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Introduction


Numbers do not feel. Do not bleed or weep or hope. They do not know bravery or sacrifice. Love and allegiance. At the very apex of callousness, you will find only ones and zeros.


Amie Kaufman, Illuminae


Numbers are cold and unfeeling. People often dislike them for that reason, and it’s easy to understand why. At the time of writing, newspapers still report on daily death tolls from Covid-19, the pandemic which began to sweep around the world in the first half of 2020. When, in Britain, those daily tolls dropped down to the mere hundreds, where before they had been in their thousands, it felt like a light at the end of the tunnel.


Every one of those people, though, was an individual; they were unique. We can talk about the number of people who died during the pandemic – 41,369 in Britain by August, or 28,646 in Spain; or however many will have died around the world once the disease has eventually run its course, if it ever does. But that stark number tells us nothing about those individuals. They all had stories – who they were, what they did, who they loved and who loved them back. They will have been mourned.


Representing all those lost lives with a simple number – ‘today X people died’ – seems both harsh and stark; it ignores all the grief and heartbreak. It elides all that individuality, all those stories.


But if we hadn’t recorded daily death rates, and therefore kept track of the spread of the disease, it is very likely that many more people would have died. Many more unique, individual stories would have been brought to premature ends. We just wouldn’t have known how many.


In this book, we’re going to talk a lot about numbers: about how they’re used in the media, and about how they can go wrong – and give misleading impressions. But along the way we will need to remind ourselves that those numbers stand for something. Often they will represent people, or if not people, then things that matter to people.


This is, sort of, a book about maths. You may think that you are bad at maths and you may be worried you won’t understand it. You are not alone. Almost everyone seems to think they are bad at maths.


David teaches economics at the University of Durham. His students need to get an A in A-level maths to be admitted to the course, but quite a lot of them still say they’re bad at maths. Tom thinks he is pretty bad at maths, but he has won two awards from the Royal Statistical Society for ‘statistical excellence in journalism’ (he likes to drop that into conversation from time to time). David, too, sometimes thinks he’s bad at maths, and he literally teaches maths to people who are, themselves, good at maths.


You are probably better at maths than you think too. What you might not be particularly good at is mental arithmetic. When we think of people who are ‘good at maths’, we tend to think of people like Carol Vorderman or Rachel Riley off Countdown, people who can quickly do sums in their heads. They are good at maths, of course; but if you can’t do those sums in your head, it doesn’t mean that you’re not good at it.


Most of the time, we think of maths as having a right answer and a wrong answer. Again, that’s not really the case a lot of the time, at least in the sort of maths we’re talking about. For instance, take an apparently simple, if horrifying, number: the total death count from Covid-19. What number should we use? Should we talk about ‘confirmed’ deaths, where the diagnosis was established with a test? Or should we talk about ‘excess’ deaths, comparing the number of people who have died this year to the statistical average from the last few years? The two will give you very different answers, and which one we should use depends on what question we’re trying to answer. Neither is wrong; but neither is the ‘correct’ answer either.


What’s important is understanding why these numbers aren’t clear-cut, and why sometimes what sounds straightforward is in fact more complicated – especially since it is easy to use numbers to mislead or obfuscate, as people (notably but not exclusively politicians) have a tendency to do. These debates affect our lives, and our ability to participate in democracy. By analogy, it’s hard to have a functioning democratic state without a literate population; we need to be able to understand the policies our leaders are putting in place, in order to vote knowledgeably for or against those leaders when it comes to election time.


But it’s not enough to only be able to understand words. You also need to have some grasp of numbers. Our news increasingly comes in number form: police-reported crimes go up and down; a nation’s economy shrinks or grows; the latest figures on deaths and cases from Covid-19 are released. In order to understand the world around us, we may not need to be good at maths, but we do need to understand how numbers are made, how they’re used and how they can go wrong, because otherwise we’ll make bad decisions, as individuals and as a society.


Sometimes, it’s fairly clear how misunderstanding the statistics could lead to bad decisions: if we don’t know how many people have Covid-19, for instance, then we can’t judge the appropriate response. In others – such as those we’ll discuss elsewhere in this book, cases like whether or not bacon causes cancer, or whether or not drinking fizzy drinks makes you violent – it might not be so obvious. But we all use these numbers, consciously or otherwise, to help us navigate the world. Drinking red wine, taking exercise, investing money – we do these things on the basis that we think their benefits (to pleasure, health or wealth) outweigh their risks. We need to know what those benefits and risks are, and how big they are, if we’re going to make those decisions wisely. Often, we’re getting our understanding of those benefits and risks from the news.


You can’t rely on news organisations to give you those numbers straight, without exaggeration or cherry-picking. That’s not necessarily because they’re trying to deceive you; it’s just because they are trying to report exciting, interesting or shocking things, so that you buy their papers or watch their shows. It’s also because they – and we – crave narrative: stories in which problems have identifiable causes and solutions. And if you’re selecting numbers by how exciting, interesting or shocking they are, you’re likely to pick quite a lot that are wrong or misleading.


Also, while journalists are usually clever and (despite the stereotype) well intentioned, they’re not traditionally very good with numbers. That means the numbers you read in the news tend to be wrong. Not always, but often enough that it is wise to be wary.


Fortunately, the ways numbers get misrepresented are often predictable: for instance, they can be cherry-picked, by taking an outlier or using a particular starting point, or by chopping up the data repeatedly until you find something; they can be exaggerated, by using a percentage increase rather than the absolute change; they can be used to suggest causation, when really it’s just a correlation; and many other ways. This book will arm you with the tools you need to spot a few of them.


We don’t want to suggest that you can’t ever trust any number you read. We just want to help you make better decisions about which ones to trust, and when.


We’ve tried to keep the maths to a minimum. Almost everything that looks like an equation has been cut out and put into boxes outside the main text; you can read them if you like, but if you don’t it won’t limit your understanding.


Occasionally we haven’t been able to avoid some technical concepts, so you will come across things like ‘p=0.049’ or ‘r=-0.4’. Don’t worry. These are just shorthand for some fairly simple, real-life, concrete ideas which we are confident you’ll be able to grasp.


We’ve divided the book into twenty-two short chapters. Each one looks at a way in which numbers can mislead, using examples taken from the news. By the end of each chapter, we hope you will understand the problem and know how to spot it in future. We think it’s probably best to read the first eight chapters first – they contain some of the things that will help you understand the rest – but if you want to dip in and out, that’s also fine; if we refer to a concept we’ve discussed before, we’ll flag it up.


At the end of the book we make a few suggestions as to how the media could do it better – how some of the mistakes that we discuss can be avoided. We like to think of it as a statistical style guide, and we’d love it if you joined us in encouraging the media outlets that you watch and read to start using it.


So let’s get to it.




Chapter 1


How Numbers Can Mislead


While it is easy to lie with statistics, it is even easier to lie without them.


Attributed to the statistician Frederick Mosteller


Covid-19 has provided the world with a high-stakes, high-speed lesson in statistical concepts. The population suddenly found itself having to understand exponential curves, infection fatality rates vs case fatality rates, false positives and negatives, uncertainty intervals. Some of those were obviously complex – but even the ones that felt like they should have been simple, like the number of people who died from the virus, turned out to be slippery. In this first chapter, we’ll have a look at how an apparently straightforward number can mislead in surprising ways.


One number that we all had to come to grips with early on was R. It is highly unlikely that in December 2019 more than one person in every fifty would have known what the R value was, yet by the end of March 2020 it was being discussed almost without explanation on mainstream news broadcasts. But because numbers can misbehave in subtle ways, well-intentioned efforts to inform readers of how R changed ended up misleading people.


Here’s a reminder: R is the reproductive number of something. It can apply to anything that spreads or reproduces – internet memes, humans, yawns, new technologies. In infectious-disease epidemiology, it’s how many people, on average, will be infected by a single person with the disease. If a disease has an R of five, on average each infected person will infect five other people.


Obviously, it’s not as simple as that; it’s an average. An R value of five could mean that, if you had 100 people, every single one infects exactly five people; or it could mean that ninety-nine of them infect nobody at all and one of them infects 500 people. Or anything in between.


It’s also not a constant. The R of a new disease at the very start of an outbreak, when no one in the population has immunity to the pathogen, and no countermeasures are likely to be in place – such as social distancing or mask-wearing – might be very different to later on. One goal of public-health policy during an outbreak is to lower R, with vaccinations or behaviour changes, because if R is greater than one the disease will spread exponentially, and if it’s below one it will dwindle away.


But, considering these complications, you’d think that there would, in the case of a virus, be one simple rule: if R gets higher, that is bad. So you were probably unsurprised by the tone of the headlines in the British press in early May 2020, warning that ‘the virus’s R rate may have gone back UP’1 due to a ‘spike in care home infections’.2


But, as with everything else, it’s a bit more complicated than that.


Between 2000 and 2013, the US median wage went up by about 1 per cent, in real terms (i.e., adjusted for inflation).3



You do not need to read this box, but if you can’t remember the difference between a median and a mean average, go ahead.


You might remember ‘mean’, ‘median’ and ‘mode’ aver­ages from school. The ‘mean’ is the one you probably know: it’s what you get if you add all the values together and then divide them by the number of values. The ‘median’ is the middle value in a series.


Here’s the difference. Imagine there are seven people in your population, and one of them earns £1 a year, one of them £2, one of them £3, and so on up to £7. If you add all those values together, you get (1+2+3+4+5+6+7) = 28. You divide 28 by the number of people, seven, and you get £4. So your mean average is £4.


To get the median, instead of adding them together, you line them all up in a row – so the person earning £1 on the far left, the person earning £2 next, and so on, with the person earning £7 standing on the right. Then you see who’s in the middle. In this case, it’s the person earning £4. So your median average is also £4.


Now imagine that the person who earns £7 sells her tech start-up to Facebook for a billion pounds. Suddenly, your mean average is (1+2+3+4+5+6+1,000,000,000)/7 = £142,857,146. So even though six out of the seven people are in the same situation they were before, the ‘average person’ in the group (going by the mean, at least) is a multimillionaire.


In unevenly distributed situations like this, statisticians often prefer to use the median. If we do that, we line up our people from left to right again, and the person in the middle is still the person earning £4. In a real population of millions of people, this will tell you more about what the population is like than the mean will, especially if the mean is distorted by a few ultra-high-earners at the upper end of the income distribution.


The mode, meanwhile, is just the most common value. So if you have seventeen people earning £1, twenty-five people earning £2, and forty-two people earning £3, then the modal average is £3. It gets a bit more complicated when statisticians use it to describe continuous quantities, like height, but let’s just forget about that for now …




The median wage going up sounds like a good thing. But when you look at the population in smaller groups, you notice something strange. The median wage for people who hadn’t completed high school had gone down, by 7.9 per cent. The median wage for high-school graduates had gone down, by 4.7 per cent. The median wage for people who’d attended university but not got a degree had gone down, by 7.6 per cent. And the median wage for people who’d achieved a degree had gone down, by 1.2 per cent.


People who did complete high school and people who didn’t; people who did complete college and people who didn’t. So the median wage of every single educational group went down, and yet the median wage of the population as a whole went up.


So what’s going on?


What’s going on is that even though the median wage of people with degrees went down, the number of people with degrees went up considerably. As a result, the median starts doing strange things. This is called Simpson’s paradox, after the British code-breaker and statistician Edward H. Simpson, who described the phenomenon happening here in 1951.4 It doesn’t just apply to medians – it can happen with means as well – but in our example we will use medians.


Let’s imagine that there are eleven people in the population. Three of them dropped out of high school and earn £5 a year; three of them completed high school and earn £10 a year; three of them dropped out of university and earn £15 a year; and two of them got a bachelor’s degree and earn £20 a year. The median wage for the population as a whole (that is, the wage of the middle person in the distribution: see box on previous page) is £10.


Then, one year, the government makes a huge drive to get more people through high school and university. But at the same time, the average wage of each group falls by £1. Suddenly there are two high-school dropouts earning £4, two high-school graduates earning £9, two university dropouts earning £14, and five university graduates earning £19. For every group, the median wage has gone down; but for the group as a whole the median wage has gone up, from £10 to £14. Something like this, but with bigger numbers, happened in the real US economy between 2000 and 2013.
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It’s surprisingly common. For instance, black people in the USA are more likely to smoke than white people; but when you control for education, you see that in every educational subgroup, black people are less likely to smoke. It’s just that a lower proportion of black people are in the higher educational subgroups, which tend to smoke less.5


Or here’s a famous example. In September 1973, 8,000 men and 4,000 women applied to grad school at the University of California in Berkeley. Of those, 44 per cent of the men were admitted and just 35 per cent of the women.


But if you looked at the data more closely, you’d notice that at almost every department of the university, female applicants were more likely to be granted admission. The most popular department admitted 82 per cent of women who applied and just 62 per cent of men; the second most popular admitted 68 per cent of women and 65 per cent of men.


What was happening was that women were applying for much more competitive departments. One department had 933 applicants, of whom 108 were women. It admitted 82 per cent of those women, and 62 per cent of the men.


Meanwhile, at the sixth most popular department, there were 714 applicants, of whom 341 were women. That department admitted just 7 per cent of the women, and 6 per cent of the men.


But if you combine the data from the two departments together, there were 449 women who applied and 1,199 men. Of the women, 111 were admitted, or 25 per cent; of the men, 533, or 44 per cent.


Once again, in both departments individually, women were more likely to be admitted; but in both departments together, women were less likely.


What’s the best way of looking at it? Well, it depends. You could argue that in the case of US wages, the population median is more informative, because the median US person’s wage has gone up (because more Americans now finish college and high school). Or you could argue that the average woman is more likely to be admitted than a man, whatever her choice of department. But, equally, you could point out that for those people who don’t have a high-school diploma, the situation has got worse; and you could point out that the departments that women want to apply to are apparently under-resourced, because they can only accept a tiny fraction of the people who want to go there. The trouble is that, in Simpson’s-paradox situations, you can use the same data to tell diametrically opposed stories, depending on what political point you want to make. The honest thing to do is to explain that the paradox is present.


Let’s get back to the R value of Covid-19. It went up, so the virus is spreading to more people, which is bad.


Except, of course, it was more complicated than that. There were two quasi-separate ‘epidemics’ going on at the same time – the disease was spreading differently in care homes and hospitals to how it was spreading in the wider community.


We don’t know the real numbers, because they weren’t released in that much detail. But we could do a similar sort of thought experiment to the one above. Imagine that there were 100 people with the disease in care homes, and another 100 in the community. On average, each person in the community passes it to two people, and each person in the care homes passes it to three. The R (the average number of people each disease-carrier infects) is 2.5.


Then we go into lockdown. The number of infected people goes down, and so does the R. But – crucially – it does so more in the community than in care homes. Now there are ninety infected people in care homes, who each pass it on to an average of 2.9 people, and there are ten infected people in the community, who each pass it on to an average of one person. The R is now 2.71.* It’s gone up! But in both actual groups, the R has gone down.


What’s the correct way of looking at it? Again, it’s not necessarily obvious; it may be that the overall R is what you care about, since the two epidemics aren’t really separate. But it’s certainly more complicated than ‘the R value going up is bad’.


Simpson’s paradox is one example of a wider problem, known as ‘the ecological fallacy’, that you get when you try to learn about individuals or subgroups by looking at the average of a group. The ecological fallacy is more common than you might think. For readers, and journalists, it’s important to understand that the headline figure might conceal a more complex reality, and that, in order to understand it, you might need to break it down further.


 


 





* That is: [(90×2.9)+(10×1)]/100 = 2.71




Chapter 2


Anecdotal Evidence


In 2019, both the Daily Mail1 and the Mirror2 reported on a woman who was told she had terminal cancer, but who underwent alternative therapies –‘including hyperbaric oxygen therapy, full body hypothermia, infrared lamp therapy, pulsed electro-magnetic field therapy, coffee enemas, saunas and vitamin C IV therapy’ – at a clinic in Mexico, and whose tumour shrank dramatically.


We would assume most readers of this book will have a healthy suspicion of stories like this. But it’s an important starting place for understanding how numbers go wrong. It may not seem as though it includes any numbers at all, but it does. The number they’re using is hidden, but it’s there – the number one. A single person’s story, being used to support a claim. It’s an example of what we call ‘anecdotal evidence’.


Anecdotal evidence has a bad reputation, but it’s not inherently wrong. How do we normally decide whether something is true or not? In a very basic way: we check for ourselves, or we listen to other people who have checked.


If we touch a hot pan, and it burns us, we are confident – even with just that one piece of evidence – that hot stoves burn us, that they will always burn us, and that touching them is usually a bad idea. More than that: if someone else tells us that a pan is hot and will burn us, we are usually happy to trust them. We trust other people’s experience. In this case, we don’t need to do any sort of statistical analysis.


Almost all of the time, as we navigate through life, this approach to evidence is effective. Learning by anecdote or example – by a single person observing a thing and drawing a conclusion – is, very often, all we need. But why? Why is anecdotal evidence OK here, but misleading elsewhere?


It’s because, in the case of hot stoves, the outcome of touching it a second time will almost certainly be the same. You could touch the pan over and over again and be pretty sure that it will always burn you. You can never prove it with absolute certainty – perhaps, on the 15,363,205th time, it will feel cold. Or the 25,226,968,547th. You’d need to keep touching the stove until the end of time to be sure it will always burn you, which is probably a bad idea. But most people would probably be happy to assume that if a hot pan burns once, it’ll probably burn every time.


There are other things that generally work the same way every time. If you drop something heavy, it always falls down. As long as you remain on Earth, that will happen in a consistent way. The way it happens the first time is a fair example of how it will happen every time. In statistical language, it is representative of the distribution of events.


It is hard to avoid using anecdotes. Throughout this book, we’ll be using anecdotes – we’ll use specific examples of how numbers go wrong in the media, and we hope you’ll trust us when we say that they’re reasonably representative of how they go wrong more generally.


The problem comes when you start using anecdotes in situations where things are more unpredictable – where the distribution of events isn’t straightforward. For instance, imagine that instead of touching a stove, you pet a dog and it bites you. It might be reasonable to conclude that you ought to be more careful, but you can’t conclude ‘every time you touch a dog, it bites you’. Or instead of dropping a heavy weight, you release a helium balloon. You notice it drifts up and to the west on the wind. You can’t conclude ‘every time you release a balloon, it goes westward’. The difficulty is in telling which situations are consistent – which are predictable, like the hot stove or the dropped stone, and which are less so, like the helium balloon.


This is a problem in situations such as medicine. You might have some condition – let’s say a headache – and you take medicine for it; let’s say paracetamol, also known as acetaminophen. For many people, that will be effective. But for a significant percentage of people, it might not be. Each of those people can tell a story, an anecdote, about the drug not working. But on average, it reduces pain. No single anecdote, or even several, will give you the full picture.


 The media, though, is built around stories. For instance: ‘I’ve cured my chronic back pain with £19 patch – but NHS won’t prescribe it,’ says Gary from Essex, as reported by the Mirror in 2019.3 He’d been suffering for years with lower-back pain caused by something called ‘degenerative disc disorder’, and had had to retire at just fifty-five; he was on a ‘phenomenal concoction’ of painkillers and anti-inflammatory drugs, worth thousands of pounds a year. And then he started using something called ActiPatch, which ‘uses electromagnetic pulses to stimulate the neuromodulation of nerves, which helps to dampen the feeling of pain’. Soon after, he was able to reduce his intake of painkillers by half. Did the patch cure his back pain? Maybe. From the story by itself, we just don’t know.


According to a systematic review in the BMJ in 2010,4 about one person in ten worldwide suffers from lower-back pain: millions of people in Britain alone. It’s a pretty unpleasant thing to have, and apart from prescribing painkillers and exercise there’s not a great deal that doctors can do to treat it, so quite a lot of patients will try alternative methods – perhaps ActiPatch, or something like ActiPatch. And sometimes people get better, all by themselves, whether or not they’ve used ActiPatch or some other remedy.


So, quite often, a patient will try a new alternative remedy, and then they will get better. And, quite often, the two will be entirely unconnected. So individual anecdotes of people getting better after using some medicine or other can easily be misleading.


The problem is actually worse than we’ve made it sound, because the media likes news. It seeks out the most interesting and surprising things, or the most heartwarming, or whatever will grab readers’ attention. That’s not a criticism – there’s no way the media could report what happens to the median person every day. But it means that surprising things are more likely than unsurprising things to get into the papers.


To be clear: that may or may not be what happened with Gary and ActiPatch. The fact that the evidence is weak doesn’t mean that the conclusion is incorrect; maybe ActiPatch is effective (there is some5 evidence6 for similar devices working, and the US FDA cleared ActiPatch for use in treatment of back pain in 2020),7 and maybe it did work for Gary. It just means that we can’t use Gary’s story to tell us very much. If we didn’t think before that ActiPatch might work, then we shouldn’t think so now.


Lower-back pain is a nasty thing to have, and clearly put some hard limits on Gary’s life. But on the scale of things, if a lot of people read his story and end up using a patch in the hope that it will reduce their backache, that isn’t such a terrible outcome. And perhaps it will do some good – if the treatment works, or if it gives people hope, or reduces pain via the placebo effect – although at a cost, to the health service or patients who pay for it.


Sometimes, it’s easy to laugh at. For instance, another story in the Mail in 20198 claimed that six people recovered from psoriasis after taking homeopathic remedies based on snake venom, whale vomit, decomposed beef and ‘the urethral discharge of a man who had gonorrhoea’.


So there may be a tendency to say ‘what’s the harm?’. In other situations, though – such as the story with which we started this chapter, of the woman who treated her cancer with alternative medicine – it can be more serious. To be clear: there is no good reason to think that hyperbaric oxygen therapy or coffee enemas will treat cancer. But there is good reason to think that there are millions of desperate cancer patients around the world, many of whom will try ever more extreme things in an attempt to get rid of their disease; and also that, sometimes, people get better from cancer. The chance for coincidence, just as with Gary and his back, is enormous.


Perhaps in the case of the woman who treated her cancer with coffee, no harm was done: if her cancer got better, then that’s wonderful news, whether or not the coffee helped. And perhaps it gave her hope. But if people are discouraged from using real, evidence-based medicine because they read in the newspaper about someone getting better from using pulsed electro-magnetic field therapy, whatever that is, then that could be dangerous. That is why it is important that we, as a society, understand evidence – how it works, and when it doesn’t. That applies to anecdotal evidence, but it applies to all the concepts in this book, when the numbers – and the ways they go wrong – get more complex.


We’re not saying that anecdotal evidence is useless. Most of the time we use it very successfully to navigate the world – that restaurant is really nice; you’ll like that film; their new album is rubbish. But when it is filtered through the media, the chances of coincidence are high and it becomes largely useless.


In the next chapter, we’ll talk about what happens when the numbers get a bit bigger, and why that is a bit better – but only a bit.




Chapter 3


Sample Sizes


Does swearing when you try to lift something heavy make it easier? Apparently, according to a news story in the Guardian.1 It sounds quasi-plausible: most of us will have sworn lavishly while trying to move an IKEA wardrobe that we have unwisely built in the wrong part of the house and now have to carry up the stairs. Maybe it helped.


The story was based on a study carried out at Keele University.2 In the last chapter, we talked about how news stories based on anecdotal evidence – that is, people’s stories about their experience – can easily be misleading. But scientific studies have to be better, right?


Well, sort of.


But not all scientific studies are created equal.


If one person’s experience isn’t enough to convince you of something, how many should be? It’s not a hard-and-fast rule. But let’s imagine you want to learn something – say, the height of British men. You’re an alien who’s never seen a British man, so you have no idea. They might be microns high; they might be the size of stellar clusters. You just don’t know.
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