computation of the flux of C out of a small cube.





We now take the special case of a small cube1
and find an interesting formula for the flux out of it. Consider a
cube whose edges are lined up with the axes as in Fig. 3–5.
Let us suppose that the coordinates of the corner nearest the origin are
x, y, z. Let Δ x be the length of the cube in the x-direction,
Δ y be the length in the y-direction, and Δ z be the
length in the z-direction. We wish to find the flux of a vector
field C through the surface of the cube. We shall do this by
making a sum of the fluxes through each of the six faces. First,
consider the face marked 1 in the figure. The flux outward on
this face is the negative of the x-component of C, integrated
over the area of the face. This flux is
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Since we are considering a small cube, we can approximate this
integral by the value of Cx at the center of the face—which we
call the point (1)—multiplied by the area of the face, Δ y Δ z:
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Similarly, for the flux out of face 2, we write
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Now Cx (1) and Cx (2) are, in general, slightly different.
If Δ x is small enough, we can write
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There are, of course, more terms, but they will involve (Δ x)2
and higher powers, and so will be negligible if we consider only the
limit of small Δ x. So the flux through face 2 is
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Summing the fluxes for faces 1 and 2, we get
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The derivative should really be evaluated at the center of face 1;
that is, at [x,y+(Δ y/2),z+(Δ z/2)]. But in the limit of
an infinitesimal cube, we make a negligible error if we evaluate it at
the corner (x,y,z).




Applying the same reasoning to each of the other pairs of faces, we
have
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and
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The total flux through all the faces is the sum of these terms. We
find that
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and the sum of the derivatives is just ∇⋅C. Also, Δ x Δ y Δ z=Δ V, the volume of the cube. So we can say
that for an infinitesimal cube
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(3.17)






We have shown that the outward flux from the surface of an
infinitesimal cube is equal to the divergence of the vector multiplied
by the volume of the cube. We now see the “meaning” of the
divergence of a vector. The divergence of a vector at the point P is
the flux—the outgoing “flow” of C—per unit volume,
in the neighborhood of P.




We have connected the divergence of C to the flux of C out
of each infinitesimal volume. For any finite volume we can use the
fact we proved above—that the total flux from a volume is the sum of
the fluxes out of each part. We can, that is, integrate the divergence
over the entire volume. This gives us the theorem that the integral of
the normal component of any vector over any closed surface can also be
written as the integral of the divergence of the vector over the
volume enclosed by the surface. This theorem is named after
Gauss.



  GAUSS’ THEOREM
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(3.18)






where S is any closed surface and V is the volume inside it.







3–4 Heat conduction; the diffusion equation


Let’s consider an example of the use of this theorem, just to get
familiar with it. Suppose we take again the case of heat flow in, say,
a metal. Suppose we have a simple situation in which all the heat has
been previously put in and the body is just cooling off. There are no
sources of heat, so that heat is conserved. Then how much heat is
there inside some chosen volume at any time? It must be
decreasing by just the amount that flows out of the surface of
the volume. If our volume is a little cube, we would write, following
Eq. (3.17),
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(3.19)






But this must equal the rate of loss of the heat inside the cube. If q
is the heat per unit volume, the heat in the cube is q Δ V, and
the rate of loss is
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(3.20)






Comparing (3.19) and (3.20), we see that
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(3.21)











Take careful note of the form of this equation; the form appears often
in physics. It expresses a conservation law—here the conservation of
heat. We have expressed the same physical fact in another way in
Eq. (3.13). Here we have the differential form of a
conservation equation, while Eq. (3.13) is the
integral form.




We have obtained Eq. (3.21) by applying
Eq. (3.13) to an infinitesimal cube. We can also go the
other way. For a big volume V bounded by S, Gauss’ law says that
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(3.22)






Using (3.21), the integral on the right-hand side is found
to be just −d Q/d t, and again we have Eq. (3.13).




Now let’s consider a different case. Imagine that we have a block of
material and that inside it there is a very tiny hole in which some
chemical reaction is taking place and generating heat. Or we could
imagine that there are some wires running into a tiny resistor that is
being heated by an electric current. We shall suppose that the heat is
generated practically at a point, and let W represent the energy
liberated per second at that point. We shall suppose that in the rest
of the volume heat is conserved, and that the heat generation has been
going on for a long time—so that now the temperature is no longer
changing anywhere. The problem is: What does the heat vector h
look like at various places in the metal? How much heat flow is there
at each point?




[image: -]
Fig. 3–6. In the region near a point source of heat, the heat flow is
radially outward.





We know that if we integrate the normal component of h over a
closed surface that encloses the source, we will always get W. All
the heat that is being generated at the point source must flow out
through the surface, since we have supposed that the flow is
steady. We have the difficult problem of finding a vector field which,
when integrated over any surface, always gives W. We can, however,
find the field rather easily by taking a somewhat special surface. We
take a sphere of radius R, centered at the source, and assume that
the heat flow is radial (Fig. 3–6). Our intuition tells
us that h should be radial if the block of material is large and
we don’t get too close to the edges, and it should also have the same
magnitude at all points on the sphere. You see that we are adding a
certain amount of guesswork—usually called “physical
intuition”—to our mathematics in order to find the answer.




When h is radial and spherically symmetric, the integral of the
normal component of h over the area is very simple, because the
normal component is just the magnitude of h and is constant. The
area over which we integrate is 4 π R2. We have then that
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(3.23)






(where h is the magnitude of h). This integral should equal W,
the rate at which heat is produced at the source. We get
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or
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(3.24)






where, as usual, er represents a unit vector in the radial
direction. Our result says that h is proportional to W and
varies inversely as the square of the distance from the source.




The result we have just obtained applies to the heat flow in the
vicinity of a point source of heat. Let’s now try to find the
equations that hold in the most general kind of heat flow, keeping
only the condition that heat is conserved. We will be dealing only
with what happens at places outside of any sources or absorbers of
heat.




The differential equation for the conduction of heat was derived in
Chapter 2. According to Eq. (2.44),
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(3.25)






(Remember that this relationship is an approximate one, but fairly
good for some materials like metals.) It is applicable, of course,
only in regions of the material where there is no generation or
absorption of heat. We derived above another relation,
Eq. (3.21), that holds when heat is conserved. If we combine
that equation with (3.25), we get
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or
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(3.26)






if κ is a constant. You remember that q is the amount of heat
in a unit volume and ∇⋅∇=∇2 is the Laplacian
operator
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If we now make one more assumption we can obtain a very interesting
equation. We assume that the temperature of the material is
proportional to the heat content per unit volume—that is, that the
material has a definite specific heat. When this assumption is valid
(as it often is), we can write
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or
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(3.27)






The rate of change of heat is proportional to the rate of change of temperature. The constant of proportionality cv is, here, the specific heat per unit volume of the material. Using Eq. (3.27) with (3.26), we get 
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(3.28)






We find that the time rate of change of T—at every
point—is proportional to the Laplacian of T, which is the second
derivative of its spatial dependence. We have a differential
equation—in x, y, z, and t—for the temperature T.




The differential equation (3.28) is called the heat
diffusion equation. It is often written as
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(3.29)






where D is called the diffusion constant, and is here equal
to κ/cv.




The diffusion equation appears in many physical problems—in the
diffusion of gases, in the diffusion of neutrons, and in others. We
have already discussed the physics of some of these phenomena in
Chapter 43 of Vol. I. Now you have the complete
equation that describes diffusion in the most general possible
situation. At some later time we will take up ways of solving the
diffusion equation to find how the temperature varies in particular
cases. We turn back now to consider other theorems about vector
fields.







3–5 The circulation of a vector field


We wish now to look at the curl in somewhat the same way we looked at
the divergence. We obtained Gauss’ theorem by considering the integral
over a surface, although it was not obvious at the beginning that we
were going to be dealing with the divergence. How did we know that we
were supposed to integrate over a surface in order to get the
divergence? It was not at all clear that this would be the result. And
so with an apparent equal lack of justification, we shall calculate
something else about a vector and show that it is related to the
curl. This time we calculate what is called the circulation of a
vector field. If C is any vector field, we take its component
along a curved line and take the integral of this component all the
way around a complete loop. The integral is called the
circulation of the vector field around the loop. We have
already considered a line integral of ∇ψ earlier in this
chapter. Now we do the same kind of thing for any vector field C.




[image: -]
Fig. 3–7. The circulation of C around the curve Γ is the
line integral of Ct, the tangential component of C.





Let Γ be any closed loop in space—imaginary, of course. An
example is given in Fig. 3–7. The line integral of the
tangential component of C around the loop is written as
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(3.30)






You should note that the integral is taken all the way around, not
from one point to another as we did before. The little circle on the
integral sign is to remind us that the integral is to be taken all the
way around. This integral is called the circulation of the vector
field around the curve Γ. The name came originally from
considering the circulation of a liquid. But the name—like
flux—has been extended to apply to any field even when there is no
material “circulating.”




Playing the same kind of game we did with the flux, we can show that
the circulation around a loop is the sum of the circulations around
two partial loops. Suppose we break up our curve of
Fig. 3–7 into two loops, by joining two points (1)
and (2) on the original curve by some line that cuts across as shown
in Fig. 3–8. There are now two loops, Γ1
and Γ2. Γ1 is made up of Γa, which is that part
of the original curve to the left of (1) and (2),
plus Γa b, the “short cut.”  Γ2 is made up of the
rest of the original curve plus the short cut.




[image: -]
Fig. 3–8. The circulation around the whole loop is the sum of the
circulations around the two loops: Γ1=Γa+Γa b
and Γ2=Γb+Γa b.





The circulation around Γ1 is the sum of an integral
along Γa and along Γa b. Similarly, the circulation
around Γ2 is the sum of two parts, one along Γb and the
other along Γa b. The integral along Γa b will have,
for the curve Γ2, the opposite sign from what it has
for Γ1, because the direction of travel is opposite—we must
take both our line integrals with the same “sense” of rotation.




Following the same kind of argument we used before, you can see that
the sum of the two circulations will give just the line integral
around the original curve Γ. The parts due to Γa b
cancel. The circulation around the one part plus the circulation
around the second part equals the circulation about the outer line. We
can continue the process of cutting the original loop into any number
of smaller loops. When we add the circulations of the smaller loops,
there is always a cancellation of the parts on their adjacent
portions, so that the sum is equivalent to the circulation around the
original single loop.




[image: -]
Fig. 3–9. Some surface bounded by the loop Γ is chosen. The
surface is divided into a number of small areas, each approximately
a square. The circulation around Γ is the sum of the
circulations around the little loops.





Now let us suppose that the original loop is the boundary of some
surface. There are, of course, an infinite number of surfaces which
all have the original loops as the boundary. Our results will not,
however, depend on which surface we choose. First, we break our
original loop into a number of small loops that all lie on the surface
we have chosen, as in Fig. 3–9. No matter what the
shape of the surface, if we choose our small loops small enough, we
can assume that each of the small loops will enclose an area which is
essentially flat. Also, we can choose our small loops so that each is
very nearly a square. Now we can calculate the circulation around the
big loop Γ by finding the circulations around all of the little
squares and then taking their sum.







3–6 The circulation around a square; Stokes’ theorem


How shall we find the circulation for each little square? One question
is, how is the square oriented in space? We could easily make the
calculation if it had a special orientation. For example, if it were
in one of the coordinate planes. Since we have not assumed anything as
yet about the orientation of the coordinate axes, we can just as well
choose the axes so that the one little square we are concentrating on
at the moment lies in the x y-plane, as in Fig. 3–10. If
our result is expressed in vector notation, we can say that it will be
the same no matter what the particular orientation of the plane.




[image: -]
Fig. 3–10. Computing the circulation of C around a small square.





We want now to find the circulation of the field C around our
little square. It will be easy to do the line integral if we make the
square small enough that the vector C doesn’t change much along
any one side of the square. (The assumption is better the smaller the
square, so we are really talking about infinitesimal squares.)
Starting at the point (x,y)—the lower left corner of the
figure—we go around in the direction indicated by the arrows. Along
the first side—marked (1)—the tangential component is Cx (1)
and the distance is Δ x. The first part of the integral
is Cx (1) Δ x. Along the second leg, we get Cy (2) Δ y.
Along the third, we get −Cx (3) Δ x, and along the
fourth, −Cy (4) Δ y. The minus signs are required because we
want the tangential component in the direction of travel. The whole line
integral is then
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(3.31)












Now let’s look at the first and third pieces. Together they are
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(3.32)






You might think that to our approximation the difference is zero. That
is true to the first approximation. We can be more accurate, however,
and take into account the rate of change of Cx. If we do, we may
write
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(3.33)






If we included the next approximation, it would involve terms
in (Δ y)2, but since we will ultimately think of the limit as
Δ y→0, such terms can be neglected. Putting (3.33)
together with (3.32), we find that
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(3.34)






The derivative can, to our approximation, be evaluated at (x,y).




Similarly, for the other two terms in the circulation, we may write
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(3.35)






The circulation around our square is then
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(3.36)






which is interesting, because the two terms in the parentheses are
just the z-component of the curl. Also, we note that Δ x Δ y is the area of our square. So we can write our
circulation (3.36) as
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But the z-component really means the component normal to the
surface element. We can, therefore, write the circulation around a
differential square in an invariant vector form:
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(3.37)











Our result is: the circulation of any vector C around an
infinitesimal square is the component of the curl of C normal to
the surface, times the area of the square.




[image: -]
Fig. 3–11. The circulation of C around Γ is the surface
integral of the normal component of ∇×C.





The circulation around any loop Γ can now be easily related to
the curl of the vector field. We fill in the loop with any convenient
surface S, as in Fig. 3–11, and add the circulations
around a set of infinitesimal squares in this surface. The sum can be
written as an integral. Our result is a very useful theorem called
Stokes’ theorem (after Mr. Stokes).



  STOKES’ THEOREM
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(3.38)






where S is any surface bounded by Γ.




We must now speak about a convention of signs. In Fig. 3–10
the z-axis would point toward you in a “usual”—that is,
“right-handed”—system of axes. When we took our line integral with a
“positive” sense of rotation, we found that the circulation was equal
to the z-component of ∇×C. If we had gone around the
other way, we would have gotten the opposite sign. Now how shall we
know, in general, what direction to choose for the positive direction of
the “normal” component of ∇×C? The “positive” normal
must always be related to the sense of rotation, as in
Fig. 3–10. It is indicated for the general case in
Fig. 3–11.




One way of remembering the relationship is by the “right-hand rule.”
If you make the fingers of your right hand go around the
curve Γ, with the fingertips pointed in the direction of the
positive sense of d s, then your thumb points in the direction of
the positive normal to the surface S.







3–7 Curl-free and divergence-free fields


[image: -]
Fig. 3–12. If ∇×C is zero, the circulation around the
closed curve Γ is zero. The line integral from (1) to (2)
along a must be the same as the line integral along b.





We would like, now, to consider some consequences of our new
theorems. Take first the case of a vector whose curl is
everywhere zero. Then Stokes’ theorem says that the circulation
around any loop is zero. Now if we choose two points (1) and (2)
on a closed curve (Fig. 3–12), it follows that the line
integral of the tangential component from (1) to (2) is
independent of which of the two possible paths is taken. We can
conclude that the integral from (1) to (2) can depend only on the
location of these points—that is to say, it is some function of
position only. The same logic was used in Chapter 14 of
Vol. I, where we proved that if the integral around a closed loop of
some quantity is always zero, then that integral can be represented as
the difference of a function of the position of the two ends. This
fact allowed us to invent the idea of a potential. We proved,
furthermore, that the vector field was the gradient of this potential
function (see Eq. (14.13) of Vol. I).




It follows that any vector field whose curl is zero is equal to the
gradient of some scalar function. That is, if
∇×C=0, everywhere, there is some ψ (psi) for
which C=∇ψ—a useful idea. We can, if we wish,
describe this special kind of vector field by means of a scalar field.




Let’s show something else. Suppose we have any scalar
field ϕ (phi). If we take its gradient, ∇ϕ, the
integral of this vector around any closed loop must be zero. Its line
integral from point (1) to point (2) is [ϕ (2)−ϕ (1)]. If
(1) and (2) are the same points, our Theorem 1,
Eq. (3.8), tells us that the line integral is zero:
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Using Stokes’ theorem, we can conclude that
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over any surface. But if the integral is zero over any
surface, the integrand must be zero. So
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We proved the same result in Section 2–7 by vector
algebra.





[image: -]
Fig. 3–13. Going to the limit of a closed surface, we find that the
surface integral of (∇×C)n must vanish.





Let’s look now at a special case in which we fill in a small
loop Γ with a large surface S, as indicated in
Fig. 3–13. We would like, in fact, to see what happens when
the loop shrinks down to a point, so that the surface boundary
disappears—the surface becomes closed. Now if the vector C is
everywhere finite, the line integral around Γ must go to zero as
we shrink the loop—the integral is roughly proportional to the
circumference of Γ, which goes to zero. According to Stokes’
theorem, the surface integral of (∇×C)n must also vanish.
Somehow, as we close the surface we add in contributions that cancel out
what was there before. So we have a new theorem:
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(3.39)











Now this is interesting, because we already have a theorem about the
surface integral of a vector field. Such a surface integral is equal
to the volume integral of the divergence of the vector, according to
Gauss’ theorem (Eq. 3.18). Gauss’ theorem, applied
to ∇×C, says
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(3.40)






So we conclude that the second integral must also be zero:
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(3.41)






and this is true for any vector field C whatever. Since
Eq. (3.41) is true for any volume, it must be true
that at every point in space the integrand is zero. We have
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But this is the same result we got from vector
algebra in
Section 2–7. Now we begin to see how everything fits
together.








3–8 Summary


Let us summarize what we have found about the vector calculus. These
are really the salient points of Chapters 2
and 3:


	The operators ∂/∂x, ∂/∂y, and ∂/∂z can
be considered as the three components of a vector operator ∇,
and the formulas which result from vector
algebra by
treating this operator as a vector are correct:
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	The difference of the values of a scalar field at two points is
equal to the line integral of the tangential component of the gradient
of that scalar along any curve at all between the first and second
points:
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(3.42)







	The surface integral of the normal component of an arbitrary
vector over a closed surface is equal to the integral of the
divergence of the vector over the volume interior to the surface:
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(3.43)







	The line integral of the tangential component of an arbitrary
vector around a closed loop is equal to the surface integral of the
normal component of the curl of that vector over any surface which is
bounded by the loop:
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(3.44)













	
  
  The following
development applies equally well to any rectangular parallelepiped.
  ^





  
    

4 Electrostatics


	
			
		Review:
		
			
		Chapters 13, and 14 Vol. I, Work and Potential Energy
		
	





4–1 Statics


We begin now our detailed study of the theory of
electromagnetism. All of electromagnetism is contained in the Maxwell
equations.



  Maxwell’s equations:
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(4.1)


(4.2)


(4.3)


(4.4)












The situations that are described by these equations can be very
complicated.  We will consider first relatively simple situations, and
learn how to handle them before we take up more complicated ones. The
easiest circumstance to treat is one in which nothing depends on the
time—called the static case. All charges are permanently
fixed in space, or if they do move, they move as a steady flow in a
circuit (so ρ and j are constant in time). In these
circumstances, all of the terms in the Maxwell equations which are time derivatives
of the field are zero. In this case, the Maxwell
equations
become:



  Electrostatics:
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