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How to use this book





To make your study of Physics for Cambridge O Level as rewarding and successful as possible, this textbook, endorsed by Cambridge Assessment International Education, offers the following important features:




FOCUS POINTS


Each topic starts with a bullet point summary of what you will encounter within each topic.







This is followed by a short outline of the topic so that you know what to expect over the next few pages.







Test yourself


These questions appear regularly throughout the topic so you can check your understanding as you progress.







Revision checklist


At the end of each topic, a revision checklist will allow you to recap what you have learnt in each topic and double check that you understand the key concepts before moving on.







Exam-style questions


Each topic is followed by exam-style questions to help familiarise you with the style of questions you may see in your examinations. These will prove useful in consolidating your learning.
Past paper questions are also provided in the back of the book.





As well as these features, you will also see additional support throughout the topic in the form of:




Key definitions


These provide explanations of the meanings of key words as required by the syllabus.







Practical work


These boxes identify the key practical skills you need to be able to understand and apply as part of completing the course.







Worked example


These boxes give step-by-step guidance on how to approach different sorts of calculations, with follow-up questions so you can practise these skills.







Going further


These boxes take your learning further than is required by the Cambridge syllabus so that you have the opportunity to stretch yourself.





A Mathematics for physics section is provided for reference. This covers many of the key mathematical skills you will need as you progress through your course. If you feel you would benefit from further explanation and practice on a particular mathematical skill within this book, the Mathematics for physics section should be a useful resource.


Answers are provided online at www.hoddereducation.com/cambridgeextras








Using scientific skills



During your course you will have to carry out a few experiments and investigations. These will help you to develop some of the skills and abilities that scientists use to solve real-life problems.

Simple experiments may be designed to learn how to measure, for example, the temperature of a liquid or the electric current in a circuit. Longer investigations may be designed to find or verify a relationship between two or more physical quantities. Your teacher will give you instructions to carry out some experiments, or describe the question that you need to investigate. You may have your own ideas for questions to investigate. These longer investigations may take one hour of laboratory time, but often longer.

An investigation has several stages.



	
Selecting and safely using suitable techniques, apparatus and materials – your choice of both apparatus and techniques will depend on what you’re investigating. However, you must always do a risk assessment of your investigation before you start. Your teacher should help identify all potential hazards and how you can work safely when carrying out physics experiments in the laboratory.

	
Planning your experiment – you need to think about how you are going to find answers to the questions you are investigating. This will involve:


	Making predictions and hypotheses (informed guesses). This could help you think about what measurements you need to make.

	Identifying the variables in the investigation and deciding which ones you will try to keep constant (controlled) so that they do not affect the experimental results. The variable you change is the independent variable and the variable you will measure is the dependent variable. To discover the relationship between variables, you should change only one variable at a time.

	Deciding on the range of values you will use for the independent variable, how you will record your results, and how you will analyse your results

	Choosing the most suitable apparatus for the measurements you will take. Think about the precision you need for the measurement. For example if you need to measure the thickness of a wire, a ruler will not give a very accurate measurement because the smallest division on a metre ruler is 1 mm. Even if you estimate the reading to half a scale division, the measurement will have a precision of about 0.5 mm. It would be better to use a micrometer screw gauge, which has a precision of 0.01 mm.

	Explaining your experimental procedure. A clearly labelled diagram will be helpful here. Any precautions taken to achieve accurate measurements should also be mentioned.







	
Making and recording observations and measurements – before you start taking measurements, make sure you know how to use the apparatus safely and accurately.


	Record your observations and readings in a table of results. Use the column headings, or start of rows, to name the measurement and state its unit; for example ‘Mass of load/kg’. Repeat the measurement of each observation if possible; if repeat measurements for the same quantity are very different (anomalous), take a third reading. Record each value in your table, then calculate an average (mean) value. Do not include an anomalous value when calculating your mean. Numerical values should be given to the number of significant figures appropriate to the measuring device.

	If you have decided to plot a graph of your results you will need at least six data points taken over as large a range as possible; be sure to label each axis of a graph with the name and unit of the quantity being plotted.

	Do not dismantle the equipment until you have completed your analysis and you are sure you do not need to repeat any of the measurements!







	
Interpreting and evaluating the observations and data – this is important to allow you to find relationships between quantities.


	You may need to calculate values from the measurements or plot a graph of your results, then draw a line of best fit and calculate a gradient. Suggest a reason for any anomalous results you obtained and how you dealt with them. Comment on any graph drawn, its shape and whether the graph points are close to the line of best fit; mention any trend (pattern) you notice in the data.

	Draw conclusions from the evidence that are justified by the data. These can take the form of a numerical value (and unit), the statement of a known law, a relationship between two quantities or a statement related to the aim of the experiment (sometimes experiments do not achieve the intended objective).

	Comment on the quality of the data and whether repeated results are equal within the limits of the accuracy of the experiment. Compare outcomes with those expected.







	
Evaluating methods and suggesting possible improvements – sometimes things could have been done better. You should:


	Identify possible sources of error in the experiment which could have affected the accuracy of your results. These could include random and systematic errors.

	Mention any apparatus that turned out to be unsuitable for the experiment. You should also record any difficulties you had using the apparatus, for example if it was difficult to record the time taken for a very fast change.

	Discuss how the experiment might be modified to give more accurate results, for example in an electrical experiment by using an ammeter with a more appropriate range.

	Suggest possible improvements to the experiment and say how the change would make the experiment better. For example, efforts to reduce thermal energy losses to the environment or minimise changes in a control variable (such as temperature) in an experiment.











Suggestions for investigations

Some suggested investigations for practical work are listed below:



	Stretching of a rubber band (Topic 1.5.1).

	Stretching of a copper wire – wear eye protection (Topic 1.5.1).

	Toppling (Topic 1.5.1).

	Friction – factors affecting (Topic 1.5.1).

	Model wind turbine design (Topic 1.7.3).

	Speed of a bicycle and its stopping distance (Topic 1.7.1).

	Cooling and evaporation (Topic 2.2.3).

	Energy transfer using different insulating materials (Topic 2.3.1).

	Pitch of a note from a vibrating wire (Topic 3.4).

	Variation of the resistance of a thermistor with temperature (Topic 4.2.4).

	Variation of the resistance of a wire with length (Topic 4.2.4).

	Heating effect of an electric current (Topic 4.2.2).

	Strength of an electromagnet (Topic 4.1).

	Efficiency of an electric motor (Topic 4.2.5).





Ideas and evidence in science

In some of the investigations you carry out in the school laboratory, you may find that you do not interpret your data in the same way as your friends do; perhaps you will argue with them as to the best way to explain your results and try to convince them that your interpretation is right. Scientific controversy can occur when people interpret evidence differently. Scientific ideas can also change as more evidence is collected.

Observations of the heavens led the ancient Greek philosophers to believe that the Earth was at the centre of the planetary system, but a complex system of rotation was needed to make this idea match observations of the apparent movement of the planets across the sky. In 1543, Nicolaus Copernicus made the radical suggestion that the evidence could also be explained if the planets revolved not around the Earth but around the Sun.(His book On the Revolutions of the Celestial Spheres gave us the modern usage of the word ‘revolution’.) It took time for his ideas to be accepted. The careful astronomical observations of planetary motion documented by Tycho Brahe were studied by Johannes Kepler, who realised that the data could be explained much better if the scientific model was modified so the planets moved in elliptical paths (not circular) with the Sun at one focus.

Galileo’s observations of the moons of Jupiter with the newly invented telescope provided further evidence to support this ‘Copernican view’. However the Christian religious authorities did not support the Copernican view, and after Galileo wrote about his discoveries, he was put on trial in 1633 and his books were banned. About 50 years later, Isaac Newton introduced the idea of gravitational forces. Using this idea he was able to explain the motion of all bodies, whether on Earth or in the heavens, which led to full acceptance of the Copernican model. Newton’s mechanics were refined further at the beginning of the twentieth century when Einstein developed his theories of relativity. Even today, data from the Hubble Space Telescope is providing new evidence which confirms Einstein’s ideas.

Many other scientific theories have had to wait for new data or technological inventions for them to become accepted. For example, because cancer takes a long time to develop, it was several years before people recognised that X-rays and radiation from radioactive materials could be dangerous (Topic 3.3), and even longer before scientists had enough knowledge of cells and genes to understand how ionising radiation causes cell mutations.

Today there are often new claims of possible health risks from new technologies, and these risks are publicised on social media and on television. Although scientists can provide evidence, assess the strength of the evidence and give a balanced view of the advantages and disadvantages, there may still be some controversy and the public and manufacturers may reject scientific findings or support a different interpretation of the evidence. Economic factors can be powerful and influence people’s opinions on scientific issues. This is most clearly shown today in the issue of global warming.
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1.1 Physical quantities and measurement techniques




FOCUS POINTS


	Describe how to measure length, volume and time intervals using simple devices.

	Know how to determine the average value for a small distance and a short time interval.

	Understand the difference between scalar and vector quantities, and give examples of each.

	Calculate or determine graphically the resultant of two perpendicular vectors.






This topic introduces the concept of describing space and time in terms of numbers together with some of the basic units used in physics. You will learn how to use simple devices to measure or calculate the quantities of length, area and volume. Accurate measurements of time will be needed frequently in the practical work in later topics and you will discover how to choose the appropriate clock or timer for the measurement of a time interval. Any single measurement will not be entirely accurate and will have an error associated with it. Taking the average of several measurements, or measuring multiples, reduces the size of the error.

Many physical quantities, such as force and velocity, have both magnitude and direction; they are termed vectors. When combining two vectors to find their resultant, as well as their size, you need to take into account any difference in their directions.



Units and basic quantities

Before a measurement can be made, a standard or unit must be chosen. The size of the quantity to be measured is then found with an instrument having a scale marked in the unit.

Three basic quantities we measure in physics are length, mass and time. Units for other quantities are based on them. The SI (Système International d’Unités) system is a set of metric units now used in many countries. It is a decimal system in which units are divided or multiplied by 10 to give smaller or larger units.


[image: image]
Figure 1.1.1 Aircraft flight deck




Measuring instruments on the flight deck of a passenger jet provide the crew with information about the performance of the aircraft (see Figure 1.1.1).

Powers of ten

This is a useful way of writing numbers, especially if they are large or small. The example below shows how it works.


[image: image]


The small figures 1, 2, 3, etc. are called powers of ten. The power shows how many times the number has to be multiplied by 10 if the power is greater than 0 or divided by 10 if the power is less than 0. Note that 1 is written as 100.

This way of writing numbers is called standard form or standard notation.

The number in front of the power of ten could be a decimal. For example, 45 500 in standard form is 4.55 × 104.

Length

The unit of length is the metre (m) and is the distance travelled by light in a vacuum during a specific time interval. At one time it was the distance between two marks on a certain metal bar. Submultiples are:
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Multiples for large distances are


[image: image]


1 gigametre (Gm) = 109 m = 1 billion metres

Many length measurements are made with rulers; the correct way to read one is shown in Figure 1.1.2. The reading is 76 mm or 7.6 cm. Your eye must be directly over the mark on the scale or the thickness of the ruler causes a parallax error.


[image: image]
Figure 1.1.2 The correct way to measure with a ruler




To obtain an average value for a small distance, multiples can be measured. For example, in ripple tank experiments (Topic 3.1), measure the distance occupied by five waves then divide by 5 to obtain the average wavelength.

Significant figures

Scientists try to make sure a measurement is accurate (close to the true value). However, the apparatus and the experimental procedure may have sources of error. The number of digits, called significant figures, given for a measurement indicates how accurate we think it is. You should not give more digits in a calculated answer than are justified by the apparatus and how it was used.

For example, a value of 4.5 for a measurement has two significant figures; 0.0385 has three significant figures, 3 being the most significant and 5 the least, i.e. it is the one we are least sure about since it might be 4 or it might be 6. Perhaps it had to be estimated by the experimenter because the reading was between two marks on a scale.

When doing a calculation your answer should have the same number of significant figures as the measurements used in the calculation. For example, if your calculator gave an answer of 3.4185062, this would be written as 3.4 if the measurements had two significant figures. It would be written as 3.42 for three significant figures. Note that in deciding the least significant figure, you look at the following digit. If it is less than 5, you round down (so 3.41 becomes 3.4), but if it is 5 or above you round up (so 3.418 becomes 3.42).

If a number is expressed in standard notation, the number of significant figures is the number of digits before the power of ten. For example, 2.73 × 103 has three significant figures.


Test yourself



	How many millimetres are there in these measurements?


	1 cm

	4 cm

	0.5 cm

	6.7 cm

	1 m







	What are these lengths in metres?


	300 cm

	550 cm

	870 cm

	43 cm

	100 mm







	


	Write the following as powers of ten with one figure before the decimal point.
100000   3500   428000000   504   27056

	Write out the following in full.
103   2 × 106   6.92 × 104   1.34 × 102   109







	


	Write these fractions as powers of ten.
1/1000   7/100000   1/10000000   3/60000

	Express the following decimals as powers of ten with one figure before the decimal point.
0.5   0.084   0.00036   0.00104













Area

The area of the square in Figure 1.1.3a with sides 1 cm long is 1 square centimetre (1 cm2). In Figure 1.1.3b the rectangle measures 4 cm by 3 cm and has an area of 4 × 3 = 12 cm2 since it has the same area as twelve squares each of area 1 cm2. The area of a square or rectangle is given by

area = length × breadth

The SI unit of area is the square metre (m2) which is the area of a square with sides 1 m long. Note that
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Figure 1.1.3




Sometimes we need to know the area of a triangle. It is given by


[image: image]


The area of a circle of radius r is πr2 where π = 22/7 or 3.14; its circumference is 2πr.


Worked example

Calculate the area of the triangles shown in Figure 1.1.4.
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Figure 1.1.4




Now put this into practice



	Calculate the area of a triangle whose base is 8 cm and height is 12 cm.

	Calculate the circumference of a circle of radius 6 cm.







Volume

Volume is the amount of space occupied. The unit of volume is the cubic metre (m3) but as this is rather large, for most purposes the cubic centimetre (cm3) is used. The volume of a cube with 1 cm edges is 1 cm3. Note that


[image: image]


For a regularly shaped object such as a rectangular block, Figure 1.1.5 shows that

volume = length × breadth × height


[image: image]
Figure 1.1.5




The volume of a cylinder of radius r and height h is πr2h.

The volume of a liquid may be obtained by pouring it into a measuring cylinder (Figure 1.1.6). When making a reading the cylinder must be upright and, to avoid parallax error, your eye must be level with the bottom of the curved liquid surface, i.e. the meniscus. The meniscus formed by mercury is curved oppositely to that of other liquids and the top is read.

Measuring cylinders are often marked in millilitres (ml) where 1 ml = 1 cm3; note that 1000 cm3 = 1 dm3 (= 1 litre).


[image: image]
Figure 1.1.6 A measuring cylinder





Worked example



	Calculate the volume of a block of wood which is 40 cm long, 12 cm wide and 5 cm high in cubic metres.

[image: image]




	Calculate the volume of a cylinder of radius 10 mm and height 5.0 cm in cubic metres.

[image: image]








Now put this into practice



	Calculate the volume of a rectangular box which is 30 cm long, 25 cm wide and 15 cm high in cubic metres.

	Calculate the volume of a cylinder of radius 50 mm and height 25 cm in cubic metres.







Time

The unit of time is the second (s), which used to be based on the length of a day, this being the time for the Earth to revolve once on its axis. However, days are not all of exactly the same duration and the second is now defined as the time interval for a certain number of energy changes to occur in the caesium atom.

Time-measuring devices rely on some kind of constantly repeating oscillation. In traditional clocks and watches a small wheel (the balance wheel) oscillates to and fro; in digital clocks and watches the oscillations are produced by a tiny quartz crystal. A swinging pendulum controls a pendulum clock.

To measure an interval of time in an experiment, first choose a timer that is precise enough for the task. For short times, your own reaction time will affect the measurements. A stopwatch that records times with a precision of 1 s or 0.1 s is suitable for finding the period in seconds of a pendulum (see Figure 1.1.7 opposite), but to measure the speed of sound (Topic 3.4), a clock that can time in milliseconds is needed. To measure very short time intervals, a digital clock that can be triggered to start and stop by an electronic signal from a microphone, photogate or mechanical switch is useful. Tickertape timers or dataloggers are often used to record short time intervals in motion experiments. Accuracy can be improved by measuring longer time intervals. Several oscillations (rather than just one) are timed to find the period of a pendulum; the average value for the period is found by dividing the time by the number of oscillations. Ten ticks, rather than single ticks, are used in tickertape timers.


Test yourself



	The pages of a book are numbered 1 to 200 and each leaf is 0.10 mm thick. If each cover is 0.20 mm thick, what is the thickness of the book?

	How many significant figures are there in a length measurement of


	2.5 cm

	5.32 cm

	7.180 cm

	0.042 cm?







	A rectangular block measures 4.1 cm by 2.8 cm by 2.1 cm. Calculate its volume giving your answer to an appropriate number of significant figures.

	What type of timer would you use to measure the period of a simple pendulum? How many oscillations would you time?








Practical work

Period of a simple pendulum

In this investigation you have to make time measurements using a stopwatch or clock. A motion sensor connected to a datalogger and computer could be used instead of a stopwatch for these investigations.

Attach a small metal ball (called a bob) to a piece of string, and suspend it as shown in Figure 1.1.7 opposite. Pull the bob a small distance to one side, and then release it so that it oscillates to and fro through a small angle.

Find the time for the bob to make several complete oscillations; one oscillation is from A to O to B to O to A (Figure 1.1.7). Repeat the timing a few times for the same number of oscillations and work out the average.



	The time for one oscillation is the period T. Determine the period of your pendulum.

	The frequency f of the oscillations is the number of complete oscillations per second and equals 1/T. Calculate a value for f for your pendulum.

	Comment on how the amplitude of the oscillations changes with time.

	Plan an investigation into the effect on T of (i) a longer string and (ii) a larger bob.

	What procedure would you use to determine the period of a simple pendulum?

	In Figure 1.1.7 if the bob is first released at B, give the sequence of letters which corresponds to one complete oscillation.

	Explain where you would take measurements from to determine the length of the pendulum shown in Figure 1.1.7.






[image: image]
Figure 1.1.7







Systematic errors

Figure 1.1.8 shows a part of a ruler used to measure the height of a point P above the bench. The ruler chosen has a space before the zero of the scale. This is shown as the length x. The height of the point P is given by the scale reading added to the value of x. The equation for the height is

height = scale reading + x

height = 5.9 + x

By itself the scale reading is not equal to the height. It is too small by the value of x.

This type of zero error is known as a systematic error. The error is introduced by the system. A half-metre ruler has the zero at the end of the ruler and so can be used without introducing a systematic error.

When using a ruler to determine a height, the ruler must be held so that it is vertical. If the ruler is at an angle to the vertical, a systematic error is introduced.


[image: image]
Figure 1.1.8




Vernier scales and micrometers

Lengths can be measured with a ruler to a precision of about 0.5 mm. Some investigations may need a more precise measurement of length, which can be achieved by using vernier calipers (Figure 1.1.9) or a micrometer screw gauge.


Going further


[image: image]
Figure 1.1.9 Vernier calipers in use




The calipers shown in Figure 1.1.9 use a vernier scale. The simplest type enables a length to be measured to 0.01 cm. It is a small sliding scale which is 9 mm long but divided into ten equal divisions (Figure 1.1.10a) so


[image: image]


One end of the length to be measured is made to coincide with the zero of the millimetre scale and the other end with the zero of the vernier scale.The length of the object in Figure 1.1.10b is between 1.3 cm and 1.4 cm. The reading to the second place of decimals is obtained by finding the vernier mark which is exactly opposite (or nearest to) a mark on the millimetre scale. In this case it is the 6th mark and the length is 1.36 cm, since


[image: image]


Vernier scales are also used on barometers, travelling microscopes and spectrometers.


[image: image]
Figure 1.1.10 Vernier scale






Micrometer screw gauge

This measures very small objects to 0.001 cm. One revolution of the drum opens the flat, parallel jaws by one division on the scale on the shaft of the gauge; this is usually mm, i.e. 0.05 cm. If the drum has a scale of 50 divisions round it, then rotation of the drum by one division opens the jaws by 0.05/50 = 0.001 cm (Figure 1.1.11). A friction clutch ensures that the jaws exert the same force when the object is gripped.


[image: image]
Figure 1.1.11 Micrometer screw gauge




The object shown in Figure 1.1.11 has a length of


[image: image]


Before making a measurement, check to ensure that the reading is zero when the jaws are closed. Otherwise the zero error must be allowed for when the reading is taken.

Scalars and vectors

Length and time can be described by a single number specifying size, but many physical quantities also have a direction.

A scalar quantity has magnitude (size) only. Time is a scalar and is completely described when its value is known. Other examples of scalars are distance, speed, time, mass, energy and temperature.

A vector quantity is one such as force which is described completely only if both its size (magnitude) and direction are stated. It is not enough to say, for example, a force of 10 N, but rather a force of 10 N acting vertically downwards. Gravitational field strength and electric field strength are vectors, as are displacement (distance in a stated direction), weight, velocity, acceleration and momentum.

A vector can be represented by a straight line whose length represents the magnitude of the quantity and whose direction gives its line of action. An arrow on the line shows which way along the line it acts.

Scalars are added by ordinary arithmetic; vectors are added by taking account of their directions as well as their magnitudes. In the case of two vectors FX and FY acting at right angles to each other at a point, the magnitude of the resultant F, and the angle θ between FX and F can be calculated from the following equations:


[image: image]


The resultant of two vectors acting at right angles to each other can also be obtained graphically.


Worked example

Calculate the resultant of two forces of 3.0 N and 4.0 N acting at right angles to each other.

Let FX = 3.0 N and FY = 4.0 N as shown in Figure 1.1.12.


[image: image]
Figure 1.1.12 Addition of two perpendicular vectors




[image: image]


The resultant is a force of 5.0 N acting at 53° to the force of 3.0 N.

Graphical method

The values for F and θ can be found graphically by drawing the vectors to scale on a piece of graph paper as shown in Figure 1.1.12.

First choose a scale to represent the size of the vectors (1 cm could be used to represent 1.0 N).

Draw the vectors at right angles to each other. Complete the rectangle as shown in Figure 1.1.12 and draw the diagonal from the origin as shown. The diagonal then represents the resultant force, F. Measure the length of F with a ruler and use the scale you have chosen to determine its size. Measure the angle θ, the direction of the resultant, with a protractor.

Check that the values for F and θ you obtain are the same as those found using the algebraic method.

Now put this into practice



	Calculate the following square roots:


	[image: image]

	[image: image]
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	Calculate


	tan 30°

	tan 45°

	tan 60°.







	Calculate the resultant of two forces of 5.0 N and 7.0 N which are at right angles to each other.

	A girl walks 600 m north and then 800 m east. What is the displacement from her starting point?








Revision checklist

After studying Topic 1.1 you should know and understand the following:



	how to make measurements of length and time intervals, minimise the associated errors and use multiple measurements to obtain average values

	how to measure length with appropriate precision

	the difference between scalars and vectors and recall examples of each.





After studying Topic 1.1 you should be able to:



	write a number in powers of ten (standard notation) and recall the meaning of standard prefixes

	measure and calculate lengths, areas and volumes of regular objects and give a result with the correct units and an appropriate number of significant figures

	read the vernier scale on a micrometer

	determine by calculation or graphically the resultant of two vectors at right angles.








Exam-style questions



	A chocolate bar measures 10 cm long by 2 cm wide and is 2 cm thick.


	Calculate the volume of one bar.[3]


	How many bars each 2 cm long, 2 cm wide and 2 cm thick have the same total volume?[3]


	A pendulum makes 10 complete oscillations in 8 seconds. Calculate the time period of the pendulum.[2]
[Total: 8]









	


	A pile of 60 sheets of paper is 6 mm high. Calculate the average thickness of a sheet of the paper.[2]


	Calculate how many blocks of ice cream each 10 cm long, 10 cm wide and 4 cm thick can be stored in the compartment of a freezer measuring 40 cm deep, 40 cm wide and 20 cm high.[5]
[Total: 7]









	A Perspex container has a 6 cm square base and contains water to a height of 7 cm (Figure 1.1.13).


	Calculate the volume of the water.[3]


	A stone is lowered into the water so as to be completely covered and the water rises to a height of 9 cm. Calculate the volume of the stone.[4]

[image: image]
Figure 1.1.13




[Total: 7]









	


	State the standard units of length and time.[2]


	A measurement is stated as 0.0125 mm. State the number of significant figures.[1]


	Give expressions for


	the area of a circle[1]


	the circumference of a circle[1]


	the volume of a cylinder.[2]
[Total: 7]















	What are the readings on the micrometer screw gauges in Figures 1.1.14a and 1.1.14b?

[image: image]
Figure 1.1.14




[Total: 4]



	


	Select which of the following quantities is a vector:


	length

	temperature

	force

	time.[1]








	Two forces of 5 N and 12 N act at right angles to each other.
Using a piece of graph paper determine the magnitude and direction of the resultant force graphically. State the scale you use to represent each vector. You will need a protractor to measure the angle the resultant makes with the 5 N force.[7]
[Total: 8]
















1.2 Motion


FOCUS POINTS


	Define speed and velocity and use the appropriate equations to calculate these and average speed.

	Draw, plot and interpret distance–time or speed–time graphs for objects at different speeds and use the graphs to calculate speed or distance travelled.

	Define acceleration and use the shape of a speed–time graph to determine constant or changing acceleration and calculate the acceleration from the gradient of the graph.

	Describe examples of uniform acceleration and non-uniform acceleration.

	Know the approximate value of the acceleration of freefall, g, for an object close to the Earth’s surface.

	Describe the motion of objects falling with and without air/liquid resistance.






The concepts of speed and acceleration are encountered every day, whether it be television monitoring of the speed of a cricket or tennis ball as it soars towards the opposition or the acceleration achieved by an athlete or racing car. In this topic you will learn how to define speed in terms of distance and time. Graphs of distance against time will enable you to calculate speed and determine how it changes with time; graphs of speed against time allow acceleration to be studied. Acceleration is also experienced by falling objects as a result of gravitational attraction. All objects near the Earth’s surface experience the force of gravity, which produces a constant acceleration directed towards the centre of the Earth.



Speed

The speed of a body is the distance that it has travelled in unit time. When the distance travelled s is over a short time period t, the speed v is given by


[image: image]


or


[image: image]



Key definition

Speed distance travelled per unit time



If a car travels 300 km in five hours, its average speed is 300 km/5 h = 60 km/h. The speedometer would certainly not read 60 km/h for the whole journey and might vary considerably from this value. That is why we state the average speed. If a car could travel at a constant speed of 60 km/h for 5 hours, the distance covered would still be 300 km. It is always true that


[image: image]


To find the actual speed at any instant we would need to know the distance moved in a very short interval of time. This can be done by multiflash photography. In Figure 1.2.1 the golfer is photographed while a flashing lamp illuminates him 100 times a second. The speed of the club-head as it hits the ball is about 200 km/h.


[image: image]
Figure 1.2.1 Multiflash photograph of a golf swing





Velocity

As we saw in Topic 1.1, distance moved in a stated direction is called the displacement. It is a vector, unlike distance which is a scalar. Similarly, direction can be important when we talk about speed. If two trains travel due north at 20 m/s, they have the same speed of 20 m/s and the same velocity of 20 m/s due north. If one travels north and the other south, their speeds are the same but not their velocities since their directions of motion are different.


Key definition

Velocity change in displacement per unit time



The velocity of a body is uniform or constant if it moves with a steady speed in a straight line. It is not uniform if it moves in a curved path. Why?

The units of speed and velocity are the same, km/h, m/s.


[image: image]


Speed is a scalar quantity and velocity a vector quantity. Speed is the distance travelled in unit time and velocity is defined as change in displacement per unit time.


[image: image]


Acceleration

When the velocity of an object changes, we say the object accelerates. If a car starts from rest and moving due north has velocity 2 m/s after 1 second, its velocity has increased by 2 m/s in 1 s and its acceleration is 2 m/s per second due north. We write this as 2 m/s2.

Acceleration is defined as the change in velocity in unit time, or


[image: image]



Key definition

Acceleration change in velocity per unit time



For a steady increase of velocity from 20 m/s to 50 m/s in 5 s


[image: image]


Acceleration is also a vector and both its magnitude and direction should be stated. However, at present we will consider only motion in a straight line and so the magnitude of the velocity will equal the speed, and the magnitude of the acceleration will equal the change of speed in unit time.

The speeds of a car accelerating on a straight road are shown below.


[image: image]


The speed increases by 5 m/s every second and the acceleration of 5 m/s2 is constant.

An acceleration is positive if the velocity increases, and negative if it decreases. A negative acceleration is also called a deceleration or retardation.


Test yourself



	What is the average speed of


	a car that travels 400 m in 20 s

	an athlete who runs 1500 m in 4 minutes?







	A train increases its speed steadily from 10 m/s to 20 m/s in 1 minute.


	What is its average speed during this time, in m/s?

	How far does it travel while increasing its speed?







	


	A motorcyclist starts from rest and reaches a speed of 6 m/s after travelling with constant acceleration for 3 s. What is his acceleration?

	The motorcyclist then decelerates at a constant rate for 2 s. What is his acceleration?







	An aircraft travelling at 600 km/h accelerates steadily at 10 km/h per second. Taking the speed of sound as 1100 km/h at the aircraft’s altitude, how long will it take to reach the ‘sound barrier’?








Speed–time graphs

If the speed of an object is plotted against the time, the graph obtained is a speed–time graph. It provides a way of solving motion problems.

In Figure 1.2.2, AB is the speed–time graph for an object moving with a constant speed of 20 m/s.

Values for the speed of the object at 1 s intervals can be read from the graph and are given in Table 1.2.1. The data shows that the speed is constant over the 5 s time interval.


Table 1.2.1

[image: image]



[image: image]
Figure 1.2.2 Constant speed




The linear shape (PQ) of the speed–time graph shown in Figure 1.2.3a means that the gradient, and hence the acceleration of the body, are constant over the time period OS.


[image: image]
Figure 1.2.3a Constant acceleration




Values for the speed of the object at 1 s intervals can be read from the graph and are given in Table 1.2.2. The data shows that the speed increases by the same amount (4 m/s) every second.


Table 1.2.2

[image: image]


You can use the data to plot the speed–time graph. Join up the data points on the graph paper with the best straight line to give the line PQ shown in Figure 1.2.3a. (Details for how to plot a graph are given on pp. 299–300 in the Mathematics for physics section.)

Figure 1.2.3b shows the shape of a speed–time graph for an object accelerating from rest over time interval OA, travelling at a constant speed over time interval AB and then decelerating (when the speed is decreasing) over the time interval BC. The steeper gradient in time interval BC than in time interval OA shows that the deceleration is greater than the acceleration. The object remains at rest over the time interval CD when its speed and acceleration are zero.


[image: image]
Figure 1.2.3b Acceleration, constant speed and deceleration




Figure 1.2.3c overleaf shows a speed–time graph for a changing acceleration. The curved shape OX means that the gradient of the graph, and hence the acceleration of the object, change over time period OY – the acceleration is changing.

Values for the speed of the object at 1 s intervals are given in Table 1.2.3. The data shows that the speed is increasing over time interval OY, but by a smaller amount each second so the acceleration is decreasing. This is shown on the graph by the gradient of the curve between O and X decreasing continuously.


Table 1.2.3

[image: image]


You can use the data to plot the speed–time graph. Join up the data points on the graph paper with a smooth curve as shown in Figure 1.2.3c.

Note that an object at rest will have zero speed and zero acceleration; its speed–time graph is a straight line along the horizontal axis.


[image: image]
Figure 1.2.3c Changing acceleration




The acceleration of free fall (see p. 18) is constant; acceleration against a changing resistive force (such as air resistance) is changing (non-uniform).

Using the gradient of a speed–time graph to calculate acceleration

The gradient of a speed–time graph represents the acceleration of the object.

In Figure 1.2.2, the gradient of AB is zero, as is the acceleration. In Figure 1.2.3a, the gradient of PQ is QR/PR = 20/5 = 4: the acceleration is constant at 4 m/s2. In Figure 1.2.3c, when the gradient along OX changes, so does the acceleration.

An object is accelerating if the speed increases with time and decelerating if the speed decreases with time, as shown in Figure 1.2.3b. In Figure 1.2.3c the speed is increasing with time and the acceleration of the object is decreasing.

Distance–time graphs

An object travelling with constant speed covers equal distances in equal times. Its distance–time graph is a straight line, like OL in Figure 1.2.4a for a constant speed of 10 m/s. The gradient of the graph is LM/OM = 40 m/4 s = 10 m/s, which is the value of the speed. The following statement is true in general:

The gradient of a distance–time graph represents the speed of the object.

Values for the distance moved by the object recorded at 1 s intervals are given in Table 1.2.4. The data shows it moves 10 m in every second so the speed of the object is constant at 10 m/s.


Table 1.2.4

[image: image]


You can use the data to plot the distance–time graph shown in Figure 1.2.4a.


[image: image]
Figure 1.2.4a Constant speed




Figure 1.2.4b shows the shape of a distance–time graph for an object that is at rest over time interval OA and then moves at a constant speed in time interval AB. It then stops moving and is at rest over time interval BC before moving at a constant speed in time interval CD.


[image: image]
Figure 1.2.4b Constant speed




The speed of the object is higher when the gradient of the graph is steeper. The object is travelling faster in time interval AB than it is in time interval CD; it is at rest in time intervals OA and BC when the distance does not change.

When the speed of the object is changing, the gradient of the distance–time graph varies, as in Figure 1.2.5.


[image: image]
Figure 1.2.5 Non-constant speed




Speed at any point equals the gradient of the tangent. For example, the gradient of the tangent at T is AB/BC = 40 m/2 s = 20 m/s. The speed at the instant corresponding to T is therefore 20 m/s.

Area under a speed–time graph

The area under a speed–time graph measures the distance travelled.

In Figure 1.2.2, AB is the speed–time graph for an object moving with a constant speed of 20 m/s. Since distance = average speed × time, after 5 s it will have moved 20 m/s × 5 s = 100 m. This is the shaded area under the graph, i.e. rectangle OABC.

In Figure 1.2.3a, PQ is the speed–time graph for an object moving with constant acceleration. At the start of the timing the speed is 20 m/s but it increases steadily to 40 m/s after 5 s. If the distance covered equals the area under PQ, i.e. the shaded area OPQS, then


[image: image]


Note that when calculating the area from the graph, the unit of time must be the same on both axes.

The rule for finding distances travelled is true even if the acceleration is not constant. In Figure 1.2.3c, the distance travelled equals the shaded area OXY.


Test yourself



	The speeds of a bus travelling on a straight road are given below at successive intervals of 1 second.

[image: image]




	Sketch a speed–time graph using the values.

	Choose two of the following terms which describe the acceleration of the bus:
constant      changing      positive      negative

	Calculate the acceleration of the bus.

	Calculate the area under your graph.

	How far does the bus travel in 4s?







	The distance of a walker from the start of her walk is given below at successive intervals of 1second.


	Sketch a distance–time graph of the following values.

[image: image]




	How would you describe the speed at which she walks?
constant      changing      increasing      accelerating

	Calculate her average speed.







	Use Figure 1.2.3c to determine the acceleration at a time of 1s.








Equations for constant acceleration

Problems involving bodies moving with constant acceleration in a straight line can often be solved quickly using some equations of motion.

First equation

If an object is moving with constant acceleration a in a straight line and its speed increases from u to v in time t, then


[image: image]


or

v = u + at (1)

Note that the initial speed u and the final speed v refer to the start and the finish of the timing and do not necessarily mean the start and finish of the motion.

Second equation

The speed of an object moving with constant acceleration in a straight line increases steadily. Its average speed therefore equals half the sum of its initial and final speeds, that is,


[image: image]


If s is the distance moved in time t, then since average speed = total distance/total time = s/t,


[image: image]


or


[image: image]



Worked example

A sprint cyclist starts from rest and accelerates at 1 m/s2 for 20 seconds. Find her final speed and the distance she travelled.

Since u =0      a=1m/s2      t=20s

Using V=u + at, we have her maximum speed

     V=0 + 1m/s2 × 20s=20m/s

and distance travelled


[image: image]


Now put this into practice



	An athlete accelerates from rest at a constant rate of 0.8 m/s2 for 4 s. Calculate the final speed of the athlete.

	A cyclist increases his speed from 10 m/s to 20 m/s in 5 s. Calculate his average speed over this time interval.

	Calculate the distance moved by a car accelerating from rest at a constant rate of 2 m/s2 for 5 s.







Falling bodies

In air, a coin falls faster than a small piece of paper. In a vacuum they fall at the same rate, as may be shown with the apparatus of Figure 1.2.6. The difference in air is due to air resistance having a greater effect on light bodies than on heavy bodies. The air resistance to a light body is large when compared with the body’s weight. With a dense piece of metal, the resistance is negligible at low speeds.

There is a story, untrue we now think, that in the sixteenth century the Italian scientist Galileo Galilei dropped a small iron ball and a large cannonball ten times heavier from the top of the Leaning Tower of Pisa (Figure 1.2.7). And we are told that, to the surprise of onlookers who expected the cannonball to arrive first, they reached the ground almost simultaneously.


[image: image]
Figure 1.2.6 A coin and a piece of paper fall at the same rate in a vacuum.





[image: image]
Figure 1.2.7 The Leaning Tower of Pisa, where Galileo is said to have experimented with falling objects





Practical work

Motion of a falling object

Safety



	Place something soft on the floor to absorb the impact of the masses.

	Take care to keep feet well away from the falling masses.





Arrange your experimental apparatus as shown in Figure 1.2.8 and investigate the motion of a 100 g mass falling from a height of about 2 m.

A tickertape timer has a marker that vibrates at 50 times a second and makes dots at 1/50  s intervals on a paper tape being pulled through it. Ignore the start of the tape where the dots are too close.

Repeat the experiment with a 200 g mass and compare your results with those for the 100 g mass.



	The spacing between the dots on the tickertape increases as the mass falls. What does this tell you about the speed of the falling mass?

	The tape has 34 dots on it by the time the mass falls through 2 m. Estimate how long it has taken the mass to fall through 2 m.

	Why would a stopwatch not be chosen to measure the time of fall in this experiment?

	How would you expect the times taken for the 100 g and 200 g masses to reach the ground to differ?






[image: image]
Figure 1.2.8






Acceleration of free fall

All bodies falling freely under the force of gravity do so with uniform acceleration if air resistance is negligible (i.e. the ‘steps’ on the tape chart from the practical work should all be equally spaced).

This acceleration, called the acceleration of free fall, is denoted by the italic letter g. Its value varies slightly over the Earth but is constant in each place; on average it is about 9.8 m/s2, or near enough 10 m/s2. The velocity of a free-falling body therefore increases by about 10 m/s every second. A ball shot straight upwards with a velocity of 30 m/s decelerates by about 10 m/s every second and reaches its highest point after 3 s.


Key definition

Acceleration of free fall g for an object near to the surface of the Earth, this is approximately constant and is approximately 9.8m/s2



In calculations using the equations of motion, g replaces a. It is given a positive sign for falling bodies (i.e. a = g = +9.8 m/s2) and a negative sign for rising bodies since they are decelerating (i.e. a = −g = −9.8 m/s2).


Distance–time graph for a falling object

For an object falling freely from rest (without air resistance), there will be constant acceleration g.

A graph of distance s against time t is shown in Figure 1.2.9. The gradually increasing slope indicates the speed of the object increases steadily.


[image: image]
Figure 1.2.9 A graph of distance against time for a body falling freely from rest





Test yourself



	An object falls from a hovering helicopter and hits the ground at a speed of 30 m/s. How long does it take the object to reach the ground and how far does it fall? Sketch a speed–time graph for the object (ignore air resistance).

	A stone falls from rest from the top of a high tower. Ignore air resistance and take g = 9.8 m/s2. Calculate


	the speed of the stone after 2 seconds

	how far the stone has fallen after 2 seconds.







	At a certain instant a ball has a horizontal velocity of 12 m/s and a vertical velocity of 5 m/s.
Calculate the resultant velocity of the ball at that instant.








Going further

Projectiles

The photograph in Figure 1.2.10 was taken while a lamp emitted regular flashes of light. One ball was dropped from rest and the other, a projectile, was thrown sideways at the same time. Their vertical accelerations (due to gravity) are equal, showing that a projectile falls like a body which is dropped from rest. Its horizontal velocity does not affect its vertical motion.

The horizontal and vertical motions of a body are independent and can be treated separately.


[image: image]
Figure 1.2.10 Comparing free fall and projectile motion using multiflash photography







Revision checklist

After studying Topic 1.2 you should know and understand the following:



	that a negative acceleration is a deceleration.





After studying Topic 1.2 you should be able to:



	define speed and velocity, and calculate average speed from total distance travelled/total time taken; sketch, plot, interpret and use speed–time and distance–time graphs to solve problems

	define and calculate acceleration and use the fact that deceleration is a negative acceleration in calculations

	give examples of uniform acceleration and non-uniform acceleration

	state that the acceleration of free fall, g, for an object near to the Earth is constant and use the given value of 9.8 m/s2


	describe the motion of objects falling freely, without air resistance.








Exam-style questions



	The speeds of a car travelling on a straight road are given below at successive intervals of 1 second.

[image: image]


Calculate



	the average speed of the car in m/s[2]


	the distance the car travels in 4 s[3]


	the constant acceleration of the car.[2]
[Total: 7]









	If a train travelling at 10 m/s starts to accelerate at 1 m/s2 for 15 s on a straight track, calculate its final speed in m/s.
[Total: 4]



	The distance–time graph for a girl on a cycle ride is shown in Figure 1.2.11.


	Calculate


	how far the girl travelled[1]


	how long the ride took[1]


	the girl’s average speed in km/h[1]


	the number of stops the girl made[1]


	the total time the girl stopped[1]


	the average speed of the girl excluding stops.[2]








	Explain how you can tell from the shape of the graph when the girl travelled fastest. Over which stage did this happen?[2]

[image: image]
Figure 1.2.11




[Total: 9]









	The graph in Figure 1.2.12 represents the distance travelled by a car plotted against time.


	State how far the car has travelled at the end of 5 seconds.[1]


	Calculate the speed of the car during the first 5 seconds.[1]


	State what has happened to the car after A.[2]


	Sketch a graph showing the speed of the car plotted against time during the first 5 seconds.[3]







[image: image]
Figure 1.2.12




[Total: 7]



	
Figure 1.2.13 shows an incomplete speed–time graph for a boy running a distance of 100 m.


	Calculate his acceleration during the first 4 seconds.[2]


	Calculate how far the boy travels during


	the first 4 seconds[2]


	the next 9 seconds?[2]








	Copy and complete the graph, showing clearly at what time he has covered the distance of 100 m. Assume his speed remains constant at the value shown by the horizontal portion of the graph.[4]

[image: image]
Figure 1.2.13










[Total: 10]



	
The approximate speed–time graph for a car on a 5-hour journey is shown in Figure 1.2.14. (There is a very quick driver change midway to prevent driving fatigue!)


	State in which of the regions OA, AB, BC, CD, DE the car is


	accelerating

	decelerating

	travelling with constant speed.[3]


	Calculate the value of the acceleration, deceleration or constant speed in each region.[3]








	Calculate the distance travelled over each region.[3]


	Calculate the total distance travelled.[1]


	Calculate the average speed for the whole journey.[1]


	State what times the car is at rest.[1]

[image: image]
Figure 1.2.14



[Total: 12]









	The distance–time graph for a motorcyclist riding off from rest is shown in Figure 1.2.15.


	Describe the motion.[2]


	Calculate how far the motorbike moves in 30 seconds.[1]


	Calculate the speed.[2]

[image: image]
Figure 1.2.15










[Total: 5]



	A ball is dropped from rest from the top of a high building. Ignore air resistance and take g = 9.8 m/s2.


	Calculate the speed of the ball after


	1 s[2]


	3 s.[2]








	Calculate how far it has fallen after


	1 s[2]


	3 s.[2]
[Total: 8]






















1.3 Mass and weight


FOCUS POINTS


	Define mass and weight and know that weights (and therefore masses) may be compared using a balance or force meter.

	State that the mass of an object resists change from its state of rest or motion (inertia).

	Define gravitational field strength and know that this is equivalent to the acceleration of free fall.

	Understand that weight is the effect of a gravitational field on mass.

	Describe, and use the concept of, weight as the effect of a gravitational field on a mass.






Images of astronauts walking on the surface of the Moon show them walking with bouncing steps. The force of gravity is less on the Moon than it is on the Earth and this accounts for their different movements. In the previous topics you have used measurements of space and time, and the rates of change that define speed and acceleration. You will now learn about a further fundamental property, the mass of an object. Mass measures the quantity of matter in a body. In the presence of gravity, mass acquires weight in proportion to its mass and the strength of the gravitational force. Although the mass of an object on the Moon is the same as it is on the Earth, its weight is less on the Moon because the force of gravity there is less.



Mass

The mass of an object is the measure of the amount of matter in it. It can be stated that mass is a measure of the quantity of matter in an object at rest relative to an observer.

The standard unit of mass is the kilogram (kg) and until 2019 was the mass of a piece of platinum–iridium alloy at the Office of Weights and Measures in Paris. It is now based on a fundamental physical constant which can be measured with great precision. The gram (g) is one-thousandth of a kilogram.


[image: image]


The term weight is often used when mass is really meant. In science the two ideas are distinct and have different units. The confusion is not helped by the fact that mass is found on a balance by a process we unfortunately call ‘weighing’!


Key definitions

Mass a measure of the quantity of matter in an object at rest relative to an observer

Weight a gravitational force on an object that has mass



There are several kinds of balance used to measure mass. In the beam balance (equal-arm balance) the unknown mass in one pan is balanced against known masses in the other pan. In the lever balance a system of levers acts against the mass when it is placed in the pan. A direct reading is obtained from the position on a scale of a pointer joined to the lever system. An electronic balance is shown in Figure 1.3.1.


[image: image]
Figure 1.3.1 An electronic or digital top-pan balance




Mass resists a change in its motion; if an object is at rest, it remains at rest unless it is acted on by a force. This property of mass is called inertia and we will discuss it further in Topic 1.5.


Key definition

Inertia the mass of an object resists change from its state of rest or motion




Weight

We all constantly experience the force of gravity, in other words, the pull of the Earth. It causes an unsupported body to fall from rest to the ground. Weight is a gravitational force on an object that has mass.

For an object above or on the Earth’s surface, the nearer it is to the centre of the Earth, the more the Earth attracts it. Since the Earth is not a perfect sphere but is flatter at the poles, the weight of a body varies over the Earth’s surface. It is greater at the poles than at the equator.

Gravity is a force that can act through space. In other words, there does not need to be contact between the Earth and the object on which it acts as there does when we push or pull something. Other action-at-a-distance forces which, like gravity, decrease with distance are



	
magnetic forces between magnets and

	
electric forces between electric charges.





When a mass experiences a gravitational force we say it is in a gravitational field. Weight is the result of a gravitational field acting on a mass: weight is a vector quantity and is measured in newtons (N).


Key definition

Gravitational field a region in which a mass experiences a force due to gravitational attraction



The newton

The unit of force is the newton. It will be defined later (Topic 1.5); the definition is based on the change of speed a force can produce in a body. Weight is a force and therefore should be measured in newtons.

The weight of an object can be measured by hanging it on a spring balance (force meter) marked in newtons (Figure 1.3.2) and letting the pull of gravity stretch the spring in the balance. The greater the pull, the more the spring stretches.


[image: image]
Figure 1.3.2 The weight of an average-sized apple is about 1 newton.




On most of the Earth’s surface:

The weight of an object of mass 1 kg is 9.8 N.

Often this is taken as 10 N. A mass of 2 kg has a weight of 20 N, and so on. The mass of an object is the same wherever it is and, unlike weight, does not depend on the presence of the Earth.


Test yourself



	An object of mass 1 kg has weight of 10 N at a certain place. What is the weight of


	100 g

	5 kg

	50 g?







	The force of gravity on the Moon is said to be one sixth of that on the Earth. What would a mass of 12 kg weigh


	on the Earth

	on the Moon?













Weight and gravity

The weight W of an object is the force of gravity acting on it which gives it an acceleration g when it is falling freely near the Earth’s surface. If the object has mass m, then W can be calculated from F = ma (Newton’s second law, see p. 36). We put F = W and a = g to give

W = mg

Taking g = 9.8 m/s2 and m = 1 kg, this gives W = 9.8 N, that is an object of mass 1 kg has weight 9.8 N, or near enough 10 N. Similarly, an object of mass 2 kg has weight of about 20 N, and so on.


Gravitational field

The force of gravity acts through space and can cause an object, not in contact with the Earth, to fall to the ground. We try to explain its existence by saying that the Earth is surrounded by a gravitational field which exerts a force on any object in the field. Later, magnetic and electric fields will be considered.

The gravitational field strength is defined as the force acting per unit mass. Gravitational field strength is a vector; it has both magnitude and direction. Its direction is the same as the gravitational force.

Rearranging the equation W = mg gives


[image: image]


or


[image: image]



Key definition

Gravitational field strength force per unit mass



Measurement shows that on the Earth’s surface a mass of 1 kg experiences a force of 9.8 N, i.e. its weight is 9.8 N. The strength of the Earth’s field is therefore 9.8 N/kg (near enough 10 N/kg). It is denoted by g, the letter also used to denote the acceleration of free fall. Hence

g = 9.8 N/kg = 9.8 m/s2

We now have two ways of regarding g. When considering objects falling freely, we can think of it as an acceleration of 9.8 m/s2. When an object of known mass is at rest and we wish to know the force of gravity (in N) acting on it, we think of g as the Earth’s gravitational field strength of 9.8 N/kg. The gravitational field strength is equivalent to the acceleration of free fall.

The weight of an object is directly proportional to its mass, which explains why g is the same for all objects. The greater the mass of an object, the greater is the force of gravity on it but it does not accelerate faster when falling because of its greater inertia (i.e. its greater resistance to acceleration).

While the mass of an object is always the same, its weight varies depending on the value of g. On the Moon the acceleration of free fall is only about 1.6 m/s2, and so a mass of 1 kg has a weight of just 1.6 N there.


Test yourself



	An astronaut has a mass of 80 kg.


	Calculate the weight of the astronaut on the Moon where the gravitational field strength is 1.6 N/kg.

	On the journey back to Earth, the astronaut reaches a point X where the gravitational field strengths due to the Earth and the Moon are equal in magnitude but opposite in direction. State


	the resultant value of the gravitational field strength at X

	the weight of the astronaut at X.





















Revision checklist

After studying Topic 1.3 you should know and understand the following:



	what is meant by the mass of a body

	that mass is a property that resists a change in motion

	the difference between mass and weight and that weights (and masses) may be compared using a balance.





After studying Topic 1.3 you should be able to:



	state the units of mass and weight and recall how to measure mass or weight

	recall and use the equation

[image: image]




	state that gravitational field strength, g, is equivalent to the acceleration of free fall

	describe and use the concept of a gravitational field and its effect on a mass.








Exam-style questions



	

	


	Explain what is meant by the mass of an object.

	Explain what is meant by the weight of an object.

	Describe how weights may be compared.[4]








	State which of the following definitions for weight W is correct.


	
W = g/mass


	
W =  mass/ g


	
W = mass × g


	
W = force × g[1]








	Which of the following properties is the same for an object on the Earth and on the Moon?


	weight

	mass

	acceleration of free fall

	gravitational field strength [1]








	State the SI units of


	weight

	acceleration of free fall

	gravitational field strength.[3]
[Total: 9]














	


	Define gravitational field strength.[2]


	On the Earth the acceleration of free fall is 9.8 m/s2. On Mars the acceleration of free fall is about 3.7 m/s2.
The weight of the Mars Rover Opportunity on the Earth was 1850 N.


	Calculate the mass of the Rover.[2]


	Calculate the weight of the Rover on Mars.[2][Total: 6]















	


	Explain what is meant by a gravitational field.[2]


	State the effect of a gravitational field on a mass.[1]


	Define gravitational field strength.[2]


	The gravitational field strength on Venus is 8.8 N/kg. The mass of a rock is 200 kg. Calculate the weight of the rock on Venus.[2][Total: 7]
















1.4 Density


FOCUS POINTS


	Define density and calculate the density of a liquid and both regular-and irregular-shaped solid objects.






A pebble thrown into a pond will sink to the bottom of the pond, but a wooden object will float. Objects of the same shape and size but made from different materials have different masses. In this topic you will see how you can quantify such differences with the idea of density. Density specifies the amount of mass in a unit volume. To measure the density of a material you will need to know both its mass and its volume. The mass can be found using an electronic balance and the volume by measurement.



In everyday language, lead is said to be heavier than wood. By this it is meant that a certain volume of lead is heavier than the same volume of wood. In science such comparisons are made by using the term density. This is the mass per unit volume of a substance and is calculated from


[image: image]


For a mass m of volume V, the density ρ = m/V.


Key definition

Density mass per unit volume



The density of lead is 11 grams per cubic centimetre (11 g/cm3) and this means that a piece of lead of volume 1 cm3 has mass 11 g. A volume of 5 cm3 of lead would have mass 55 g. If the density of a substance is known, the mass of any volume of it can be calculated. This enables engineers to work out the weight of a structure if they know from the plans the volumes of the materials to be used and their densities. Strong enough foundations can then be made.

The SI unit of density is the kilogram per cubic metre. To convert a density from g/cm3, normally the most suitable unit for the size of sample we use, to kg/m3, we multiply by 103. For example, the density of water is 1.0 g/cm3 or 1.0 × 103 kg/m3.

The approximate densities of some common substances are given in Table 1.4.1.


Table 1.4.1 Densities of some common substances

[image: image]


Calculations

Using the symbols ρ (rho) for density, m for mass and V for volume, the expression for density is


[image: image]


Rearranging the expression gives


[image: image]


These are useful if ρ is known and m or V have to be calculated. If you do not see how they are obtained refer to the Mathematics for physics section on p. 297. The triangle in Figure 1.4.1 is an aid to remembering them. If you cover the quantity you want to know with a finger, such as m, it equals what you can still see, i.e. ρ × V. To find V, cover V and you get V = m/ρ.


[image: image]
Figure 1.4.1





Worked example

Taking the density of copper as 9 g/cm3, find a the mass of 5 cm3 and b the volume of 63 g.



	
ρ = 9 g/cm3, V = 5 cm3 and m is to be found. m = V × ρ = 5 cm3 × 9 g/cm3 = 45 g


	
ρ = 9 g/cm3, m = 63 g and V is to be found.

[image: image]








Now put this into practice



	A sheet of aluminium has a mass of 200 g and a volume of 73 cm3. Calculate the density of aluminium.

	Taking the density of lead as 11 g/cm3, calculate


	the mass of 4 cm3


	the volume of 55 g.













Simple density measurements

If the mass m and volume V of a substance are known, its density can be found from ρ = m/V.

Regularly shaped solid

The mass is found on a balance and the volume by measuring its dimensions with a ruler.

Irregularly shaped solid: volume by displacement

Use one of these methods to find the volume of a pebble or glass stopper, for example. The mass of the solid is found on a balance. Its volume is measured by one of the displacement methods shown in Figure 1.4.2. In Figure 1.4.2a the volume is the difference between the first and second readings. In Figure 1.4.2b it is the volume of water collected in the measuring cylinder.


[image: image]
Figure 1.4.2a Measuring the volume of an irregular solid: method 1





[image: image]
Figure 1.4.2b Measuring the volume of an irregular solid: method 2





Liquid

The mass of an empty beaker is found on a balance. A known volume of the liquid is transferred from a burette or a measuring cylinder into the beaker. The mass of the beaker plus liquid is found and the mass of liquid is obtained by subtraction.

Air

Using a balance, the mass of a 500 cm3 round-bottomed flask full of air is found and again after removing the air with a vacuum pump; the difference gives the mass of air in the flask. The volume of air is found by filling the flask with water and pouring it into a measuring cylinder.


Going further

Floating and sinking

An object sinks in a liquid of lower density than its own; otherwise it floats, partly or wholly submerged. For example, a piece of glass of density 2.5 g/cm3 sinks in water (density 1.0 g/cm3) but floats in mercury (density 13.6 g/cm3).

An iron nail sinks in water but an iron ship floats because its average density is less than that of water, due to the low-density air enclosed in the hull.

A liquid of low density will float on a liquid of higher density if the two liquids do not mix.




Test yourself



	


	Calculate the density of a substance of


	mass 100 g and volume 10 cm3


	volume 3 m3 and mass 9 kg.







	The density of gold is 19 g/cm3. Calculate the volume of


	38 g

	95 g of gold.













	A rectangular steel bar is 4 cm long, 3 cm wide and 1cm thick. When weighed it is found to have a mass of 96 g. Calculate its density in


	g/cm3


	kg/m3.







	The water in a measuring cylinder is at the 50cm3 level. A pebble is dropped into the water and the water level rises to 60 cm3. The pebble is completely covered by water.
Calculate


	the volume of the pebble

	the density of the pebble, if it weighs 60 g.














Revision checklist

After studying Topic 1.4 you should know and understand the following:



	how density is defined and how to perform calculations using ρ = m/V.





After studying Topic 1.4 you should be able to:



	describe methods to measure the density of a liquid and a regularly shaped solid

	describe the method of displacement to measure the density of an irregularly shaped solid.








Exam-style questions



	

	Choose which of the following definitions for density is correct.


	mass/volume

	mass × volume

	volume/mass

	weight/area[1]








	Calculate


	the mass of 5 m3 of cement of density 3000 kg/m3[3]


	the mass of air in a room measuring 10 m × 5.0 m × 2.0 m if the density of air is 1.3 kg/m3.[3]
[Total: 7]














	


	Describe how you could determine the density of a liquid.[4]


	An empty beaker is weighed and found to have a mass of 130 g. A measuring cylinder contains 50 cm3 of an unknown liquid. All the liquid is poured into the beaker which is again weighed and found to have a mass of 170 g. Calculate the density of the liquid.[4]
[Total: 7]









	


	A block of wood has dimensions of 10 cm × 8 cm × 20 cm.


	Calculate the volume of the block in cubic metres.[2]


	The block is placed on a balance and found to weigh 1.2 kg. Calculate the density of the block in kg/m3.[3]








	When a golf ball is lowered into a measuring cylinder of water, the water level rises by 30 cm3 when the ball is completely submerged. If the ball weighs 33 g in air, calculate its density in kg/m3.[3]
[Total: 7]
















1.5 Forces

1.5.1 Balanced and unbalanced forces


FOCUS POINTS


	Understand that the size, shape and velocity of objects can be altered by forces.

	Identify different types of force and use free-body diagrams to show the magnitude and direction of all the forces that act on an object.

	Become familiar with load–extension graphs for an elastic solid and describe an experiment to show how a spring behaves when it is stretched.

	Understand that when several forces act simultaneously on an object that a resultant can be determined.

	Know that, unless acted upon by a resultant force, an object will remain at rest or will continue moving with a constant speed in a straight line.

	Define the spring constant and the limit of proportionality on a load–extension graph.

	Apply the equation F = ma to calculate force and acceleration.

	State Newton’s third law of motion.






A gravitational force causes a freely falling object to accelerate and keeps a satellite moving in a circular path. Clearly a force can change the speed or direction of travel of an object. A force can also change the shape or size of an object. If you stand on an empty paper carton it will change its shape and if you pull on a spiral spring it will stretch. Several forces may act on an object at once and it is useful to calculate a resultant force to predict their combined effect; both the size and direction of the forces are needed for this. You have already learnt how to quantify some of these changes and in this topic you will learn more ways to do so.



Types of force

A force is a push or a pull. There are different types of forces. You have already found that weight is a gravitational force and will learn later that there are magnetic forces between magnets (Topic 4.1) and electrostatic forces between charges (Topic 4.2). These forces do not require contact between objects. A force can cause an object at rest to move, or if the body is already moving it can change its speed or direction of motion.


[image: image]
Figure 1.5.1 A weightlifter in action exerts first a pull and then a push.




A force can also change a body’s shape or size. For example, a spring (or wire) will stretch when loaded with a weight.

Contact forces occur between objects that are touching each other. These include drag and air resistance which are resistive forces caused by the motion of an object through a fluid such as a liquid or air. They act against the direction of motion of the object to slow it down as does friction, which occurs between two solid surfaces in relative motion. Other contact forces are the force experienced by an object at rest on a surface (Figure 1.5.4 on p. 33) and the tension that occurs in a string or spring (Figure 1.5.2) being stretched (elastic force).

Thrust is a sudden force (driving force) in a particular direction.

The forces on an object can be represented in a free-body diagram (Figure 1.5.4).

Elastic deformation


Practical work

Stretching a spring

Safety



	
Eye protection must be worn (in case the spring snaps).






Arrange a steel spring as in Figure 1.5.2. Read the scale opposite the bottom of the hanger. Add 100 g masses one at a time (thereby increasing the load by steps of 1 N) and take readings from the scale after each one. Enter the readings in a table for masses up to 500 g.

Note that at the head of columns (or rows) in data tables it is usual to give the name of the quantity or its symbol followed by / and the unit.




	Load/N
	Scale reading/mm
	
Total extension/mm




	 
	 
	 





Sometimes it is easier to discover laws by displaying the results on a graph. Do this on graph paper by plotting total extension along the x-axis (horizontal axis) and  load along the y-axis (vertical axis) in a load–extension graph. Every pair of readings will give a point; mark them by small crosses and draw a smooth line through them.


[image: image]
Figure 1.5.2







	What is the shape of the graph you plotted?

	Do the results suggest any rule about how the spring behaves when it is stretched?

	What precautions could you take to improve the accuracy of the results of this experiment?

	How could you test if the extension of the spring is proportional to the stretching force?







Extension in springs

Springs were investigated by Robert Hooke just over 350 years ago. He found that the extension was proportional to the stretching force provided the spring was not permanently stretched. This means that doubling the force doubles the extension, trebling the force trebles the extension, and so on.

Using the sign for proportionality, ∝, we can write

extension ∝ stretching force

It is true only if the limit of proportionality of the spring is not exceeded.


Key definition

Limit of proportionality the point at which the load–extension graph becomes non-linear



The graph of Figure 1.5.3 is for a spring stretched beyond its limit of proportionality, E. OE is a straight line passing through the origin O and is graphical proof that the extension is directly proportional to the stretching force over this range. If the force for point A on the graph is applied to the spring, the proportionality limit is passed and on removing the force some of the extension (OS) remains.


[image: image]
Figure 1.5.3






Test yourself



	In Figure 1.5.3, over which part of the graph does aspring balance work?







Spring constant

The spring constant, k, is defined as force per unit extension. It is the force which must be applied to a spring to cause an extension of 1 m.

If a force F produces extension x then


[image: image]


or


[image: image]


Rearranging the equation gives

F = kx


Key definition

Spring constant force per unit extension



Proportionality also holds when a force is applied to an elastic solid such as a straight metal wire, provided it is not permanently stretched.

Load–extension graphs similar to Figure 1.5.3 are obtained. You should label each axis of your graph with the name of the quantity or its symbol followed by / and the unit, as shown in Figure 1.5.3.

The limit of proportionality can be defined as the point at which the load–extension graph becomes non-linear because the extension is no longer proportional to the stretching force.


Worked example

A spring is stretched 10 mm (0.01 m) by a weight of 2.0 N. Calculate



	the spring constant k


	the weight W of an object that causes an extension of 80 mm (0.08 m).







	
[image: image]




	
W = stretching force F
[image: image]








Now put this into practice



	Calculate the spring constant of a spring which is stretched 2 mm by a force of 4 N.

	A 2 N force is applied to a spring which has a spring constant of 250 N/m. Calculate the extension of the spring in mm.








Test yourself



	State two effects which a force may have on a object.

	Make a sketch of a load–extension graph for a spring and indicate the region over which the extension is proportional to the stretching force.

	Calculate the spring constant of a spring which is stretched 4 cm by a mass of 200 g.

	Define the limit of proportionality for a stretched spring.







Forces and resultants

Force has both magnitude (size) and direction. It is represented in free-body diagrams by a straight line with an arrow to show its direction of action.

Usually more than one force acts on an object. As a simple example, an object resting on a table is pulled downwards by its weight W and pushed upwards by a contact force R due to the table supporting it (Figure 1.5.4). Since the object is at rest, there is no resultant force. We say the forces are balanced, i.e. R = W.


[image: image]
Figure 1.5.4





In structures such as a giant oil platform (Figure 1.5.5), two or more forces may act at the same point. It is then often useful for the design engineer to know the value of the single force, i.e. the resultant force, which has exactly the same effect as these forces, If the forces act in the same straight line, the resultant is found by simple addition or subtraction as shown in Figure 1.5.6. If the forces act in different directions, the vectors are added by taking account of their direction. This was described in Topic 1.1 for the resultant of two forces at right angles.


[image: image]
Figure 1.5.5 The design of an offshore oil platform requires an understanding of the combination of many forces.





[image: image]
Figure 1.5.6 The resultant of forces acting in the same straight line is found by addition or subtraction.




If the resultant of two or more forces is not zero, we say the forces are unbalanced.


Going further


Practical work

Parallelogram law

Safety



	Take care when using the mass in case it drops.





Arrange the apparatus as in Figure 1.5.7a with a sheet of paper behind it on a vertical board. We have to find the resultant of forces P and Q.

Read the values of P and Q from the spring balances. Mark on the paper the directions of P, Q and W as shown by the strings. Remove the paper and, using a scale of 1 cm to represent 1 N, draw OA, OB and OD to represent the three forces P, Q and W which act at O, as in Figure 1.5.7b. (W = weight of the 1 kg mass = 9.8 N; therefore OD = 9.8 cm.)


[image: image]
Figure 1.5.7a





P and Q together are balanced by , W and so their resultant must be a force equal and opposite to W. 

Complete the parallelogram OACB. Measure the diagonal OC; if it is equal in size (i.e. 9.8 cm) and opposite in direction to W then it represents the resultant of P and Q. 


[image: image]
Figure 1.5.7b Finding a resultant by the parallelogram law





The parallelogram law for adding two forces is:

If two forces acting at a point are represented in size and direction by the sides of a parallelogram drawn from the point, their resultant is represented in size and direction by the diagonal of the parallelogram drawn from the point.



	List the equipment you would need for this experiment.

	What quantity would you vary to test the law under different conditions?










Test yourself



	Jo, Daniel and Helen are pulling a metal ring. Jo pulls with a force of 100 N in one direction and Daniel with a force of 140 N in the opposite direction. If the ring does not move, what force does Helen exert if she pulls in the same direction as Jo?

	A boy drags a suitcase along the ground with a force of 100 N. If the frictional force opposing the motion of the suitcase is 50 N, what is the resultant forward force on the suitcase?

	A picture is supported by two vertical strings. If the weight of the picture is 50 N, what is the force exerted by each string?

	Using a scale of 1 cm to represent 10 N, find the size and direction of the resultant of forces of 30 N and 40 N acting at right angles to each other.







Newton’s first law

Friction and air resistance cause a car to come to rest when the engine is switched off. If these forces were absent, we believe that an object, once set in motion, would go on moving forever with a constant speed in a straight line. That is, force is not needed to keep a body moving with uniform velocity provided that no opposing forces act on it.

This idea was proposed by Galileo and is summed up in Newton’s first law of motion:

An object stays at rest, or continues to move in a straight line at constant speed, unless acted on by a resultant force.

It seems that the question we should ask about a moving body is not what keeps it moving but what changes or stops its motion.

The smaller the external forces opposing a moving body, the smaller is the force needed to keep it moving with constant velocity. A hover scooter, which is supported by a cushion of air (Figure 1.5.8), can skim across the ground with little frictional opposition, so that relatively little power is needed to maintain motion.

A resultant force may change the velocity of an object by changing its direction of motion or speed.


Key definitions

Newton’s first law of motion an object either remains at rest or continues to move in a straight line at constant speed unless acted on by a resultant force

Resultant forcemay change the velocity of an object by changing its direction of motion or its speed




[image: image]
Figure 1.5.8 Friction is much reduced for a hover scooter.




Mass and inertia

Newton’s first law is another way of saying that all matter has a built-in opposition to being moved if it is at rest or, if it is moving, to having its motion changed. This property of matter is called inertia (from the Latin word for laziness), see Topic 1.3.

Its effect is evident on the occupants of a car that stops suddenly: they lurch forwards in an attempt to continue moving, and this is why seat belts are needed. The reluctance of a stationary object to move can be shown by placing a large coin on a piece of card on your finger (Figure 1.5.9). If the card is flicked sharply the coin stays where it is while the card flies off.


[image: image]
Figure 1.5.9 Flick the card sharply




The larger the mass of a body, the greater is its inertia, i.e. the more difficult it is to move it when at rest and to stop it when in motion. Because of this we consider that the mass of a body measures its inertia.


Practical work

Effect of force and mass on acceleration

Safety



	Take care when rolling the trolley down the ramp. Ensure it is clear at the bottom of the ramp and use a side barrier to prevent the trolley from falling onto the floor.





The apparatus consists of a trolley to which a force is applied by a stretched length of elastic (Figure 1.5.10). The velocity of the trolley is found from a tickertape timer or a motion sensor, datalogger and computer.

First compensate the runway for friction: raise one end until the trolley runs down with constant velocity when given a push. The dots on the tickertape should be equally spaced, or a horizontal trace obtained on a speed–time graph. There is now no resultant force on the trolley and any acceleration produced later will be due only to the force caused by the stretched elastic.


[image: image]
Figure 1.5.10




(a) Force and acceleration (mass constant)

Fix one end of a short length of elastic to the rod at the back of the trolley and stretch it until the other end is level with the front of the trolley. Practise pulling the trolley down the runway, keeping the same stretch on the elastic. After a few trials you should be able to produce a steady accelerating force.

Repeat using first two and then three identical pieces of elastic, stretched side by side by the same amount, to give two and three units of force.

If you are using tickertape, make a tape chart for each force and use it to find the acceleration produced in cm/ten-tick2. Ignore the start of the tape (where the dots are too close) and the end (where the force may not be steady). If you use a motion sensor and computer to plot a speed–time graph, the acceleration can be obtained in m/s2 from the slope of the graph (Topic 1.2).

Put the results in a table.


[image: image]


(b) Mass and acceleration (force constant)

Do the experiment as in part (a) using two pieces of elastic (i.e. constant F ) to accelerate first one trolley, then two (stacked one above the other) and finally three. Check the friction compensation of the runway each time.

Find the accelerations from the tape charts or computer plots and tabulate the results.


[image: image]




	For part (a), does a steady force cause a steady acceleration?

	Do your results in part (a) suggest any relationship between acceleration a and force F?

	Do your results for part (b) suggest any relationship between a and m?

	Name the two independent variable quantities in experiments (a) and (b).

	How could you use the results to verify the equation F = ma?







Newton’s second law

The previous experiment should show roughly that the acceleration a is



	directly proportional to the applied force F for a fixed mass, i.e. a ∝ F, and

	
inversely proportional to the mass m for a fixed force, i.e. a ∝ 1/m.





Combining the results into one equation, we get


[image: image]


or

F ∝ ma

Therefore

F = kma

where k is the constant of proportionality.

One newton is defined as the force which gives a mass of 1 kg an acceleration of 1 m/s2, i.e. 1 N = 1 kg m/s2, so if m = 1 kg and a = 1 m/s2, then F = 1 N.

Substituting in F = kma, we get k = 1 and so we can write

F = ma

or

resultant force = mass × acceleration

This is Newton’s second law of motion. When using it, two points should be noted. First, F is the resultant (or unbalanced) force causing the acceleration a in the same direction as F. Second, F must be in newtons, m in kilograms and a in metres per second squared, otherwise k is not 1. The law shows that a will be largest when F is large and m small.


Key definition

Newton’s second law of motion resultant force = mass × acceleration (F = ma)



You should now appreciate that when the forces acting on a body do not balance there is a net (resultant) force which causes a change of motion, i.e. the body accelerates or decelerates. The force and the acceleration are in the same direction. If the forces balance, there is no change in the motion of the body. However, there may be a change of shape, in which case internal forces in the body (i.e. forces between neighbouring atoms) balance the external forces.


Worked example

A block of mass 2 kg has a constant velocity when it is pushed along a table by a force of 5 N. When the push is increased to 9 N what is



	the resultant force

	the acceleration?





When the block moves with constant velocity the forces acting on it are balanced. The force of friction opposing its motion must therefore be 5 N.



	When the push is increased to 9 N the resultant (unbalanced) force F on the block is (9 − 5) N = 4 N (since the frictional force is still 5 N).

	The acceleration a is obtained from F = ma where F = 4 N and m = 2 kg.

[image: image]








Now put this into practice



	A box of mass 5 kg has a constant velocity when it is pushed along a table by a force of 8 N. When the push is increased to 10 N calculate


	the resultant force

	the acceleration.







	A force F produces a constant acceleration in a straight line of 0.5 m/s2 on a block of mass 7 kg.
Calculate the value of F.










Test yourself



	Which one of the diagrams in Figure 1.5.11 shows the arrangement of forces that gives the block of mass M the greatest acceleration?

[image: image]
Figure 1.5.11







	In Figure 1.5.12 if P is a force of 20 N and the object moves with constant velocity, what is the value of the opposing force F?

[image: image]
Figure 1.5.12







	


	What resultant force produces an acceleration of 5 m/s2 in a car of mass 1000 kg?

	What acceleration is produced in a mass of 2 kg by a resultant force of 30 N?







	A block of mass 500 g is pulled from rest on a horizontal frictionless bench by a steady force F and reaches a speed of 8 m/s in 2 s. Calculate


	the acceleration

	the value of F.













Newton’s third law

If a body A exerts a force on body B, then body B exerts an equal but opposite force on body A.

This is Newton’s third law of motion and states that forces never occur singly but always in pairs as a result of the action between two bodies. For example, when you step forwards from rest your foot pushes backwards on the Earth, and the Earth exerts an equal and opposite force forward on you. Two bodies and two forces are involved. The small force you exert on the large mass of the Earth gives no noticeable acceleration to the Earth but the equal force it exerts on your very much smaller mass causes you to accelerate.


Key definition

Newton’s third law of motion when object A exerts a force on object B, then object B exerts an equal and opposite force on object A



Note that the pair of equal and opposite forces do not act on the same body; if they did, there could never be any resultant forces and acceleration would be impossible. For a book resting on a table, the book exerts a downward force on the table and the table exerts an equal and opposite upward force on the book; this pair of forces act on different objects and are represented by the red arrows in Figure 1.5.13. The weight of the book (blue arrow) does not form a pair with the upward force on the book (although they are equal numerically) as these two forces act on the same body.

An appreciation of the third law and the effect of friction is desirable when stepping from a rowing boat (Figure 1.5.14). You push backwards on the boat and, although the boat pushes you forwards with an equal force, it is itself now moving backwards (because friction with the water is slight). This reduces your forwards motion by the same amount – so you may fall in!



[image: image]
Figure 1.5.13 Forces between book and table





[image: image]
Figure 1.5.14 The boat moves backwards when you step forwards!




1.5.2 Friction


FOCUS POINTS


	Understand that friction between surfaces acts to slow an object and produces heating.

	Describe the motion of objects falling with and without air resistance or drag.

	Explain how an object reaches terminal velocity.

	Describe how the overall stopping distance of a car is affected by its speed and by factors that affect the friction forces or factors that affect the driver’s reaction time.






Friction between a moving object and its surroundings is important as it acts to reduce the speed of the object. A steady braking force applied to a car produces a uniform deceleration. The car slows down and stops. The distance the car moves while it is braking depends on the size of the resultant force, which depends on the force applied by the brakes and the size of the friction force.

A falling object accelerates due to the pull of gravity, however drag force caused by air resistance reduces the acceleration. If the size of the drag force increases so that it is balanced by the object’s weight, then the resultant force is zero and the object will move at constant speed.



Friction is the force that opposes one surface moving, or trying to move, over another. It can be a help or a hindrance. We could not walk if there was no friction between the soles of our shoes and the ground. Our feet would slip backwards, as they tend to when we walk on ice. On the other hand, engineers try to reduce friction to a minimum in the moving parts of machinery by using lubricating oils and ball-bearings.



[image: image]
Figure 1.5.15 Friction opposes motion between surfaces in contact.




When a gradually increasing force P is applied through a spring balance to a block on a table (Figure 1.5.15), the block does not move at first. This is because an equally increasing but opposing frictional force F acts where the block and table touch. At any instant P and F are equal and opposite.

If P is increased further, the block eventually moves; as it does so F has its maximum value, called starting or static friction. When the block is moving at a steady speed, the balance reading is slightly less than that for starting friction. Sliding or dynamic friction is therefore less than starting or static friction.

Placing a mass on the block increases the force pressing the surfaces together and increases friction.

When work is done against friction, the temperatures of the bodies in contact rise (as you can test by rubbing your hands together); kinetic energy is transferred to thermal energy by mechanical working (see Topic 1.7).

Solid friction can be described as the force between two surfaces that may impede motion and produce heating.

Friction (drag) acts on an object such as a vehicle or falling leaf, moving through gas (air resistance), which opposes the motion of the object. Similarly, friction (drag) acts on an object moving through a liquid. Drag increases as the speed of the object increases, and acts to reduce acceleration and slow the object down.


Test yourself



	


	Explain the conditions under which friction occurs.

	Name two effects resulting from solid friction.







	A car is moving at a constant speed along a straight road. Describe how the forces acting on the car influence the speed of the car. How is a constant speed achieved?







Driving and car safety

In order to bring a moving car to rest, the brakes must be applied over a certain distance known as the braking distance. The thinking distance is the distance travelled while the driver is reacting before applying the brakes. For a driver travelling at a constant speed, the thinking distance is proportional to the reaction time t (distance = vt); the longer the reaction time, the further the car travels before the brakes are applied. The thinking distance has to be added to the braking distance to obtain the overall stopping distance, in other words

stopping distance = thinking distance + braking distance


Key definitions

Braking distance distance over which brakes applied before vehicle brought to rest

Thinking distance distance travelled during reaction time of driver (before brakes applied)

Stopping distance total distance travelled in the time it takes to stop a vehicle; equals thinking distance + braking distance



Typical values are given in Table 1.5.1 for different speeds. The greater the speed, the greater the stopping distance for a given braking force. The data shows that the total stopping distance for a car travelling at 90 km/h is twice as long as for a car travelling at 60 km/h if the braking force is the same. (To stop the car in a given distance, a greater braking force is needed for higher speeds.)


Table 1.5.1

[image: image]


Thinking distance depends on the driver’s reaction time – this will vary with factors such as the driver’s degree of tiredness, use of alcohol or drugs, eyesight and the visibility of the hazard. Braking distance varies with both the road conditions and the state of the car; it is longer when the road is wet or icy, so when friction between the tyres and the road is low, than when conditions are dry. Efficient brakes and deep tyre tread help to reduce the braking distance. The braking distance becomes longer when the load carried by the vehicle is increased.

Air resistance: terminal velocity

In the absence of air resistance, a falling object has a constant acceleration as shown in the distance–time graph of Figure 1.2.9 on p. 19. However, we cannot usually ignore the effect of air resistance. As the object accelerates, the air resistance opposing its motion increases as its speed rises. This reduces its acceleration; the acceleration is no longer constant. Eventually, air resistance acting upwards equals the weight of the object acting downwards. The resultant force on the object is then zero since the gravitational force balances the frictional force. The object falls at a constant velocity, called its terminal velocity, whose value depends on the size, shape and weight of the object. Figure 1.2.3c on p. 14 shows the speed–time graph for an object that is decreasing its acceleration and approaching a terminal velocity.

A small dense object, such as a steel ball-bearing, has a high terminal velocity and falls a considerable distance with a constant acceleration of 9.8 m/ s2 before air resistance equals its weight. A light object, like a raindrop, or an object with a large surface area, such as a parachute, has a low terminal velocity and only accelerates over a comparatively short distance before air resistance equals its weight. A skydiver (Figure 1.5.16) has a terminal velocity of more than 50 m/s (180 km/h) before the parachute is opened.

Objects falling in liquids behave similarly to those falling in air.


[image: image]
Figure 1.5.16 Synchronised skydivers




1.5.3 Circular motion


FOCUS POINTS


	Describe motion in a circular path and understand the effect on force if speed, radius or mass change.






There are many examples of bodies moving in circular paths: rides at a funfair, clothes being spun dry in a washing machine, the planets going round the Sun, and the Moon circling the Earth. When a car turns a corner, it may follow an arc of a circle. ‘Throwing the hammer’ is a sport practised at Highland Games in Scotland (Figure 1.5.17), in which the hammer is whirled round and round before it is released.



To keep an object moving in a circular path requires a force to act towards the centre of the circle. In the case of a satellite orbiting the Earth, that force is provided by the Earth’s gravitational attraction; for a whirling hammer, it is the force exerted on the handle of the hammer by the athlete. The size of the force depends on a number of factors.



[image: image]
Figure 1.5.17 ‘Throwing the hammer’




Centripetal force

In Figure 1.5.18 a ball attached to a string is being whirled round in a horizontal circle. Its direction of motion is constantly changing. At A, it is along the tangent at A; shortly afterwards, at B, it is along the tangent at B; and so on. It can be seen that motion in a circular path is due to a force perpendicular to the motion.


[image: image]
Figure 1.5.18




Velocity has both size and direction; speed has only size. Velocity is speed in a stated direction and if the direction of a moving body changes, even if its speed does not, then its velocity has changed. A change of velocity is an acceleration, and so during its whirling motion the ball is accelerating.

It follows from Newton’s first law of motion that if we consider a body moving in a circle to be accelerating, then there must be a force acting on it to cause the acceleration. In the case of the whirling ball it is reasonable to say the force is provided by the string pulling inwards on the ball. Like the acceleration, the force acts towards the centre of the circle and keeps the body at a fixed distance from the centre.

A larger force is needed if



	the speed v of the ball is increased, with mass and radius constant

	the radius r of the circle is decreased, with mass and speed constant

	the mass m of the ball is increased, with speed and radius constant.





This force, which acts towards the centre and keeps a body moving in a circular path, is called the centripetal force (centre-seeking force).

Should the force be greater than the string can bear, the string breaks and the ball flies off with steady speed in a straight line along the tangent, i.e. in the direction of travel when the string broke (as Newton’s first law of motion predicts). It is not thrown outwards.

Whenever an object moves in a circle (or circular arc) there must be a centripetal force acting on it. In throwing the hammer it is the pull of the athlete’s arms acting on the hammer towards the centre of the whirling path. When a car rounds a bend, a frictional force is exerted inwards by the road on the car’s tyres.


Going further

Satellites

For a satellite of mass m orbiting the Earth at radius r with orbital speed v, the centripetal force, F, is the Earth’s gravitational force on the mass.

To put an artificial satellite in orbit at a certain height above the Earth it must enter the orbit at the correct speed. If it does not, the force of gravity, which decreases as height above the Earth increases, will not be equal to the centripetal force needed for the orbit.

Communication satellites

Communication satellites circle the Earth in orbits above the equator. Geostationary satellites have an orbit high above the equator (36 000 km); they travel with the same speed as the Earth rotates, so appear to be stationary at a particular point above the Earth’s surface – their orbital period is 24 hours. They are used for transmitting television, intercontinental telephone and data signals. Geostationary satellites need to be well separated so that they do not interfere with each other; there is room for about 400.

Mobile phone networks use many satellites in much lower equatorial orbits; they are slowed by the Earth’s atmosphere and their orbit has to be regularly adjusted by firing a rocket engine. Eventually they run out of fuel and burn up in the atmosphere as they fall to Earth.
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