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INTRODUCTION



This is a book about math. That was the plan, anyway.


Somewhere, it took an unexpected left turn. Before long, I found myself without cell phone reception, navigating a series of underground tunnels. When I emerged into the light, the book was still about math, but it was about lots of other things, too: Why people buy lottery tickets. How a children’s book author swung a Swedish election. What defines a “Gothic” novel. Whether building a giant spherical space station was really the wisest move for Darth Vader and the Empire.


That’s math for you. It connects far-flung corners of life, like a secret system of Mario tubes.
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If this description rings false to you, it’s perhaps because you’ve been to a place called “school.” If so, you have my condolences.


When I graduated from college in 2009, I thought I knew why mathematics was unpopular: It was, on the whole, badly taught. Math class took a beautiful, imaginative, logical art, shredded it into a bowl of confetti, and assigned students the impossible, mind-numbing task of piecing the original back together. No wonder they groaned. No wonder they failed. No wonder adults look back on their math experiences with a shudder and a gag reflex. The solution struck me as obvious: Math required better explanations, better explainers.


Then I became a teacher. Undertrained and oozing hubris, I needed a brutal first year in the classroom to teach me that, whatever I knew about math, I didn’t yet understand math education, or what the subject meant to my students.


One day that September, I found myself leading an awkward impromptu discussion of why we study geometry. Did grown-ups write two-column proofs? Did engineers work in “no calculator” environments? Did personal finance demand heavy use of the rhombus? None of the standard justifications rang true. In the end, my 9th graders settled on “We study math to prove to colleges and employers that we are smart and hardworking.” In this formulation, the math itself didn’t matter. Doing math was a weightlifting stunt, a pointless show of intellectual strength, a protracted exercise in résumé building. This depressed me, but it satisfied them, which depressed me even more.


The students weren’t wrong. Education has a competitive zero-sum aspect, in which math functions as a sorting mechanism. What they were missing—what I was failing to show them—was math’s deeper function.


Why does mathematics underlie everything in life? How does it manage to link disconnected realms—coins and genes, dice and stocks, books and baseball? The reason is that mathematics is a system of thinking, and every problem in the world benefits from thinking.


Since 2013, I’ve been writing about math and education—sometimes for publications like Slate, the Atlantic, and the Los Angeles Times, but mostly for my own blog, Math with Bad Drawings. People still ask me why I do the bad drawings. I find this odd. No one ever wonders why I choose to cook mediocre food, as if I’ve got a killer chicken l’orange that, on principle, I decline to serve. It’s the same with my art. Math with Bad Drawings is a less pathetic title than Math with the Best Drawings I Can Manage; Honestly, Guys, I’m Trying, but in my case they are equivalent.


I suppose my path began one day when I drew a dog on the board to illustrate a problem, and got the biggest laugh of my career. The students found my ineptitude shocking, hilarious, and, in the end, kind of charming. Math too often feels like a high-stakes competition; to see the alleged expert reveal himself as the worst in the room at something—anything—that can humanize him and, perhaps, by extension, the subject. My own humiliation has since become a key element in my pedagogy; you won’t find that in any teacher training program, but, hey, it works.
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Lots of days in the classroom, I strike out. Math feels to my students like a musty basement where meaningless symbols shuffle back and forth. The kids shrug, learn the choreography, and dance the tuneless dance.


But on livelier days, they see distant points of light and realize that the basement is a secret tunnel, linking everything they know to just about everything else. The students grapple and innovate, drawing connections, taking leaps, building that elusive virtue called “understanding.”


Unlike in the classroom, this book will sidestep the technical details.You’ll find few equations on these pages, and the spookiest ones are decorative anyway. (The hard core can seek elaboration in the endnotes.) Instead, I want to focus on what I see as the true heart of mathematics: the concepts. Each section of this book will tour a variety of landscapes, all sharing the underground network of a single big idea: How the rules of geometry constrain our design choices. How the methods of probability tap the liquor of eternity. How tiny increments yield quantum jumps. How statistics make legible the mad sprawl of reality.


Writing this book has brought me to places I didn’t expect. I hope that reading it does the same for you.


—BEN ORLIN, October 2017
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I



HOW TO THINK LIKE A MATHEMATICIAN


To be honest, mathematicians don’t do much. They drink coffee, frown at chalkboards. Drink tea, frown at students’ exams. Drink beer, frown at proofs they wrote last year and can’t for the life of them understand anymore.


It’s a life of drinking, frowning, and, most of all, thinking.
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You see, there are no physical objects in math: no chemicals to titrate, no particles to accelerate, no financial markets to destroy. Rather, the verbs of the mathematician all boil down to actions of thought. When we calculate, we turn one abstraction into another. When we give proofs, we build logical bridges between related ideas. When we write algorithms or computer programs, we enlist an electronic brain to think the thoughts that our meat brains are too slow or too busy to think for themselves.


Every year that I spend in the company of mathematics, I learn new styles of thought, new ways to use that nifty all-purpose tool inside the skull: How to master a game by fussing with its rules. How to save thoughts for later, by recording them in loopy Greek symbols. How to learn from my errors as if they were trusted professors. And how to stay resilient when the dragon of confusion comes nibbling at my toes.


In all these ways, mathematics is an action of the mind.


What about math’s vaunted “real-world” usefulness? How can spaceships and smartphones and godforsaken “targeted ads” emerge from this fantasy skyline of pure thought? Ah, patience, my friend. All that comes later. We’ve got to begin where all mathematics begins: That is to say, with a game…















Chapter 1



ULTIMATE TIC-TAC-TOE


WHAT IS MATHEMATICS?


Once at a picnic in Berkeley, I saw a group of mathematicians abandon their Frisbees to crowd around the last game I would have expected: tic-tac-toe.


As you may have discovered yourself, tic-tac-toe is terminally dull. (That’s a medical term.) Because there are so few possible moves, experienced players soon memorize the optimal strategy. Here’s how all my games play out:
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If both players have mastered the rules, every game will end in a draw, forever and ever. The result is rote gameplay, with no room for creativity.


But at that picnic in Berkeley, the mathematicians weren’t playing ordinary tic-tac-toe. Their board looked like this, with each square of the original nine turned into a mini-board of its own:
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As I watched, the basic rules became clear:
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But it took a while longer for the most important rule of the game to emerge:


You don’t get to pick which of the nine mini-boards to play on. Instead, that’s determined by your opponent’s previous move. Whichever square she picks on the mini-board, you must play next in the corresponding square on the big board.


(And whichever square you pick on that mini-board will determine which mini-board she plays on next.)
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This lends the game its strategic element. You can’t just focus on each mini-board in turn. You’ve got to consider where your move will send your opponent, and where her next move will send you—and so on, and so on.


(There’s only one exception to this rule: If your opponent sends you to a mini-board that’s already been won, then congratulations—you can go anywhere you like, on any of the other mini-boards.)


The resulting scenarios look bizarre, with players missing easy two-and three-in-a-rows. It’s like watching a basketball star bypass an open layup and fling the ball into the crowd. But there’s a method to the madness. They’re thinking ahead, wary of setting up their foe on prime real estate. A clever attack on a mini-board leaves you vulnerable on the big board, and vice versa—it’s a tension woven into the game’s fabric.


From time to time, I play Ultimate Tic-Tac-Toe with my students; they enjoy the strategy, the chance to defeat a teacher, and, most of all, the absence of trigonometric functions. But every so often, one of them will ask a sheepish and natural question: “So, I like the game,” they’ll say, “but what does any of this have to do with math?”


I know how the world sees my chosen occupation: a dreary tyranny of inflexible rules and formulaic procedures, no more tension-filled than, say, insurance enrollment, or filling out your taxes. Here’s the sort of tedious task we associate with mathematics:
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This problem can hold your attention for a few minutes, I guess, but before long the actual concepts slip from mind. “Perimeter” no longer means the length of a stroll around the rectangle’s border; it’s just “the two numbers, doubled and added.” “Area” doesn’t refer to the number of one-by-one squares it takes to cover the rectangle; it’s just “the two numbers, multiplied.” As if competing in a game of garden-variety tic-tac-toe, you fall into mindless computation. There’s no creativity, no challenge.


But, as with the revved-up game of Ultimate Tic-Tac-Toe, math has far greater potential than this busywork suggests. Math can be bold and exploratory, demanding a balance of patience and risk. Just trade in the rote problem above for one like this:
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This problem embodies a natural tension, pitting two notions of size (area and perimeter) against one another. More than just applying a formula, solving it requires deeper insight into the nature of rectangles. (See the endnotes for spoilers.)


Or, how about this:
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A little spicy, right?


In two quick steps, we’ve traveled from sleepwalking drudgery to a rather formidable little puzzle, one that stumped a whole school’s worth of bright-eyed 6th graders when I tossed it as a bonus on their final exam. (Again, see the endnotes for solutions.)


As this progression suggests, creativity requires freedom, but freedom alone is not enough. The pseudopuzzle “Draw two rectangles” provides loads of freedom but no more spark than a damp match. To spur real creativity, a puzzle needs constraints.


Take Ultimate Tic-Tac-Toe. Each turn, you’ve got only a few moves to choose from—perhaps three or four. That’s enough to get your imagination flowing, but not so many that you’re left drowning in a sea of incalculable possibilities. The game supplies just enough rules, just enough constraints, to spur our ingenuity.


That pretty well summarizes the pleasure of mathematics: creativity born from constraints. If regular tic-tac-toe is math as people know it, then Ultimate Tic-Tac-Toe is math as it ought to be.
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You can make the case that all creative endeavors are about pushing against constraints. In the words of physicist Richard Feynman, “Creativity is imagination in a straitjacket.” Take the sonnet, whose tight formal restrictions—Follow this rhythm! Adhere to this length! Make sure these words rhyme! Okay… now express your love, lil’ Shakespeare!—don’t undercut the artistry but heighten it. Or look at sports. Humans strain to achieve goals (kick the ball in the net) while obeying rigid limitations (don’t use your hands). In the process, they create bicycle kicks and diving headers. If you ditch the rulebook, you lose the grace. Even the wacky, avant-garde, convention-defying arts—experimental film, expressionist painting, professional wrestling—draw their power from playing against the limitations of the chosen medium.


Creativity is what happens when a mind encounters an obstacle. It’s the human process of finding a way through, over, around, or beneath. No obstacle, no creativity.


But mathematics takes this concept one step further. In math, we don’t just follow rules. We invent them. We tweak them. We propose a possible constraint, play out its logical consequences, and then, if that way leads to oblivion—or worse, to boredom—we seek a new and more fruitful path.


For example, what happens if I challenge one little assumption about parallel lines?






[image: image]







Euclid laid out this rule regarding parallel lines in 300 BCE; he took it for granted, calling it a fundamental assumption (a “postulate”). This struck his successors as a bit funny. Do you really have to assume it? Shouldn’t it be provable? For two millennia, scholars poked and prodded at the rule, like a piece of food caught between their teeth. At last they realized: Oh! It is an assumption. You can assume otherwise. And if you do, traditional geometry collapses, revealing strange alternative geometries, where the words “parallel” and “line” come to mean something else entirely.
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New rule, new game.


As it turns out, the same holds true of Ultimate Tic-Tac-Toe. Soon after I began sharing the game around, I learned that there’s a single technicality upon which everything hinges. It comes down to a question I confined to a parenthetical earlier: What happens if my opponent sends me to a mini-board that’s already been won?


These days, my answer is the one I gave above: Since that mini-board is already “closed,” you can go wherever you want.


But originally, I had a different answer: As long as there’s an empty space on that mini-board, you have to go there—even though it’s a wasted move.
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This sounds minor—just a single thread in the tapestry of the game. But watch how it all unravels when we give this thread a pull.


I illustrated the nature of the original rule with an opening strategy that I dubbed (in a triumph of modesty) “The Orlin Gambit.” It goes like this:
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When all is said and done, X has sacrificed the center mini-board in exchange for superior position on the other eight. I considered this stratagem pretty clever until readers pointed out its profound uncleverness. The Orlin Gambit wasn’t just a minor advantage. It could be extended into a guaranteed winning strategy. Rather than sacrifice one mini-board, you can sacrifice two, giving you two-in-a-rows on each of the other seven. From there, you can ensure victory in just a handful of moves.


Embarrassed, I updated my explanation to give the rule in its current version—a small but crucial tweak that restored Ultimate Tic-Tac-Toe to health.


New rule, new game.


This is exactly how mathematics proceeds. You throw down some rules and begin to play. When the game grows stale, you change it. You pose new constraints. You relax old ones. Each tweak creates new puzzles, fresh challenges. Most mathematics is less about solving someone else’s riddles than about devising your own, exploring which constraints produce interesting games and which produce drab ones. Eventually, this process of rule tweaking, of moving from game to game, comes to feel like a grand never-ending game in itself.


Mathematics is the logic game of inventing logic games.


The history of mathematics is the unfolding of this story, time and time again. Logic games are invented, solved, and reinvented. For example: what happens if I tweak this simple equation, changing the exponents from 2 into another number, like 3, or 5, or 797?
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Oh! I’ve turned an ancient and elementary formula, easily satisfied by plugging in whole numbers (such as 3, 4, and 5), into perhaps the most vexing equation that humans have ever encountered: Fermat’s last theorem. It tormented scholars for 350 years, until the 1990s, when a clever Brit locked himself in an attic and emerged nearly a decade later, blinking at the sunlight, with a proof showing that whole number solutions can never work.


Or, what happens if I take two variables—say, x and y—and create a grid that lets me see how they relate?
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Oh! I’ve invented graphing, and thereby revolutionized the visualization of mathematical ideas, because my name is Descartes and that’s why they pay me the big bucks.


Or, consider that squaring a number always gives a positive answer. Well, what if we invented an exception: a number that, when squared, is negative? What happens then?
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Oh! We’ve discovered imaginary numbers, thereby enabling the exploration of electromagnetism and unlocking a mathematical truth called “the fundamental theorem of algebra,” all of which will sound pretty good when we add it to our résumés.


In each of these cases, mathematicians at first underestimated the transformative power of the rule change. In the first case, Fermat thought the theorem would yield to a simple proof; as centuries of his frustrated successors will attest, it didn’t. In the second case, Descartes’s graphing idea (now called “the Cartesian plane” in his honor) was originally confined to the appendix of a philosophical text; it was often dropped from later printings. And in the third case, imaginary numbers faced centuries of snubs and insults (“as subtle as they are useless,” said the great Italian mathematician Cardano) before being embraced as true and useful numbers. Even their name is pejorative, originating from a dis first uttered by none other than Descartes.


It’s easy to underestimate new ideas when they emerge not from somber reflection but from a kind of play. Who would guess that a little tweak to the rules (new exponent; new visualization; new number) could transform a game beyond imagination and recognition?


I don’t think the mathematicians at that picnic had this in mind as they huddled over a game of Ultimate Tic-Tac-Toe. But they didn’t need to. Whether we’re cognizant of it or not, the logic game of inventing logic games exerts a pull on us all.















Chapter 2



WHAT DOES MATH LOOK LIKE TO STUDENTS?


Alas, this will be a short, bleak chapter. I’d apologize for that, but I’ll be too busy apologizing for other things, like the often soul-pureeing experience of math education.


You know what I’m talking about. To many students, “doing math” means executing the prescribed sequence of pencil maneuvers. Mathematical symbols don’t symbolize; they just dance across the page in baffling choreography. Math is a tale told by an abacus, full of “sin” and “θ,” signifying nothing.
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Allow me to offer two brief apologies:


First, I apologize to my own students for any times I’ve made you feel this way about math. I’ve tried not to; then again, I’ve also tried to stay on top of email, cut back on ice cream, and avoid four-month lapses between haircuts. Please enter my plea as “merely human.”


Second, I apologize to mathematics, for any violence you have suffered at my hands. In my defense, you’re an intangible tower of quantitative concepts bound together by abstract logic, so I doubt I’ve left any lasting scars. But I’m not too proud to say I’m sorry.


That’s it for this chapter. I promise the next one will have more explosions, like any good sequel should.















Chapter 3



WHAT DOES MATH LOOK LIKE TO MATHEMATICIANS?


It’s very simple. Math looks like language.


A funny language, I’ll admit. It’s dense, terse, and painstaking to read. While I zip through five chapters of a Twilight novel, you might not even turn the page in your math textbook. This language is well suited to telling certain stories (e.g., the relations between curves and equations), and ill suited to others (e.g., the relations between girls and vampires). As such, it’s got a peculiar lexicon, full of words that no other tongue includes. For example, even if I could translate [image: image] into plain English, it wouldn’t make sense to someone unfamiliar with Fourier analysis, any more than Twilight would make sense to someone unfamiliar with teenage hormones.


But math is an ordinary language in at least one way. To achieve comprehension, mathematicians employ strategies familiar to most readers. They form mental images. They paraphrase in their heads. They skim past distracting technicalities. They draw connections between what they’re reading and what they already know. And—strange as it may seem—they engage their emotions, finding pleasure, humor, and squeamish discomfort in their reading material.


Now, this brief chapter can’t teach fluent math any more than it could teach fluent Russian. And just as literary scholars might debate a couplet by Gerard Manley Hopkins or the ambiguous phrasing of an email, so mathematicians will disagree on specifics. Each brings a unique perspective, shaped by a lifetime of experience and associations.


That said, I hope to offer a few nonliteral translations, a few glimpses into the strategies by which a mathematician might read some actual mathematics. Consider it Squiggle Theory 101.






[image: image]







A common question I get from students: “Does it matter whether I multiply by 11 or 13 first?” The answer (“no”) is less interesting than what the question reveals: that in my students’ eyes, multiplication is an action, a thing you do. So one of the hardest lessons I teach them is this: Sometimes, don’t.


You don’t have to read 7 × 11 × 13 as a command. You can just call it a number and leave it be.


Every number has lots of aliases and stage names. You could also call this number 1002 – 1, or 499 × 2 + 3, or 5005/5, or Jessica, the Number That Will Save Planet Earth, or plain old 1001. But if 1001 is how this number is known to its friends, then 7 × 11 × 13 isn’t some quirky and arbitrary moniker. Rather, it’s the official name you’d find on the birth certificate.


7 × 11 × 13 is the prime factorization, and it speaks volumes.


Some key background knowledge: Addition is kind of boring. To wit, writing 1001 as the sum of two numbers is a truly dull pastime: you can do it as 1000 + 1, or 999 + 2, or 998 + 3, or 997 + 4… and so on, and so on, until you slip into a boredom coma. These decompositions don’t tell us anything special about 1001, because all numbers can be broken up in pretty much the same way. (For example, 18 can be written as 17 + 1, or 16 + 2, or 15 + 3…) Visually, this is like breaking a number up into two piles. No offense, but piles are dumb.


Multiplication: now that’s where the party’s at. And to join the festivities, you need to deploy our first math-reading strategy: forming mental images.


As the picture on the previous page shows, multiplication is all about grids and arrays. 1001 can be seen as a giant structure of blocks, 7 by 11 by 13. But that’s just getting started.


You can visualize this as 13 layers of 77 each. Or, if you tilt your head sideways, it’s 11 layers of 91 each. Or, tilting your head a different sideways, seven layers of 143 each. All of these ways to decompose 1001 are immediately evident from the prime factorization… but virtually impossible to discern from the name 1001 without laborious guesswork.


The prime factorization is the DNA of a number. From it, you can read all the factors and factorizations, the numbers that divide our original and the numbers that don’t. If math is cooking class, then 7 × 11 × 13 isn’t the pancake recipe. It’s the pancake itself.
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To casual fans, π is a mystic rune, a symbol of mathematical sorcery. They ponder its irrationality, memorize thousands of its digits, and commemorate Pi Day on March 14 by combining the most glorious of mankind’s arts (dessert pies) with the least glorious (puns). To the general public, π is an object of obsession, awe, even something approaching worship.


And to mathematicians, it’s roughly 3.


That infinite spool of decimal places that so captivates laypeople? Well, mathematicians aren’t that bothered. They know math is about more than precision; it’s about quick estimates and smart approximations. When building intuition, it helps to streamline and simplify. Intelligent imprecision is our next crucial math-reading strategy.


Take the formula A = πr2, which many students have heard so often the mere phrase “area of a circle” triggers them to scream, “Pi r squared!” like sleeper agents programmed by brainwashing. What does it mean? Why is it true?


Well, forget the 3.14159. Let your mind go fuzzy. Just look at the shapes.


r is the radius of our circle. It’s a length.


r2, then, is the area of a little square, like the one pictured.


Now, the π-dollar question: How does the area of the circle compare to the area of the square?


Clearly, the circle is bigger. But it’s not quite four times bigger (since four squares would cover the circle and then some). Eyeballing it, you might speculate that the circle is a little more than three times bigger than the square.


And that’s exactly what our formula says: Area = a little more than 3 × r2.


If you want to verify the precise value—why 3.14-ish and not 3.19-ish?—then you can use a proof. (There are several lovely demonstrations; my favorite involves peeling the circle like an onion and stacking the layers to make a triangle.) But mathematicians, whatever they insist, don’t always prove everything from first principles. Like everyone from carpenters to zookeepers, they’re happy to employ a tool without knowing precisely how it was constructed, so long as they have a sense of why it works.
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“Go graph these equations” is a familiar homework assignment. I’ve given it myself. It’s also the seed of a vicious myth: that graphs are an end unto themselves. In fact, graphing is not like solving an equation or carrying out an operation. A graph is not an end; it is always, always a means.


A graph is a tool for data visualization, a picture that tells a story. It represents another powerful math-reading strategy: turning the static into the dynamic.


Take the equation above: [image: image]. Here, x and y stand for a pair of numbers obeying a precise relationship. Here are some examples of possible pairs:
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A few patterns are already peeking out. But our vision is only as powerful as our technology, and tables are not a fancy gadget. Of the infinite x-y pairs that satisfy this equation, the table can show only a handful at a time, like the scrolling text of a stock ticker. We need a superior visualization tool: the mathematical equivalent of a television screen.


Enter the graph.


By treating x and y as a sort of longitude and latitude, we transform each intangible pair of numbers into something satisfyingly geometric: a point. The infinite set of points becomes a unified curve. And from this, a story emerges, a tale of motion and change.




• When x grows small, approaching zero ([image: image]…), then y balloons to enormous values (25, 3600, 1 million…).


• When x grows large (20, 40, 500…), then y shrinks to tiny proportions ([image: image]…).


• While x can assume negative values (-2, -5, -10), y never does. It remains positive.


• And neither variable ever adopts a value of zero.




Okay, maybe it’s not the juiciest plotline, but mental maneuvers like this mark the difference between the novice’s experience of mathematics (as a paralyzing stream of meaningless symbols) and the mathematician’s (as something coherent and communicative). Graphs imbue lifeless equations with a sense of motion.
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There’s a psychological phenomenon known by the unfortunate name of chunking. More than just a way to cleanse the system after too many beers, chunking also happens to be a potent mental technique, indispensable to mathematicians. It’s our next math-reading strategy.


When we “chunk,” we reinterpret a set of scattered, hard-to-retain details as a single unit. The above equation offers a simple example. A good chunker disregards the minutiae on the left side. Is it x or y, 5 or 6, + or -? Don’t know; don’t care. Instead, you see only a pair of chunky factors, forming a skeletal equation that reads: chunk × chunk = 0.


Now, if you’re familiar with multiplication, you know that zero is a peculiar result to come by.


6 × 5? Not zero.


18 × 307? Not zero.


13.91632 × 4,600,000,000,000? No need to fire up your calculator app: This, too, is not zero.


Zero is a singular number in the world of multiplication. In contrast to, say, 6, which can be produced a variety of ways (3 × 2, 1.5 × 4, 1200 × 0.005…), zero is special and elusive. In fact, there’s precisely one way that two numbers multiply to give you zero: if one of the original numbers was, itself, zero.


This is where our chunking pays off: Since their product is zero, one of the chunks must be, too. If it was the first one (x - 5), then x must be 5. And if it was the latter (x - 7), then x must be 7.


Equation solved.


Chunking purifies not just the contents of our stomachs but the contents of our minds. It makes the world digestible. And the more you learn, the more aggressively you are able to chunk. A high schooler might chunk a whole row of algebra as “find the area of the trapezoid.” An undergraduate might chunk several dense lines of calculus as “compute the volume of the solid of revolution.” And a graduate student might chunk half a page of formidable Greek-lettered technicalities as “compute the Hausdorff dimension of the set.” For each level up, you’ve got to learn subtle new details: What are trapezoids? How do integrals behave? What was Hausdorff smoking, and where can we get some?


But we don’t learn details for details’ sake. We learn details so as to ignore them later, to focus on the big, chunky picture instead.
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Switch two symbols. What happens?


Well, in the eyes of the novice, nothing. You’ve interchanged scribbles, swapped syllables in a gibberish language. Who cares? But in the eyes of a mathematician, it can be like switching sea and sky, or mountain and cloud, or bird and fish (much to the consternation of both). Switching two symbols can change everything.


For example, take the two expressions above and imagine that x is 10.


Now, 102 is a big number. It means 10 × 10. That’s 100. It’s a reasonable number of students to teach in a given year, or miles to drive to a theme park, or dollars to pay for a used television. (It’s a suspicious number of dalmatians to own.)


But 210 is a much bigger number. It’s 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2. That’s 1024. It’s a reasonable number of students to teach in a decade, or miles to drive to the world’s greatest theme park, or dollars to pay for an awe-inspiring television. (It’s a very suspicious number of dalmatians to own; this is why we have animal cruelty laws.)


As we try out bigger x’s, the gap between the two expressions widens. In fact, the word “widens” is too soft, like describing the Grand Canyon as “bit of a crack in the ground.” As x grows, the gap between x2 and 2x explodes.


To wit, 1002 is quite big. It’s 100 × 100. That’s 10,000.


But 2100 is huge. It’s 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2. That’s 1,267,650,600,228,229,401,496,703,205,376, which is roughly a billion billion trillion.


If we’re talking about pounds, then the former is the weight of a pickup truck carrying a load of bricks. Heavy, to be sure, but the latter is in a different weight class altogether.


It’s the size of a hundred thousand Earths.


x2 and 2x don’t look so different to the untrained eye. But the more math you experience and the more fluent you become in this language of squiggles, the more dramatic the difference begins to feel. Before long it becomes visceral, tactile; it starts to enlist your emotions, which is our final crucial strategy. You read lines of mathematics with a full spectrum of feelings, from satisfaction to sympathy to shock.


Eventually, mixing up x2 and 2x becomes as absurd as imagining a pickup truck towing a hundred thousand planets behind it.















Chapter 4



HOW SCIENCE AND MATH SEE EACH OTHER


1. TWINS NO MORE


Back in 9th grade, my friend John and I looked oddly similar: pensive round-faced brown-haired boys who spoke about as often as furniture. Teachers called us by the wrong names; older students thought we were one person; and in the yearbook, we’re mislabeled as each other. For all I remember, we sparked a friendship just to mess with people.


Then, with time, we thinned out and grew up. John is now a broad-chested six foot two and looks like a Disney prince. I’m five nine and have been described as “a cross between Harry Potter and Daniel Radcliffe.” The “practically twins” stage of our friendship is long gone.


And as it is with me and John, so it is with mathematics and science.
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Back when science and math still had their baby fat, they didn’t just look the same. They were the same. Isaac Newton didn’t worry whether history would classify him as a scientist or a mathematician: he was both, inextricably. The same went for his intellectual elder siblings—Galileo, Kepler, Copernicus. For them, science and math were interwoven, inseparable. Their core insight was that the physical cosmos followed mathematical recipes. Objects obeyed equations. You couldn’t study one without the other, any more than you could eat a single ingredient out of a baked cake.


Science and math have diverged since then. Just look at how they’re taught: separate classrooms, separate teachers, separate (if equally mind-numbing) textbooks. They’ve thinned out, added muscle, aged beyond their wide-eyed 9th-grade innocence.


But still, people get them confused. Any fool can see that I’m not John, and John isn’t me, but the citizen on the street has more trouble telling the differences between math and science—especially at a layman’s distance.
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Perhaps the easiest way to tell them apart is to answer this question: What do science and math look like, not to the layperson, but to each other?


2. IN EACH OTHER’S EYES


Looking through science’s eyes, the answer is pretty clear. Science sees mathematics as a tool kit. If science is a golfer, then mathematics is the caddy, proffering the right club for each situation.
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This view casts mathematics in a subservient role. It’s not my favorite dynamic, but, hey, I sympathize. Science is trying to make sense of reality, which—as you’ll know if you have experience with reality—is pretty darn hard. Things are born. Things die. Things leave maddeningly partial fossil records. Things exhibit qualitatively different behaviors at quantum and relativistic scales. Reality is kind of a mess.
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Science quests to make sense of all this. It aims to predict, classify, and explain. And in this endeavor, it sees mathematics as a vital assistant: the Q to its James Bond, supplying helpful gadgets for the next adventure.
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Now, let’s spin the camera 180° and change perspectives. How does mathematics see science?


You’ll find that we’re not just alternating camera angles. We’re changing film genres altogether. Whereas science sees itself as the protagonist of an action movie, mathematics sees itself as the auteur director of an experimental art project.


That’s because, on a fundamental level, mathematicians do not care about reality.






[image: image]







I’m not talking about the odd habits of mathematicians—muttering to themselves, wearing the same trousers for weeks, forgetting their spouse’s names on occasion. I’m talking about their work. Despite the aggressive ad campaign about its “real-world usefulness,” mathematics is pretty indifferent to the physical universe.


What math cares about are not things but ideas.


Math posits rules and then unpacks their implications by careful reasoning. Who cares if the resulting conclusions—about infinitely long cones and 42-dimensional sausages—don’t resemble physical reality? What matters is their abstract truth. Math lives not in the material universe of science but in the conceptual universe of logic.
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Mathematicians call this work “creative.” They liken it to art.


That makes science their muse. Think of a composer who hears chirping birds and weaves the melody into her next work. Or a painter who gazes at cumulus clouds drifting through an afternoon sky, and models her next landscape on that image. These artists don’t care if they’ve captured their subjects with photorealistic fidelity. For them, reality is nothing more or less than a fertile source of inspiration.


That’s how math sees the world, too. Reality is a lovely starting point, but the coolest destinations lie far beyond it.



3. THE PARADOX OF MATHEMATICS


Math sees itself as a dreamy poet. Science sees it as a supplier of specialized technical equipment. And herein we find one of the great paradoxes of human inquiry: These two views, both valid, are hard to reconcile. If math is an equipment supplier, why is its equipment so strangely poetic? And if math is a poet, then why is its poetry so unexpectedly useful?
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To see what I mean, take the twisted history of knot theory.


This branch of mathematics, like many, was inspired by a scientific problem. Before the discovery of atoms, some scientists (including Lord Kelvin) entertained the idea that the universe was filled with a substance called ether, and matter was made of knots and tangles in it. Thus, they sought to classify all the possible knots, creating a periodic table of tangles.


Before long, science lost interest, lured away by the shiny new theory of atoms (which had the unfair advantage of being right). But mathematics was hooked. It turns out that classifying knots is a delightful and devilish problem. Two versions of the same knot can look wildly different. Totally different knots can taunt you with their resemblance. It was perfect fuel for mathematicians, who soon developed an exquisite, complex theory of knots, unperturbed that their clever abstractions appeared to have no practical purpose whatsoever.


The centuries rolled along.


Then, science ran into a real snake of a problem. As you know, every cell inscribes its precious information on DNA molecules, which are fantastically long. If straightened out and laid flat, the DNA from one of your cells would stretch for six feet—a hundred thousand times the length of the cell itself. This makes DNA a long string stuffed into a small container. If you’ve ever shoved earbuds into your pocket or removed Christmas lights from their box, you know what this scenario creates: maddening tangles. How do bacteria manage this? Can we learn their tricks? Can we perhaps disable cancer cells by tangling their DNA?


Biology was flummoxed. It needed help. “Ooh,” Mathematics cried. “I know just the thing!”
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Here, then, is a brief biography of knot theory. It was born from a practical need. Soon, it grew into something deliberately impractical, a logic game for poets and philosophers. And yet somehow this mature creature, which had barely spared a thought for reality over the years, became profoundly useful in a field far removed from the one of its birth.


This is no isolated case. It’s a basic pattern of mathematical history.


Remember the strange alternate geometries from Chapter 1? For centuries, scholars saw them as mere novelties, a poet’s fancy. They bore no correspondence to reality, which was understood to follow Euclid’s assumption about parallel lines.


Then, along came a young patent clerk named Einstein. He realized that these wacko alternatives aren’t just thought experiments; they underlie the structure of the cosmos. From our tiny perspective, the universe appears Euclidean, much in the way that the curved Earth appears flat. But zoom out, shedding the prejudices of the surface dweller, and you’ll see a different picture entirely, a shifting landscape of strange curvatures.


Those “useless” geometries turned out to be pretty darn useful.


Perhaps my favorite example concerns logic itself. Early philosophers like Aristotle developed symbolic logic (“If p, then q”) as a guide for scientific thinking. Then mathematical theorists got their hands on it, and turned logic into something bizarre and abstract. Reality fell away. By the 20th century, you had folks like Bertrand Russell writing Latin-titled tomes that aimed to “prove” from elementary assumptions that 1 + 1 = 2. What could be more useless, more irredeemable?


One logician’s mother nagged him: C’mon, honey, what’s the point of all this abstract mathematics? Why not do something useful?


That mother was named Ethel Turing. And as it turns out, her son Alan was kind of on to something: a logic machine we now call “the computer.”


I can’t blame her for doubting. Who would have guessed that her son’s abstract research into logical systems would help to define the next century? No matter how many examples I encounter, this historical cycle of useful to useless to useful again remains a wonder and a mystery to me.


My favorite description of this phenomenon is a phrase coined by physicist Eugene Wigner: “the unreasonable effectiveness of mathematics.” After all, bacteria don’t know any knot theory, so why should they follow its rules? The space-time continuum hasn’t studied hyperbolic geometry, so why does it execute its theorems so perfectly? I’ve read some philosophers’ answers to this question, but I find them tentative and conflicting, and none have worked to blunt my astonishment.


So, how best to understand the relationship between the poet we call Math and the adventurer known as Science? Perhaps we ought to see them as a symbiotic pair of very different creatures, like an insect-eating bird perched on the back of a rhino. The rhino gets its itchy problems solved. The bird gets nourished. Both emerge happy.


When you visualize math, picture something dainty and elegant astride the wrinkled gray mass of reality below.
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Chapter 5



GOOD MATHEMATICIAN VS. GREAT MATHEMATICIAN


It’s a lot of fun to bust myths. Just look at the carefree explosions and ear-to-ear smiles of television’s MythBusters, and you can see it’s a career with high job satisfaction.


What’s trickier is tweaking myths. Lots of the culture’s prevailing views about mathematics aren’t flat-out wrong—just crooked, or incomplete, or overemphasized. Is computation important? Sure, but it’s not all-important. Does math require attention to detail? Yes, but so do knitting and parkour. Was Carl Gauss a natural genius? Well, yeah, but most beautiful math comes not from depressive German perfectionists but from ordinary folks like you and me.


Before we close this section, this chapter offers one final exploration of how to think like a mathematician, a chance to revise and annotate some popular myths. Like most myths, they’ve got a basis in truth. And, like most myths, they miss the flux, uncertainty, and struggle toward understanding that make us human—and that make us mathematicians.
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A few years ago, when I lived in England, I taught a boy named Corey. He reminded me of a soft-spoken 12-year-old Benjamin Franklin: quiet and insightful, with long ginger hair and round spectacles. I can totally picture him inventing bifocals.


Corey poured his heart into every homework assignment, drew lucid connections across topics, and packed up his papers at the period’s end with such care and patience that I always fretted he’d be late for his next lesson. So it’s no surprise that on the first big test in November, Corey nailed every question.


Well… every question that he’d had time to answer.


The bell rang with the last quarter of his test still blank. He scored in the low 70s and came to me the next day with a furrowed brow. “Sir,” he said, because England is an amazing land where clumsy 29-year-old teachers get fancy honorifics, “why are tests timed?”


I figure honesty is the best policy. “It’s not because speed is so important. We just want to see what students can do by themselves, without anyone’s help.”


“So why not let us keep working?”


“Well, if I held the class hostage for a whole day, it might annoy your other teachers. They want you to know about science and geography, because of their nostalgic attachment to reality.”


I realized that I had never seen Corey like this: jaw clenched, eyes dark. He was radiating frustration. “I could have answered more,” he said. “I just ran out of time.”


I nodded. “I know.”


There wasn’t much else to say.


Intentionally or not, school mathematics sends a loud, clear message: Speed is everything. Tests are timed. Early finishers get to start their homework. Just look how periods end: with a ringing bell, as if you’ve just finished a round in a perverse, compulsory, logarithm-themed game show. Math comes to feel like a race, and success becomes synonymous with quickness.


All of which is supremely silly.


Speed has one fabulous advantage: It saves time. Beyond that, mathematics is about deep insight, real understanding, and elegant approaches, none of which you’re likely to find when moving at 600 miles per hour. You learn more mathematics by thinking carefully than by thinking fast, just as you learn more botany by studying a blade of grass than by sprinting like the dickens through a wheat field.


Corey understands this. I only hope that teachers like me don’t manage, against our own best intentions, to persuade him otherwise.
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My wife, who is a research mathematician, once pointed me toward a funny pattern in mathematical life.




• Step #1: There’s a tricky and exciting question on the loose, an important conjecture in need of proof. Many try to tame the beast, without success.


• Step #2: Someone finally proves it, via a long and convoluted argument that’s full of insight but very difficult to follow.


• Step #3: Over time, new proofs are published, growing shorter and simpler, shorter and simpler, until eventually the original proof is relegated to “historical” status: an inefficient Edison-era lightbulb made obsolete by sleeker, more modern designs.
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