

[image: Cover]






For Luis McGillycuddy, gone too soon, and Mae Alison Davidson, recently arrived.




[image: Image]




Introduction


A Theory of Not Quite Everything


The general rule in psychiatry is: if you think you’ve found a theory that explains everything, diagnose yourself with mania and check yourself into the hospital.1


Scott Alexander


Can you predict the future? Yes, of course you can.


You can predict with near-certain accuracy that in the next few seconds, you’ll take a breath, and let it out again. Your heart will beat, somewhere between one and three times a second. Tomorrow morning, the sun will come up, at a particular time which depends upon your latitude and the time of year but which nonetheless you can find out with great accuracy. All of these events you can predict with confidence.


You can also predict that the train will arrive at a certain time, or that your friend will arrive on time at the restaurant at which you’ve arranged to meet her. Though, depending on the rail company, or your friend, you might be less confident in that.


And you can predict that the world’s population will continue to grow until around the middle of the century, and then start to fall again. You can predict that global average surface temperatures in the year 2030 will be higher than they were in the year 1930.


The future isn’t opaque. You can see into it. Some parts are more predictable than others – the Newtonian dance of the planets we can predict out for thousands of years; the Lorenzian chaos of the weather, really only a few days. But you can peer through the murk, after a fashion.


That’s not what people normally mean when they say, ‘I can predict the future.’ They are referring to something mystical, some psychic or magical vision. We probably can’t do that. (You’ll read about a scientist in this book who thinks we can, and you’ll also read about why he’s almost certainly wrong.) But we don’t need to. All that we do, all the time, is predict the future. We couldn’t function if we couldn’t. We make very basic predictions, like ‘the air will continue to be breathable’, implicitly, with every breath we take. We make more complex predictions, like ‘The corner shop will have Alpen when I get there’, each time we make a decision. We’re not basing them on mystical visions, but on information we have gathered in the past.


The thing with all these predictions is that they are uncertain. The universe may or may not be deterministic; perhaps if we had perfect, God-like knowledge of the position, movement and qualities of every particle in the universe, we could perfectly predict everything, the fall of every sparrow. But we don’t. Instead, we have partial information. We can see bits of the universe, imperfectly, through our imperfect senses. We have best guesses for the way those bits move – we know the human-shaped bits tend to seek food and company; we know the rock-shaped bits tend to sit still. We can make messy, imperfect predictions with that information.


Life isn’t chess, a game of perfect information, one that can in theory be ‘solved’. It’s poker, a game where you’re trying to make the best decisions using the limited information you have.


This book is about the equation that lets you do that.


‘Someone told me,’ said Stephen Hawking, after the publication of 2 This book is about an equation, so it will be difficult to avoid including at least one.*


That equation is Bayes’ theorem, or Bayes’ rule. As equations go, it is simple. It looks like this:
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My dirty little secret is that I hate reading equations. I can do it, sort of. But it’s a slog. It’s embarrassing, because I have now written three books that are either entirely or partly about maths. But my brain grinds to a halt at the sight of a Σ symbol. And I suspect that quite a lot of readers feel the same, which is probably why Hawking was warned about including them in his book.


But equations aren’t secret codes or arcane magic. Each little symbol (I have to remind myself) denotes a simple action. It’s just a sort of shorthand.


In this case, Bayes’ theorem is about probability: about how likely something is, given the evidence we have. Specifically, it’s about a particular form of conditional probability. The vertical line | is shorthand for ‘in the event that’ or ‘conditional on’. So P(A|B) is the probability of an event A happening, given that event B has happened.


Here’s a simple example of conditional probability: say you wanted to know the probability of drawing a heart from a deck of cards. You know there are thirteen hearts in a standard fifty-two-card deck, so your probability – P(♡), if you like – is 13/52, or 1/4. Or, in probability notation, p=0.25. But then you draw a card, and it’s a club. What’s your probability now? Well, there are still thirteen hearts in the deck, but only fifty-one cards in total. So your probability is now 13/51, or p≈0.255. (The wavy equals sign means ‘approximately equal to’.) That’s the probability of drawing a heart given that you’ve previously drawn a club, P(♡|♧).


Or: what’s the probability that it will rain on a given day in London? Probably about 0.4: there are around 150 rainy days a year in London. But you look out the window and you see that the clouds are dark and heavy. What’s the probability now? I don’t know exactly, but higher: the probability of rain given that it’s cloudy is higher.


Bayes’ theorem is the same idea, but taken a bit further. In natural language, it means: the probability of event A, given event B, equals the probability of B given A, times the probability of A on its own, divided by the probability of B on its own.


Imagine that you have a disease that is spreading through your society. That shouldn’t be too hard to imagine, given recent history.


You want to know whether you have the disease, so you take a test. On the instructions that come with the test, there’s a little note: ‘This test is 99 per cent sensitive and 99 per cent specific.’ What that means is that if you have the disease, there’s a 99 per cent chance that it will, correctly, tell you that you have the disease; if you don’t have the disease, there’s a 99 per cent chance that it will tell you, correctly, that you don’t have the disease. Another way of saying this is that the test has a ‘false negative rate’ of 1 per cent, and a ‘false positive rate’ also of 1 per cent.


So you take the test, and you get a positive result: two lines show up. What does that mean? You might, reasonably, assume that it means it’s 99 per cent likely that you have the disease.


But it doesn’t. And the reason it doesn’t is Bayes’ theorem.


Bayes’ theorem is strange. It is a simple equation, which you can write on a line, and composed only of mathematical operations which most eight-year-olds could carry out – multiplication and division. It was first worked out by an eighteenth-century gentleman hobbyist, a part-timer whose day job was being a Nonconformist minister in Tunbridge Wells. But it has profound implications – it’s why a cancer test can be 99 per cent accurate even though 99 per cent of the people it says have cancer don’t; it tells us why DNA forensics might only have a one-in-20-million chance of wrongly matching an innocent suspect, but still be more likely than not to send the wrong person down. It explains why scientific results can be ‘statistically significant’ and yet still very probably wrong.


Bayes’ theorem also reveals fascinating philosophical divides. Is ‘probability’ a real thing? When we say that there’s a one-in-six chance that we’ll roll a one, what do we mean? Is that some fact about the universe, or just a statement about our beliefs in the world? And can one-off events have probabilities? If I say there’s a 90 per cent chance that Man City will win the league in 2025, what does that mean?


When we make decisions about things that are uncertain – which we do all the time – the extent to which we are doing that well is described by Bayes’ theorem. Any decision-making process, anything that, however imperfectly, tries to manipulate the world in order to achieve some goal, whether that’s a bacterium seeking higher glucose concentrations, genes trying to pass copies of themselves through generations, or governments trying to achieve economic growth: if it’s doing a good job, it’s being Bayesian.


Artificial intelligence is essentially applied Bayes. It is, at its most basic level, trying to predict things. A simple image classifier which looks at pictures and says they’re of a cat or a dog is just ‘predicting’ what a human would say, based on its training data and the information in the picture. DALL-E 2, GPT-4, Midjourney and all the other extraordinary AIs that are wowing people as I write, the things that can hold conversations with you or create astonishing images from simple text prompts, are just predicting what human writers and artists would make from a prompt, based on their training data. And the way they do it is Bayesian.


Our brains are Bayesian. That’s why we are vulnerable to optical illusions, why psychedelic drugs make us hallucinate, and how our minds and consciousnesses work at all.


And Bayes’ theorem can help us understand why conspiracy theories are so hard to shift, and why two people can look at the same evidence and have it tell them entirely different things. Why is it that sceptics look at the scientific evidence that convinces me that vaccines are safe and effective, and be unmoved by it? It’s because, as dictated by Bayes’ theorem, your response to new information is influenced by the beliefs you already hold. It’s not that vaccine sceptics or conspiracy theorists are strange aliens whose brains work differently: it’s that they are behaving entirely rationally, given their existing beliefs. And Bayes’ theorem explains how that works.


It is a theory of not-quite-everything, perhaps. Nearly everything. Once you start looking at the world through a Bayesian lens, you do start seeing Bayes’ theorem everywhere. My intention is to make you see it everywhere too.


The usual way to explain Bayes’ theorem is with medical testing. Here’s a realistic example with plausible numbers: you are going for breast cancer screening. You know that if a woman has cancer, the mammogram will correctly identify it 80 per cent of the time (it’s 80 per cent sensitive) and miss it the other 20 per cent. If she doesn’t have cancer, it will correctly give the all-clear 90 per cent of the time (it’s 90 per cent specific), but give a false positive 10 per cent of the time.


You get the test. It comes back positive. Does that mean there’s a 90 per cent chance you’ve got breast cancer? No. With the information I’ve given you, you simply don’t know enough to say what your chances are.


What you need to know is how likely you thought it was that you had breast cancer before you took the test. One simple way of guessing that is finding out what percentage of women your age have breast cancer at any given time. Let’s say it’s 1 per cent.


To keep things concrete, let’s imagine 100,000 women get tested. Of those 100,000, 1 per cent – 1,000 – actually have cancer. Of those 1,000, the test will correctly diagnose 800 of them – 80 per cent – but falsely give the all-clear to 200. Of the 99,000 who don’t have cancer, it will correctly give the all-clear to 89,100, but falsely diagnose cancer in 9,900. Or, in table form:
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So now you can tell. You walk into an oncologist’s office and get a positive mammogram. Of the 10,700 women who got a positive result, 800 actually had cancer. So your chance of really having cancer, if you get a positive result in this case, is 800/10,700 ≈ 0.07, or 7 per cent.


But this is entirely dependent on how likely you were to have cancer in the first place. If you were testing a higher-risk population – say, older women with a family history of cancer – it might be that 10 per cent of the women you’re testing have cancer. Then the maths changes dramatically:
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Now, instead of 800 true positives, you have 8,000. And your number of false positives has gone down to 9,000. So the chance you’ve got cancer is 8,000 divided by 17,000, or about 47 per cent, a much more worrying prospect. The test hasn’t changed; all that’s changed is the prior probability.


What Bayes’ theorem does is tell you how much you should change your belief. But in order to do that, you have to have a belief in the first place.


To go back to the equation (it won’t halve my sales again, I’ve already used it):
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What it gives you, once you run the numbers, is P(A|B): the probability of A, the event, given B, the evidence. So the probability of having the disease, given a positive test result. That’s all you’re really interested in: I’ve got the result, so how likely is it that I have the disease?


But what the ‘80 per cent sensitive’ statistic gives you is the exact opposite. It’s P(B|A), the probability of B, given A. It tells you: how likely am I to see this result, given that I have breast cancer?


It might sound unimportant, but it’s the difference between ‘There’s only a 1 in 8 billion chance that a given human is the Pope’ and ‘There’s only a 1 in 8 billion chance that the Pope is human.’3


In order to work out the thing we really want to know, we need more information. In the example of the cancer test, we need to know how common breast cancer is in the population. In medical terms, that’s the prevalence or the background rate, but in Bayes’ theorem in general, it’s known as your prior probability, or ‘prior’.


In medical testing, your prior is often relatively easy to work out, or at least straightforward to define. If you’re trying to work out someone’s risk of Huntington’s disease, you can look up diagnoses recorded in general practice records4 and estimate that about 12.3 people per 100,000 have it.


For other situations, it’s much more difficult. If you want to know how likely it is that Russia will invade Ukraine, what’s your prior probability? How often Russia has invaded Ukraine per year? How often one country invades another? How often one country invades another when they have just sent a whole load of tanks to that country’s border?


Take another example. How likely is it that this scientific hypothesis of mine is true, given that I’ve just done an experiment and seen some particular data? Let’s say that, if my hypothesis was false, I’d only expect to see data like this one time in every twenty. Does that mean I can say that the hypothesis is probably true? No – it depends how probable my hypothesis was before I began my experiment, my prior probability. But how on earth do I work that out?


And another. How likely is it that this person is guilty, given some forensic evidence? If I’ve got DNA evidence that would only show up by chance one time in a million, does that mean there’s only a one-in-a-million chance that I’ve got the wrong suspect? No: it depends how likely it was that you had the right suspect in the first place. Again: how do you even start to put numbers on these things?


We’ll get into all that. (There are people who do it for a living.) But the important thing is that you have to start with a prior probability, and use Bayes’ theorem. If you don’t, you end up in some strange places.


The first place most people come across Bayes’ theorem is in medicine, so let’s start there.


I’ve been mildly obsessed with Bayes’ theorem for years. I first read about it in Ben Goldacre’s ‘Bad Science’ column for the Guardian newspaper in the early 2000s. Since then, I’ve steadily become more fascinated. I’ve written three books, including this one, and Bayes makes an appearance in all of them. There’s something wonderful about how counterintuitive the theorem is. What do you mean, a test being 99 per cent accurate isn’t the same as a 99 per cent chance that it’s right? What mad language are you talking? If you follow the really-not-that-difficult reasoning, it becomes clear, but – for me, at least – it never quite loses its uncanny, otherworldly feeling.


But over the last four years, since early 2020, when Covid-19 started marching across the world, it became much more salient. Way back in April 2020, when we were still deep in the first lockdown, people, including Tony Blair, were calling for ‘immunity passports’, antibody tests that could tell if someone had had Covid or not. If they had, those people should be allowed out and about. (This was back before we realised you could get multiple infections pretty easily.)


At the time, antibody tests were just coming out. One that had just been issued emergency approval in the USA reported roughly 95 per cent sensitivity and specificity.5


Which sounds pretty good. But in April 2020, probably about 3 per cent of British people had had the virus. That’s your prior probability. If you tested a million people with this test, you’d expect about 30,000 to actually have had Covid. Your test would correctly identify about 28,500 of them. But of the 970,000 people who hadn’t had Covid, it would incorrectly say that 48,500 of them had had Covid.


So of the 77,000 positive results you’d probably get, little more than a third would really have had the disease. (That’s your posterior probability.) If you tested all 65 million Britons, and issued ‘immunity passports’ to everyone who got a positive result, it would have meant telling about 3 million people that they were safe to go and hug their immunocompromised grannies when they very much weren’t. You just couldn’t have made any sense of this without some sort of grasp of Bayes.


In Britain, there was another Bayes-related controversy when a few members of the ‘lockdown-sceptical’ commentariat became dimly aware of it. The former government minister John Redwood was probably the most famous: he demanded that ‘government advisers today need to tell us how they are going to stop false test results distorting the figures’.6


What had happened was that one of them had misinterpreted an interview with Professor Sir David Spiegelhalter, a cheerful statistician who spent a lot of time on national TV and radio during the pandemic patiently explaining testing accuracy or vaccine efficacy. They worked out that just because a test has a 1 per cent false positive rate, it doesn’t mean that only 1 per cent of positives are false. That was back between the first and second waves, when we were all doing polymerase chain reaction (PCR) tests every time we thought we had the sniffles. At the time, the prevalence of Covid in the British population was pretty low – lockdowns reduce infections! – but seemed to be creeping back up.


But the Covid contrarians thought that the apparent increase was an illusion which could be explained away with Bayes’ theorem. About 0.1 per cent of people had Covid at the time. If you tested people at random, and your test correctly identified people who didn’t have Covid 99 per cent of the time, and people who did have Covid 90 per cent of the time, more than 90 per cent of your positives would be false.†


This is all completely true. But they hadn’t pushed the Bayesian reasoning far enough. First: is the prior probability really 0.1 per cent? Sure, if you’re testing the population completely at random. But we weren’t: we were testing people who had symptoms or who had come into contact with a confirmed case. Those people would be much more likely to have the virus. How much more likely? We don’t know, but even if only 1 per cent of them genuinely had Covid, the percentage of your total positives that are false drops to 50. If 10 per cent of them do, about 90 per cent of your positive results will be real.


And, of course, we’re assuming that the false positive rate really is 1 per cent. That seems amazingly unlikely. At one point in summer 2020, when Covid had died down a bit, the total percentage of tests coming back positive, whether false or true, was 0.05 per cent, so the false positive rate can’t reasonably have been higher than that. If we use that, then with a Covid prevalence of 0.1 per cent, your false positives drop to about 35 per cent. If we assume that the prevalence in the testing population was higher, for the reasons outlined above, then it would be lower still.


But it’s not just Covid. You can’t make sense of pretty much any form of medical testing without invoking Bayes.


The NHS in England offers three kinds of routine cancer screening. Breast, cervical and colon. Prostate screening is available for men over fifty if they ask for it, but it’s not routinely offered.


Why not? Cancer screening just sounds like a good thing. We all know that early detection improves outcomes. Why wouldn’t you want to do a test that tells you if you’ve got cancer or not?


The answer, as with everything in this book, can be found in Bayes’ theorem.


Prostate cancer screening is carried out with something called a prostate-specific antigen (PSA) test. It’s pretty simple. You get a blood test, and if the levels of PSA in your blood are above a certain level – usually 3 or 4 nanograms per millilitre – then you’re sent for further testing, such as a scan or a biopsy. High PSA can be a sign of prostate cancer, although it can also be a sign of infection, inflammation or just age.


PSA screening is not as accurate as the tests we’ve been talking about so far. According to the National Institute for Health and Care Excellence (Nice), the UK’s medical advisory body,7 if you were to screen for PSA with a cut-off of 3 nanograms per millilitre, then it would correctly identify about 32 per cent of patients with cancer (sensitivity), and about 85 per cent of cancer-free patients (specificity).


About 2 per cent of men in their fifties have prostate cancer.8 If you tested a million patients again, about 20,000 of them would actually have cancer. You’d correctly identify about 6,400 of them. And of the remaining 980,000, you’d tell about 147,000 that they needed a follow-up check. If you got a positive result on this test, as a man in your fifties, there’d only be about a 4 per cent chance you actually had cancer.


Is a 4 per cent chance worth knowing about? Maybe. But bear in mind you’d need extra tests, some of which are invasive, unpleasant, and somewhat risky. Plus, of course, the NHS would have to pay for tens of thousands of MRI scans and biopsies, at a cost of some millions of pounds; money that could have been spent on statins or kidney transplants or nurses’ wages. And the thing about prostate cancer is that in many cases, it’s so slow growing that men don’t know they have it; very often, men are found to have prostate cancer in post-mortem examination, having died of something else entirely.


This also raises another important point. The 32 per cent sensitivity/85 per cent specificity figures come from if you’re using a 3-nanograms-per-millilitre cut-off. But you could bump it up to 4 nanograms. What happens then?


Well, you get more specificity. The percentage of cancer-free patients it correctly identifies as cancer-free goes up from 85 to 91 per cent. But that comes at a cost in sensitivity. The percentage of men with cancer whom it correctly identifies goes down from 32 per cent to 21 per cent. If you tested your million men again, now you’d get fewer false positives – down to 88,200 – but fewer true positives as well: just 4,200 out of the 20,000. In that situation, if you got a positive result, you’d still only have about a 4.5 per cent chance of actually having cancer.


You can’t get around this. You can move the threshold up – have the cut-off at 5 nanograms per millilitre, say – and you can reduce the number of false positives, but only at the cost of increasing the number of false negatives. Or you can move the threshold down, and decrease the false negatives, but only at the cost of more false positives. It’s an unavoidable trade-off, cast in stone. The only way around it is to use a different, better test. (This is analogous to the problem of ‘statistical significance’ in science, which we’ll come back to later.)


In breast cancer and colon cancer, the screening is rather more accurate. But even there, it’s highly dependent on the prevalence of the disease in the population. One major study9 found that 60 per cent of women who have annual mammograms for ten years get at least one false-positive result, leading to referrals for extra investigations such as biopsies and causing ‘anxiety, distress, and breast cancer-specific worry’. Is that worth it? It entirely depends on the background rate of the disease in the population: your prior probability. Breast cancer is rare among the young. If you test women under forty, even quite sensitive and specific tests end up with very high numbers of false positives. Among older women, it becomes more valuable, and Nice says that it is cost-effective in women over fifty.10 But you can’t make decisions about it without Bayes.


Would-be parents would do well to read up about Bayes as well. There’s a kind of antenatal screening known as ‘non-invasive prenatal testing’, NIPT, in which a blood sample is taken from a pregnant woman and tested for various chromosomal conditions in the foetus. In the UK, the NHS offers it to women in higher-risk categories. But it’s also available, for about £500, through private clinics.


The test is sold as being 99 per cent accurate. But once again, the accuracy of the test on its own doesn’t tell you anything about how likely it is that your result is correct. The conditions it tests for – Down’s syndrome, Patau’s syndrome and Edwards’ syndrome – are all rare. They’re also very serious. A child with Down’s can lead a long and happy life, but will often require lifelong care, while those with Patau’s and Edwards’ usually die in their first months or years of life. It obviously matters a great deal to parents whether their test results are accurate or not.


A review of the evidence found11 that doing NIPT tests on the general population, rather than limiting it to high-risk pregnancies, often gave false positives. The ‘positive predictive value’ – that is, the percentage chance that a given positive was a true positive – for Down’s syndrome was 82 per cent, for Patau’s syndrome 49 per cent, and for Edwards’ syndrome just 37 per cent.


If you limited your scope to just the high-risk categories, those numbers rose significantly – for Edwards’, the positive predictive value jumps to 84 per cent. That is, if you run the test on mothers-to-be at random, then nearly two out of every three positive results you get will be false. But if you limit it to just those at higher risk, fewer than one in six will be.


Again, this is pure Bayes. Your new data on its own cannot tell you the whole story. You need to know your prior probability. It’s not a hypothetical or academic problem. If you’re expecting a baby, and you do one of these tests and get a positive result, Bayes’ theorem is central to your decision about what to do next. And, as we’ll learn later, you can’t necessarily expect your doctors to be able to help you. Doctors, just like the rest of us, tend to assume that a 99 per cent accurate test is right 99 per cent of the time.


It’s not just medicine. In law, there’s a thing called the ‘prosecutor’s fallacy’, which is quite literally just not thinking like a Bayesian. Imagine you do a DNA test on a crime scene. You find a sample on the handle of the murder weapon which matches the DNA of someone on your database. The DNA match is quite precise – you’d only expect to see a match that close about one time in every 3 million.


So does that mean that there’s only a one-in-3-million chance that your suspect is innocent? By now, hopefully, you’ll have realised that’s not the case.


What you need to know is your prior probability. Is there any particular reason to think this person is the right one, or is your database just a random selection of people from the British population? If so, then your prior probability that the person you’re accusing is the criminal is one in about 65 million: there are 65 million Britons and only one person who committed this particular crime. If you DNA-tested every Briton, you’d get about twenty DNA matches, just by chance, plus the perpetrator. So the probability that you’ve got the right suspect is about 5 per cent, give or take.


But if you had narrowed it down to just ten suspects beforehand – say that you’re Hercule Poirot and you know it’s one of ten people trapped in a country mansion by a snowstorm – then it’s very different. Your prior probability is 10 per cent. If one of those ten people match the DNA, then your probability of a false positive is about one in 300,000.‡


Once again, this is not some pettifogging point. Real court cases have turned on these details. In 1990, a man called Andrew Deen was convicted of rape, partly on the basis of DNA evidence. An expert witness told the court that the chance that the DNA came from someone else was just one in 3 million. But Deen’s conviction was overturned (although he was convicted in his retrial) because, as a statistician explained,12 the two questions, ‘How likely is it that a person’s DNA would match the sample, if they are innocent?’ and ‘How likely is it that someone is innocent, given that their DNA matches the sample?’ are not the same, just as ‘How likely is it that a given human is the Pope?’ is not the same as ‘How likely is it that the Pope is a human?’


Sometimes, the errors go the other way. During the trial of O. J. Simpson, the former American football star, for the murder of his wife Nicole Brown Simpson, the prosecution showed that Simpson had been physically abusive. The defence argued that ‘an infinitesimal percentage – certainly fewer than 1 in 2,500 – of men who slap or beat their wives go on to murder them’13 in a given year.


But that was making the opposite mistake to the prosecutor’s fallacy. The annual probability that a man who beats his wife will murder her might be ‘only’ one in 2,500. But that’s not what we’re asking. We’re asking if a man beats his wife, and given that the wife has been murdered, what’s the probability it was by her husband?


Gerd Gigerenzer, a German psychologist and scholar of risk, pointed out that if that one-in-2,500 figure is right, then for every 100,000 women who suffer domestic abuse, about forty will be murdered.14 The base rate for murders among American women is about five in 100,000.


So the prior probability of an American woman who is a victim of domestic abuse being murdered by her husband is about one in 2,500 per year. But we need to update that probability with new information – we now know that the woman in question was murdered.


We can now do the Bayesian maths. If we take 100,000 domestic abuse victims, then, presumably, in a given year, 99,955 are not murdered. But of the remaining forty-five, forty are murdered by their husbands. The defence had made the inverse of the prosecutor’s fallacy: they had used just the prior probability, and ignored the new information coming in.


Bayes’ theorem, while it helps us understand these errors of reasoning, can tell us more profound things, too. The word ‘inverse’ in the last paragraph is key. Often, statistics and probability will tell you how likely it is that you’ll see some result by chance. If my dice are fair, I’ll see three sixes at the same time one time in every 216. If I was never at the crime scene, my DNA should match the sample one time in every 3 million.


Often, though, that’s not what we want to know. If we’re worried that the person we’re playing craps with is a cheat, we might want to know ‘If he rolls three sixes, what are the chances that his dice are fair?’ If someone’s DNA matches the sample at the crime scene, we might want to know what the chances are that it’s a fluke. And that is the exact opposite question.


For quite a long time, the history of probability was about asking the first question. But after the Reverend Thomas Bayes – about whom much more later – started asking the second one, in the eighteenth century, it became known as inverse probability.


As you’ll see over the course of this book, it’s strangely controversial. Bayes’ theorem has devotees and enemies, far more than any comparable one-line equation. You don’t get people yelling at each other online over the formula for the surface of a sphere, or over Euler’s identity equation.


But I think that’s because it affects everything. How likely is a scientific hypothesis to be true, given the result of some study? Well, I can tell you the probability that you’d see the results we’ve seen if it weren’t true, but that’s not the same thing. To estimate how likely it is – and a growing number of scientists argue that that’s exactly what we want statistics to be doing – we need Bayes, and we need prior probabilities.


More than that. All decision-making under uncertainty is Bayesian – or to put it more accurately, Bayes’ theorem represents ideal decision-making, and the extent to which an agent is obeying Bayes is the extent to which it’s making good decisions. Logic itself, all that stuff you may remember about ‘All men are mortal; Socrates is a man; ergo Socrates is mortal’, is just a special case of Bayesian reasoning where you’re only allowed to use probabilities of one and zero.


We appear to be Bayesian machines. That’s true at a fairly high level: humans are rubbish at working out Bayes’ theorem formally, but the decisions we make in everyday life are pretty comparable to those that an ideal Bayesian reasoner would make. Which, unfortunately, doesn’t mean we all end up agreeing – if my prior beliefs are very different from yours, then the same evidence can lead us to entirely different conclusions. Which is how we can end up with profound, but sincere, disagreements on apparently well-evidenced questions about the climate, or vaccines, or any number of other questions.


And we’re Bayesian at a deeper level, too. Our brains, our perception, seem to work by predicting the world – prior probabilities – and updating those predictions with information from our senses: new data. Our conscious experience of the world can be best described as our priors. I predict, therefore I am.





*	It’s nice to think, though, that had I managed it, I might have sold four copies.


†	You test 1,000,000 people. Of them, 1,000 actually have Covid. Your test identifies 900 of them. Of the remaining 999,000, it incorrectly diagnoses 9,990 as having Covid. 900 + 9,990 = 10,890. 900 is about 9 per cent of 10,890.


‡	Obviously, that doesn’t necessarily mean it’s a one-in-300,000 chance they’re innocent – their DNA may have got on the weapon in some other way than them being the murderer.







Chapter One



From The Book of Common Prayer to the Full Monty Carlo


Bayes the man


Near Old Street Tube station, in Shoreditch in east London, there is a graveyard known as Bunhill Fields.


Quite a few well-known people are buried in Bunhill. William Blake is perhaps the most famous, or Daniel Defoe, author of Robinson Crusoe and A Journal of the Plague Year. John Bunyan, author of Pilgrim’s Progress, is buried there too.


But for the sort of person who would, as I have on several occasions, be walking from the Tube to the nearby Royal Stat­istical Society, Bunhill is best known for being the final resting place of the Reverend Thomas Bayes.


Bayes was an eighteenth-century Presbyterian minister and a hobbyist mathematician. In his lifetime, he wrote a book about theology and another about Newton’s calculus. But what he is remembered for is his short work, ‘An Essay towards solving a Problem in the Doctrine of Chances’.1 It was published posthumously, in the journal Philosophical Transactions, after his friend Richard Price found and edited some unfinished notes Bayes left behind.


This book is about the deceptively simple idea that Bayes came up with, his theorem. It is, without exaggeration, perhaps the most important single equation in history. But very little is known about the man himself. The fact that we can only say he was probably born in 1701 gives you an idea of how hazy our knowledge is.


David Bellhouse, an emeritus professor of statistics at the University of Waterloo in Canada, wrote a biography of Bayes for the journal Statistical Science2 in 2004. The problem, he says, was that Bayes was a Nonconformist: a member of a church which dissented from the teachings of the Church of England.


To explain why that’s a problem, we have to go back a couple of centuries. Fans of Wolf Hall will remember that Henry VIII took England out of the Catholic Church in 1533, in order to marry Anne Boleyn. He died in 1547, several wives later, and after his death Archbishop Cranmer introduced The Book of Common Prayer in 1549, making it obligatory for all English churches to use it in their services.3


Henry’s daughter Mary disagreed with that decision and abandoned it in 1553, having Cranmer burnt at the stake for heresy to drive the point home. Then Elizabeth I reinstated it a few years later, and everyone carried on using it for nearly a century, until the English Civil War.


During the period of the Commonwealth, from the execution of Charles I in 1649 until the restoration of the Monarchy in 1660, the restrictions on forms of worship were relaxed; but in 1662, Parliament passed an Act of Uniformity, requiring that the Book be used in all services in England once more.


By now, some clergymen were used to the freedom they had enjoyed under Oliver Cromwell’s Commonwealth. About 2,000 of them refused – mainly members of the Puritan tradition – and were ejected from their positions in the Anglican Church. Many of them continued to preach, however, often under the protection of local gentry. These preachers became known as ‘Dissenters’ or ‘Nonconformists’.


In 1688, the passing of the Act of Toleration allowed freedom of worship for the Dissenters, who included Presbyterians and Quakers, meaning that (unlike Catholics at the time) they were no longer forced to worship in secret. But they did have to get licences for their places of worship, and they were banned from holding public office and – relevantly to this story – from going to English universities. Nonconformist scholars and would-be ministers instead would go to Scottish universities, notably Edinburgh, or Dutch ones, in particular Leiden.


The Bayes family were Nonconformists. They were also wealthy – Richard Bayes, Thomas’s great-grandfather, got rich in the Sheffield steel industry, making cutlery. Richard and his wife Alice (née Chapman) had two sons. One, Samuel, went into the ministry, as many scions of rich families did, whether Nonconformist or Anglican. He was lucky enough to reach university age during the Commonwealth period, and was allowed to study at Trinity College, Cambridge, graduating in 1656. Samuel became a vicar in Northamptonshire, despite his Nonconformist beliefs, although he was among the 2,000 clergy who refused to obey the Act of Uniformity in 1662 and was removed from his parish. The other son, Joshua, Thomas’s grandfather, followed Richard into the family business.


The Bayeses appear to have committed quite seriously to the Nonconformist mission at this point. Joshua funded the building of a chapel in Sheffield and his sons-in-law – he had four daughters and three sons, although two daughters and a son died in infancy – were the founder and minister of another one.


Joshua’s second son, also Joshua, was born in 1671. He studied philosophy and divinity at a Dissenting academy in the north of England, which was forced to move repeatedly because of government harassment and persecution of Nonconformist academics. After that he became a minister at various chapels in London, first in Southwark and then near Farringdon. According to Bellhouse, he was respected ‘both as a preacher and as a man of learning’ by his flock.


He was also very much a classic Puritan family man, with a vast brood of children. He married his wife Anne (née ­Carpenter) in October 1700, although the exact date is not known, likely because they were married in a Nonconformist chapel. Birth, death and marriage registries were kept by the Church of England, while Nonconformist groups’ records were often ‘kept secret, or not at all, for fear of religious discrimination’.


For the same reason, the birth dates of Joshua and Anne’s impressive tally of seven children are not known. All seven survived to adulthood, which was reasonably unusual at the time – about a third of English children born in the early eighteenth century died before the age of five.4 We know that Thomas, the eldest, died in April 1761 aged fifty-nine, so was ‘with probability 0.8’5 born in 1701 (alternatively, early 1702). His siblings were, in order of birth, Mary, John, Anne, Samuel, Rebecca and Nathaniel; we know the years they died and how old they were when they did (John died youngest, aged thirty-eight in 1743, while Rebecca lived to eighty-two), but not their exact birth dates.


The family behaved as you’d expect a wealthy, educated family of the time to behave. One son, John, went to Lincoln’s Inn and studied law, being called to the bar in 1739. Samuel and Nathaniel went into trades, like their grandfather and great-grandfather – Samuel sold linen, while Nathaniel was a grocer. Anne and Rebecca married well-to-do men of their social station, a textile-dealer and an attorney respectively. And Thomas, of course, followed his father into Nonconformist ministry.


As a boy, Thomas was probably educated by a friend of the family, John Ward, later a professor of rhetoric at Gresham College, Cambridge, and a fellow of the Royal Society. Thomas’s father helped pay for the printing of Ward’s no doubt fascinating book Lives of the Professors of Gresham College, and Ward’s biographer says that he was ‘induced to undertake the education of a certain number of the children of his friends’ and opened a school in Moorfields.6 There is also a suggestion that Thomas was educated as a boy by Abraham de Moivre, one of the great pioneers of probability theory who had been forced to flee France for London and earn a living there as a tutor, although that appears to just be speculation.7


Thomas was a clever young man: a letter from Ward written in 1720, when Thomas would have been eighteen or nineteen, makes clear that Bayes could read Greek and Latin fluently – the letter is, after all, in Latin – although Ward had advice for how he could improve his Latin composition.


Despite his family’s wealth and connections, and his own brains, as a Nonconformist Thomas was barred from the English universities. He went up to Edinburgh in 1719, where he appears to have studied under Colin Drummond, professor of logic and metaphysics. The 1720 letter from Ward also tells us that Bayes studied mathematics, to Ward’s satisfaction: ‘The order which you follow in the rest of your studies I cannot but highly approve of. In occupying yourself simultaneously with both mathematics and logic you will more clearly and easily notice what and how much each of these excellent instruments contributes to the directing of thought and sensation.’


But the main reason Bayes was in Edinburgh was to study divinity and prepare for his life as a minister. In 1720 he joined Divinity Hall, where records show that as part of his work, he submitted analyses of verses from the Book of Matthew. The last is dated January 1722, so he must have stayed in Edinburgh at least until then.


The next thing we know about his life is that he turned up in London some time before 1728, when his name appears on a list of ministers submitted to a committee of Presbyterians, Independents and Baptists – a committee of which Joshua, Thomas’s father, was a frequent member and occasional chairman. Thomas at that point was an approved minister – he had the qualifications – but not yet in place at a chapel. By 1732, he had – according to that year’s version of the list – joined his father at the chapel in Leather Lane, near Farringdon. By early 1734, he had moved to Tunbridge Wells in Kent, to take up a ministry of his own.


The nature of Bayes’ belief is not exactly known. We know he was a Nonconformist, but that only narrows it down so far. But it does mean he probably had some very unusual, even flatly heretical, beliefs for his time.


He wasn’t an Anglican. Nor was he a Catholic. The two doctrines are different, but not all that different – they differ on what seem to the outsider relatively small points. The Catholics believe salvation comes only through the Church, whereas the Anglicans believe that having faith in Jesus Christ and following His teachings get you to Heaven, even if you’ve never met a priest in your life. Catholics believe that the Eucharist wafer and wine literally become the body and blood of Christ in the Communion ceremony, whereas most Anglicans think it is merely imbued with His Spirit. They all, though, believe in the Holy Trinity – God the Father, God the Son and God the Holy Spirit – and that God is both one substance and three persons.


Some of the Nonconformists had very different beliefs. In particular, Arians and Socinians denied the Trinity (and were viewed as heretics by mainstream Christians as a result). Arians believed that God the Father was the supreme God, and that Jesus, his son, was a lesser God who had always existed, even before he physically arrived on Earth. By contrast, Socinians agreed that Jesus was a lesser God, but believed he was brought into being only at the time of the Nativity. Later, Unitarianism grew out of those two heresies. It denied the Trinity too, but went further, saying that there is only one God, and that Jesus was not divine.


These beliefs grew fairly widespread among Presbyterian congregations in the eighteenth century. ‘The Presbyterians were really free thinkers,’ says Bellhouse, though not so free that these heretical beliefs didn’t lead to tensions: in 1719, James Peirce and Joseph Hallett, two preachers, were expelled from Presbyterian churches in Exeter, having been accused of the Arian heresy.8


Bayes’ first publication was a work of theology, Divine benevolence: Or, an attempt to prove that the principal end of the divine providence and government is the happiness of his creatures: being an answer to a Pamphlet, entitled, Divine rectitude; or, An Inquiry concerning the Moral Perfections of the Deity. With a refutation of the notions therein advanced concerning beauty and order, the Reason of Punishment, and the Necessity of a State of Trial antecedent to perfect Happiness, published in 1731.9 His name was not on the author page (although, to be fair, there would hardly have been room) but it is widely accepted to be his work. His friend Richard Price refers to it in his own writings, and names Bayes as the author.


Divine Benevolence was a work of theodicy: an attempt to explain why God, if all-powerful and all-benevolent, allows evil in the world. As David Hume put it, apparently quoting Epicurus: ‘Is he willing to prevent evil, but not able? then is he impotent. Is he able, but not willing? then is he malevolent. Is he both able and willing? whence then is evil?’10


Bayes was responding to a tract by John Balguy, an Anglican theologian, who argued that the suffering in the world was caused because God’s goodness was about doing what is ‘right and fit’, which is not necessarily what we humans enjoy.11 Bayes, by contrast, believed that God is indeed benevolent, and wants us to be happy. Since a lot of us aren’t happy, much of Bayes’ argument was spent explaining why God might not try to make us happy, even though He can and wants to. It was, apparently, quite controversial and widely read.


But Divine Benevolence doesn’t go into Bayes’ own faith. Bayes’ father Joshua was a ‘moderate Calvinist who was tolerant of a variety of views’,12 but Bellhouse argues that Thomas was probably an Arian or a Socinian, ‘halfway to being a Unitarian’. ‘He was not your run-of-the-mill orthodox Christian,’ says Bellhouse. ‘He trained as a Presbyterian minister, but he was probably a Socinian.’


The clue is the company he kept. He was friends with one James Foster, another Dissenting minister who was himself friends with the two Exeter ministers who’d been expelled for Arianism. Foster had also written a pamphlet, ‘An Essay on Fundamentals in Religion’,13 arguing that the Trinity was not essential to Christianity, which sounds dangerously heretical to me.


William Whiston, Isaac Newton’s successor as the Lucasian Professor of Mathematics at Cambridge, was another associate of Bayes, and at one breakfast the two men had together asked Bayes whether the sermon at the local Anglican church that weekend would include the Creed of Athanasius, which lays out the doctrine of the Trinity. Whiston said he would leave the service if so, and Bayes reassured him it would likely not.


Bayes would also, upon his death, leave £200 to John Hoyle and Richard Price, two Nonconformist ministers in London, both of whom were Arian in their faith and both of whose churches later became Unitarian. Price in particular was a close friend – when Bayes died, it was Price who reworked and published the famous essay which contained Bayes’ theorem.


Thomas Bayes lived in a high-society world. His peers tended to be university-educated, often with doctorates of divinity, and many of them were members of the nobility.14 You can see this from his associations with well-respected figures like Ward and Whiston. At Tunbridge Wells, Bayes continued to mingle with well-known or well-connected people. The most important appears to have been Philip Stanhope, the Second Earl Stanhope.


Tunbridge Wells in those days was ‘chiefly a tourist town’.15 It was reachable within a day by carriage from London, and its most notable feature was a large and much-admired spa, fed by a local spring. Stanhope, who became the Earl at the age of seven after the death of his father, and whose family home of Chevening was just a few miles from Tunbridge, was a regular attendee there from his early twenties. He was younger than Bayes, born in 1713.


The young Earl was an enthusiastic amateur mathematician. As a child, his uncle and guardian had attempted to push him away from maths and towards the literary arts, but once he reached the age of majority he took it up with a will. ‘He has read a good deal of Divinity, Metaphysicks, and Mathematicks,’ wrote a contemporary.16 ‘He is always making mathematical scratches in his pocket-book, so that one half the people took him for a conjuror, and the other half for a fool,’ wrote another.17


Stanhope appears to have built a network of fellow scientists and mathematicians. As well as Bayes, this included Robert Smith, a University of Glasgow mathematician, whose works Stanhope had published posthumously; Joseph Priestley, the chemist and discoverer of oxygen; and John Eames, a theologian-scientist and friend of Isaac Newton. All of them, and many others in Stanhope’s network, were Nonconformists of one kind or another, and most of them were amateurs – gentleman scientists, hobbyists.


‘He didn’t seem like a modern academic,’ Bellhouse says of Bayes. ‘He was more of an amateur, a virtuoso. He did it for his own pleasure rather than having a research agenda.’


So Stanhope, and Bayes, clever men of considerable leisure and undemanding jobs, made hobbies of mathematics. ‘What the rich did in the eighteenth century was to get involved in science,’ Bellhouse said. ‘It’s similar to rich people nowadays getting involved in sports teams.’


The two men wrote to each other regularly; the correspondence was found relatively recently among Stanhope’s effects. It appears that Stanhope met Bayes in the 1730s, having either recently obtained a copy of Bayes’ paper An Introduction to the Doctrine of Fluxions,18 or being given it shortly after.


Fluxions was a defence of Newton’s calculus against an attack by the philosopher George Berkeley. Bayes was a committed supporter of Newton. ‘Some [Nonconformists] were hesitant to teach mathematics,’ says Bellhouse, ‘in case it led to Newtonian science, and from there to atheism. But a much larger group among the Nonconformists said that it’s important to study mathematics – you need to understand God’s universe.’


Berkeley argued that Newton had made, in essence, a divide-by-zero error: that one of his terms in a key equation was simultaneously zero and non-zero, and that his ‘doctrine of fluxions’ was therefore inherently contradictory. Bayes, in his response, tried to firm up Newton’s definitions more rigorously, establishing exactly what various terms meant.


After that, Bayes did some work on infinite series and their relationship to derivatives. A ‘derivative’ is the rate of change of a slope on a graph. If you had a graph of time (seconds) and distance (metres), the shape of the line tells you something about the speed (metres per second). If the line is straight, your speed is constant. If the line is curved, your speed is changing. A derivative measures the slope of the curve at an exact point, so you are able to work out the speed for any given distance or time. And you can go up a layer: divide your speed by your time and find your acceleration, which is the second derivative of distance and time.


[image: Image]


An infinite series, meanwhile, is just a mathematical series that goes on forever. If I say ‘x equals one plus two plus three plus four and so on’,§ then that’s an infinite series, and x is equal to infinity. But some infinite series do not equal infinity. For instance, if I say ‘x equals a half plus a quarter plus an eighth plus a sixteenth plus 1/32 and so on’,¶ then that’s an infinite series as well, and x is equal to one.


Bayes showed that the derivative of a number y is equal to an infinite series of y at time T minus half of y at time T+1 plus a third of y at time T+2, and so on. It’s a neat little theorem, found in Stanhope’s papers long after both men were dead (‘Theorem mentioned to me at Tunbridge Wells by Mr Bayes Aug. 12. 1747’, says a laconic note on a scrap of paper) and which, Bellhouse believes, was not independently discovered until a quarter of a century later by the French mathematician Joseph-Louis Lagrange.19


It was around this time that Bayes became interested in probability theory. But before we get on to that, we need to turn to the history of the mathematics of chance, and what people were working on at that point.


Pascal and Fermat


Traditionally, the story of the study of probability begins in French gambling houses in the mid-seventeenth century. But we can start it earlier than that.


The Italian polymath Gerolamo Cardano had attempted to quantify the maths of dice-gambling in the sixteenth century. What, for instance, would the odds be of rolling a six on four rolls of a die, or a double six on twenty-four rolls of a pair of dice?


His working went like this. The probability of rolling a six is one in six, or 1/6, or about 17 per cent. Normally, in probability, we don’t give a figure as a percentage, but as a number between zero and one, which we call P. So the probability of rolling a six is p=0.17. (Actually, 0.1666666 recurring. . ., but I’m rounding it off.)


Cardano, reasonably enough, assumed that if you roll the die four times, your probability is four times as high: 4/6, or about 0.67. But if you stop and think about it for a moment, that can’t be right, because it would imply that if you rolled the die six times, your chance of getting a six would be one-sixth times six, or one: that is, certainty. But obviously it’s possible to roll six times and have none of the dice come up six.


What threw Cardano is that the average number of sixes you’ll see on four dice is 0.67. But sometimes you’ll see three, sometimes you’ll see none. The odds of seeing a six (or, separately, at least one six) are different.


In the case of the one die rolled four times, you’d get it badly wrong – the real answer is about 0.52, not 0.67 – but you’d still be right to bet, at even odds, on a six coming up. If you used Cardano’s reasoning for the second question, though, about how often you’d see a double six on twenty-four rolls, it would lead you seriously astray in a gambling house. His maths would suggest that, since a double six comes up one time in thirty-six (p≈0.03), then rolling the dice twenty-four times would give you twenty-four times that probability, twenty-four in thirty-six or two-thirds (p≈0.67, again).
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