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THE BIG QUESTIONS Mathematics


Tony Crilly is Emeritus Reader in Mathematical
Sciences at Middlesex University, having
previously taught at the University of Michigan,
the City University in Hong Kong and the
Open University. His principal research interest
is the history of mathematics, and he has written
and edited many works on fractals, chaos and
computing. He is the author of the acclaimed
biography of the English mathematician Arthur
Cayley and the internationally bestselling
50 Mathematical Ideas You Really Need to Know.




The Big Questions confronts the fundamental problems of science and philosophy that have perplexed enquiring minds throughout history, and provides and explains the answers of our greatest thinkers. This ambitious series is a unique, accessible and concise distillation of humanity’s best ideas.


Series editor Simon Blackburn is Professor of Philosophy at the University of Cambridge, Research Professor of Philosophy at the University of North Carolina and one of the most distinguished philosophers of our day.


Titles in The Big Questions series include:


PHILOSOPHY
PHYSICS
THE UNIVERSE
MATHEMATICS





Introduction


Mathematics is something we should all know about. The school syllabus is one thing – and does not excite all – but the subject offers much more. A silent partner in scientific applications, it also has fundamental connections with the arts. As part of the human heritage, mathematics is alive and constantly expanding its boundaries; its life is sustained by the ‘Big Questions’.


The big questions in mathematics are very varied. Some are initiated by the seismic changes in modern technology, while others originated in Ancient times and reverberate to this day. Some have received a definite answer only to be replaced by new batches of questions, but others have persisted, never retiring, even after centuries on the frontline. Those verging on the philosophical might never be resolved one way or another, but the questions remain fascinating nonetheless.


Such is the way of mathematics. A curious fact is that mathematics advances slowly. While there is a premium on speed in mental arithmetic and tricky little problems at school there is absolutely no advantage gained by being fast in the real business of mathematics. That mathematics does advance is undeniable, but its progress resembles the gradual inevitability of a lava flow more than the ‘Eureka!’ moment of a great genius.


Mathematics has a distinctive nature that separates it from science. When a scientific theory loses credibility – like the once-popular ‘phlogiston’ to explain why objects burn, or the ‘luminiferous aether’ to explain the transmission of light – it is abandoned. Such theories are past their sell-by dates and placed in science’s history book for antiquarian interest only. In mathematics, things are different. A proven result cannot subsequently be proved false, and so a theorem – a proven mathematical fact – has an infinite life. Pythagoras’s theorem about right-angled triangles is true for all time.


Mathematicians today may not write research papers to contribute theorems of the type that Euclid was writing in 300 BC. Yet these works can inspire, and new ways of thinking can be discovered from foundational texts. We may read the Greek mathematician Diophantus on the theory of equations and still learn from it, for some types of equations in Ancient Greece remain unsolved to this day.


This is not to say that time has no effect on mathematical theory and theorems. They are often modified, refined and tailored for a modern context. The tendency in mathematics is for results to be swallowed up by generalization, and their eventual fate is not the dustbin but a footnote to a more general theory.


We live today in exciting times for mathematics. New questions have to take account of the computer age. This is not merely because computers are efficient at adding up columns of figures, but because they challenge our notions of mathematical proof and raise questions on the nature of mathematics. They can deal with algebra and show geometrical shapes and surfaces to advantage.


The Big Questions considered here focus on big issues and tackle the basic questions that need to be addressed. They will show where mathematics has come from, where it has travelled and where it might be going. They all yield answers, though by no means are those answers all cut and dried. They raise the problems that excite mathematicians and tell us how mathematics informs us about the real physical world we live in. And most of all, they demonstrate that mathematics is a living and breathing subject.





WHAT IS MATHEMATICS FOR?


An introduction to purposes and prospects


In the 21st century, mathematics is a vast and multifaceted subject. It covers such a broad spectrum of activity that it appears scarcely possible to classify all its manifestations within a single subject. At one end of the spectrum, it defines the nuts and bolts of counting, time and money that enable daily life to chug away. At the other end, it can seem a sealed world in which great ivory-towered minds manufacture puzzles of mammoth complexity – which they then devote years to trying to solve. At the same time, our politicians consistently tell us we need more mathematicians. What, then, is all this mathematics for, and how does it fit into our world?


The mathematics we live with today had its seeds in early numerical culture traceable to around 3000 BC. Unsurprisingly, the beginnings were geared to dealing with practical matters. Problems of the market place, the payment of taxes, measuring one’s land, comprehending the stars and the planets, devising a calendar – all were applications requiring numbers, calculation and some rudimentary geometry. But with the Egyptians, a thousand years later, societies began to investigate the properties of their number systems irrespective of obvious applications. They also began to create, out of curiosity and intellectual pleasure, mathematical puzzles, just as we might enjoy the Sudoku page in the newspaper. Mathematics had begun to look to itself. The mathematician was born.


Colossal strides were taken by the Ancient Greeks around 500 BC, when a true culture of mathematical thought flourished. The works they produced have been influential down the ages and are still studied today. Mathematics was regarded as being of the highest good and formed an intrinsic part of the classical education. Pythagoras, Plato, Archimedes, Euclid are just some of the Greek philosophers who championed mathematics and who exerted an influence for hundreds, even thousands, of years afterwards.


During the first centuries of Christianity, the pendulum swung back, and those who were mathematically inclined could find themselves cast out to the fringes of the cultural world. Around AD 400 St Augustine of Hippo suggested that ‘the good Christian should beware of mathematicians and all those who make empty prophecies’, condemning them for making ‘a covenant with the devil to darken the spirit and to confine man in the bonds of Hell’. In those days, mathematicians were closely connected with the murky practices of astrologers, and suspicion about potentially nefarious or heretical purposes tended to hang over mathematics for a long period.


In the 16th century, the philosopher Francis Bacon lamented the fact that ‘the excellent use of the pure Mathematics’ was not well understood, but a sign of better things was that Galileo took up his position as professor of mathematics at the University of Padua. Galileo’s encounter with the Catholic Church, which rejected some of his findings, showed that tolerance of mathematics, and its implications for physics and astronomy, had limitations. But the later 17th century unleashed a mathematical and scientific revolution, in the shape of Isaac Newton and his contemporaries, which would forever change the cultural balance of power. The Romantics of the late 18th and early 19th centuries might decry these new worldviews, and William Blake might satirize Newton, but with mathematics as the language of science its future was secure. The 19th century saw the establishment of mathematics in universities everywhere and witnessed a flood of new and challenging work. Mathematics was here to stay.


Practicality and purity


There is a popular debate about mathematics, about whether necessity is the mother of mathematical invention or whether innovative mathematics creates opportunities for application. Historically, practical considerations were the drivers of mathematics, but once the internal life of the subject opened up there was the possibility that ‘pure’ mathematical thinking could itself create the space for new applications. Good mathematics is rarely removed from potential application, but one never knows when that moment of application might come. A sharp insight might be taken up next week or it might lie dormant for 50 or 500 years.


History is strewn with examples of the purely mathematical theory finding its practical partner. The Ancient Greeks elaborated a theory of conic sections, and this proved to be just what was needed in the 17th century when Johannes Kepler and Isaac Newton asserted that the planets moved in ellipses. ‘Matrix algebra’, the theory of multi-dimensional numbers, was elaborated in the 1850s to deal with internal mathematical problems; it was precisely what was needed for ‘matrix mechanics’ in the fast-moving quantum theory of 70 years later. And when George Boole set up a system for turning logic into algebra, giving us ‘Boolean algebra’, he was not to know that he was furnishing the language for computer programming a century later.


Only 50 years ago, the influential English mathematician G.H. Hardy wrote that he pursued mathematics unconstrained by any thought of having to make his ideas of ‘practical relevance’. Indeed, he took comfort from the theory of numbers being remote from practical applications. He would not be able to celebrate its insularity today, not in a world where his kind of pure mathematics is of the utmost importance in terms of computer security (see Can We Create an Unbreakable Code? and Is There Anything Left to Solve?). Today we have many theories of dimension, but when Benoît Mandelbrot drew attention to ‘fractals’ in the 1970s, few would have guessed at their potential applicability (see Why Are Three Dimensions Not Enough?).


But mathematicians do respond to needs as well. In the 18th century, James Watt had a problem turning the linear motion of a piston in his steam engine into rotary motion, with the result that the theory of geometrical linkages had its birth during the Industrial Revolution. When codebreakers were needed during the Second World War (see Can We Create an Unbreakable Code?), mathematicians were recruited from universities for their special skills, and the result was the construction of the world’s first electronic computer.


Thus, pure mathematics and applied mathematics continue a symbiotic relationship, and never was this more true than in the electronic age. Without mathematics, computers would be useless, digital photography would be impossible and mobile phones would fall silent. But the professional mathematician’s ‘pure’ research is also now significantly powered by the computational ability of computers: the ‘applied’ feeds the ‘pure’ in turn.


Mathematics has its self-conscious side too, its philosophically reflective side. The history of this shows a movement away from the Ancient Greek assumption that mathematicians unearthed pre-existing truths to a much more finely nuanced conception of the mathematician’s role, in which creativity and imagination are involved (see Is Mathematics True?).


In modern mathematics, the way of proceeding is based on axioms and logical deduction. The Greeks assumed the truth of their axioms, but today’s mathematicians expect only that axioms be consistent. In the 1930s Kurt Gödel rocked mathematics when he proved his ‘incompleteness theorems’, which held that there were some mathematical statements in a formal axiomatic system that could neither be proved nor disproved using only the axioms of the system. In other words, mathematics could now contain unprovable truths that might just have to stay that way.


Varied and vast though the modern mathematics may be, at its root lies the school-curriculum division into arithmetic, algebra and geometry. What lies at their core, and where are they going?


Numbers and their properties


The numbers used for counting remain the most important in the mathematical repertoire; they are where a mathematician starts. The history of their evolution (see Where Do Numbers Come From?) is a rich one, and it is certainly not inevitable that we ended up with a ‘base ten’ system using the symbols 0–9. For a start, at first there was no zero.


The properties of prime numbers – numbers which can only be divided by themselves and the number 1 to produce another whole number – are particular objects of fascination. Surprisingly, there are many things unknown about them. We still do not know how they are distributed among the counting numbers, which may be difficult to believe since we have known about prime numbers for more than 2000 years (See Why Are Primes the Atoms of Mathematics? and Is There Anything Left to Solve?). Beyond the counting numbers and those of them that are primes, the repertoire has expanded over the centuries to embrace negative numbers, fractions and then the so-called ‘irrational numbers’ of infinitely receding decimal places without pattern. All of these, together, mathematicians call the ‘real’ numbers (see Which Are the Strangest Numbers?).


That was not all. The ‘real’ numbers are all one-dimensional. They can be conceived of as spreading left (negative numbers) and right (positive numbers) on a number line. A great leap forward came when mathematicians ventured into two dimensions with what they called ‘complex numbers’ (see Are Imaginary Numbers Truly Imaginary?). These delivered mathematicians greater power to solve equations and offered new theories of analysis. Today, ‘complex’ numbers are indispensable in the study of phenomena such as electricity and magnetism.


There are, then, many types of numbers, but where do they end? Mathematicians from the earliest times had to grapple with the issue of infinity. It was assumed, from Aristotle onwards, that there was ‘potential infinity’ – one infinity, which could never be reached. But in the 19th century Georg Cantor introduced another notion of infinity, and it became possible to talk of many infinities (see How Big is Infinity?).


Geometry, algebra and mathematical revolutions


For millennia, geometry was in thrall to the Ancient Greeks and what appeared to be their undeniable authority, which laid down many of the rules that schoolchildren absorb to this day. In particular, Euclid built up a body of geometrical knowledge built on his cast-iron logic and presented as the canonical truth. But, over time, cracks began to appear in Euclid’s geometry, and eventually it became clear that there were other valid geometries that dealt with phenomena in two, three – and more – dimensions (see Where Do Parallel Lines Meet?) and which have resulted in the concept of the ‘manifold’ – a shape that has different local and global geometry (see What Shape Is the Universe?). These geometries may even have a greater claim than Euclid’s to be the ‘geometry of the universe’, the subject that is so compelling for physicists.


While physicists appropriate geometry to hunt down the secrets of matter and the universe, biologists and medical researchers take a different type of geometry, ‘knot theory’, to attempt to untangle and analyse DNA – a practice that has yielded the forensics of DNA profiling, and which has had significant ramifications for issues of human identity and the solving of crimes. All in all, mathematicians have provided scientists with different geometries as a kind of toolkit from which they can select what seems right for the particular job at hand.


There comes a point when geometry translates into the language of algebra, a development credited to Descartes in the 17th century. The 20th century, then, saw the geometry of symmetry metamorphose into algebra too. Symmetry, the elusive property that has often been taken in mathematics – as in much else – to define beauty (see Is Mathematics Beautiful?), can now be captured mathematically by ‘group theory’. Groups lie at the centre of modern algebra and give a means whereby symmetry can be examined on a microscopic scale (see What Is Symmetry?). In a huge research project, whose beginnings stretch back to the 19th century, mathematicians eventually completed the classification of finite groups in 1981. In what became the ‘enormous theorem’, a map of the groups was created in which groups fell into known families plus 26 sporadic groups, the largest of the latter containing approximately 8 × 1053 members – that’s 8 followed by 53 zeros. Group theory occupies an important place now in theoretical physics, where transformations of space form groups, and in chemistry and crystallography too, where symmetries come into play.


‘Finding the value of x’ in an algebraic problem is something every school-level mathematician becomes familiar with. These types of ‘inverse’ problems are an area where mathematics excels, with applications far and wide. In these, we often need to find an ‘unknown’ but at first we can only find a relationship or an equation that involves the unknown. If we are told, for example, that increasing the sides of a square field by 3 metres will result in a field of 400 square metres, we can work out the unknown length x of the original field as an inverse problem. Using algebra and ‘unwrapping’ the equation (x + 3)2 = 400 gives us x = 17. When the work of previous generations of mathematicians has yielded us an array of formulae to do these tasks, we can take welcome shortcuts (see Is There a Formula for Everything?).


Launching a rocket into space involves ‘differential’ equations, and this means the apparatus of ‘the Calculus’ (see What Is the Mathematics of the Universe?), a method typically used to measure rates of speed and acceleration. There are specific types of differential equations, supported by a well backed-up theory, but there are also many ‘one-off’ equations that defy exact solutions. Henri Poincaré established a new branch of the theory of differential equations as a ‘qualitative theory’, which focused on the properties of solutions rather than finding the solutions explicitly. This study gave rise to the theory of ‘chaos’ (see Can a Butterfly’s Wings Really Cause a Hurricane?) and gave a distinctive orientation to the new theory of topology, a radical departure in the way we looked at shapes (see What Shape Is the Universe?).


The new and unknown mathematics


‘Topology’ might not trip off the tongue of the average nonmathematician, but two other relatively late developers are far more familiar terms: probability and statistics.


One of the outstanding modern creations of mathematics, probability theory (see Can Mathematics Guarantee Riches?), enables us to handle uncertainty in a quantitative way. The recreational mathematics of the 17th century gave us the beginnings of this theory, in the analysis of gambling problems, and now, smoothed out and developed into a rigorous calculus, it is the backbone of the analysis of risk. Statistics, a related field (see Are Statistics Lies?), provides the theory for handling data properly and the context for carrying out experiments. Statistics had some beginnings in agricultural experiments, but its methods are now used so widely that there is scarcely a part of human activity, from politics to medicine, that is statistic-free.


Using the results of statistics and other mathematics leads naturally to the desire to make predictions, to know the future (see Can Mathematics Predict the Future?). The demographer wants to make a reasonable prediction of the population in five years’ time. The trader will try to second-guess the stock market on the basis of statistical evidence and hunches. How is this to be done? These are difficult questions, as is the business of weather forecasting, which depends on mathematical equations that, as yet, cannot be solved (see Is There Anything Left to Solve?), and whose difficulty is compounded by the ‘butterfly effect’ (see Can a Butterfly’s Wings Really Cause a Hurricane?).


So, there is old mathematics and there is new mathematics. Lest we sit back and think the job is nearly done, we should remind ourselves that there is also unsolved mathematics, and lots of it (see Is There Anything Left to Solve?). And just as well, for if that were not the case, mathematics would wither on the vine. There are some great unsolved questions that have baffled thinkers for years, such as the Goldbach conjecture and the Riemann hypothesis, both of which are related to prime numbers; there are also some noisy new problems. There has been progress, of course, and some of it headline-grabbing. Mathematics leaped into the public gaze with the solving of Fermat’s last theorem in 1994 (see Is Mathematics Beautiful?). Before that, mathematics and computing joined forces to solve the ‘four colour’ theorem (see Is There a Formula for Everything?), and recently a reclusive Russian mathematician stunned the world by proving the hundred-year-old Poincaré conjecture – and not even claiming his £1 million reward.


What, then, is mathematics for? In some ways this is an odd question. We tend not to ask ‘What is music for?’ or ‘What is literature for?’ We accept that they simply are activities and thought processes and exercises of the imagination in which human beings indulge – they always have, and they always will, because they must. If one wants to look for applications, then they are all around us and proliferating. If one wants to advance all the ways in which mathematics imparts knowledge of the world, of the universe, of nature and of human interactions, one can do that too. There is an inestimable amount that mathematicians can do, and have done, in ways that change lives. But, at its root, mathematics is motivated by that basic, defining feature of humankind – insatiable curiosity.





WHERE DO NUMBERS COME FROM?


From notches on bones to hexadecimals


In our daily lives we are immersed in numbers. We wake and blearily absorb the circle of numbers on the clock face, or more likely the luminous glow of a digital alarm; we may rush to college on the number 134 bus, or race to work on the 08.32 train to Paddington; we count out change to buy our lunch, we check our diary dates, we punch the buttons on our mobile phones; at the end of the day, we might idly scroll through the dizzying array of numbered TV channels, until finally we get to bed, with a last glance to check the time. So deeply embedded are numbers in our lives, and we in the world of numbers, that we do not stand back to see them for the astonishingly versatile things they really are. So where did they come from?


Of course, many of the numbers we encounter are simply designations, labels. Bus routes could, in theory, be evoked by means other than by numbers. The famous Heinz ‘57 Varieties’ or Jack Daniels ‘Old No. 7’ bourbon slyly suggest a series of subtly differentiated canned foods and whiskies, but they too are simply invented labels – brands. Even these brands depend for their effectiveness on the ways in which human societies have elaborated systems of numbers for the purposes of ordering objects – first, second, etc. – and counting them.


Today, almost universally, the human race adopts the same system of just ten symbols, from 0 to 9, to do its counting and ordering. The combinations of those symbols are versatile enough to express the vast distances of galaxies down to the diameter of an atomic nucleus, and to express them in different ways. The layman might write that the Earth is 93,000,000, or 93 million, miles from the Sun, whereas a mathematician or scientist would likely prefer the concise elegance of 9.3 × 107 (that is, 9.3 multiplied by 10 to the power of 7). For describing a thousandth part of a metre, we have three options: 0.001 metres, 1 millimetre and 10–3 metres (that is, 10 to the power of –3), while the tiny diameter of a nucleus can be neatly expressed as 10–15 metres.


Elegant and versatile though those ten symbols are, they were never inevitable, and they were neither the beginning – nor the end – of mankind’s invention when it comes to number systems.


The earliest counting methods


Researchers have found evidence as far back as 30,000 years ago of the early recording of numbers on ‘tally sticks’ – sticks of wood carrying marks signifying quantities. In Africa and Eastern Europe, notched bones used for numerical records have provided further evidence of practical engagement with the act of counting. Tally sticks were still being used in England for the purposes of tax collection in the 13th century, and surprisingly this traditional system lasted until the 1820s, when paper records took over. Today, tally marks still serve a purpose when the aim is to record a continually rising quantity, such as the number of points scored in a game or data for statistical investigations. The familiar method involves counting to five to form an inscription resembling a barred gate, and it seems to have very early origins.
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THE BARRED-GATE TALLY SYSTEM
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A SOUTH AMERICAN TALLY SCHEME


Tally methods are found all over the world. One scheme, from South America, also adopts a system of five lines, albeit producing a different shape.


Among the aboriginal peoples of Australia, primitive counting systems generalized beyond small numbers. A counting system translating as ‘one’, ‘two’ and ‘many’ was used in Tasmania, while on the mainland, in Queensland, an instance of ‘one’, ‘two’, ‘one and two’, ‘two twos’ and ‘much’ has been recorded.


Babylonians and Egyptians


The emergence of a proper number system occurred in the ‘cradle of civilization’, the Middle East. The Babylonian civilization flourished in Mesopotamia, that part of modern Iraq that lies between the Tigris and Euphrates rivers; its capital, Babylon, sat 50 miles to the south of modern Baghdad. In the 3rd millennium BC, the Babylonians were using a number system that revolved around the number 60. Vestiges remain in our culture today – in our measurement of time (60 seconds in a minute, 60 minutes in an hour) and, because the Babylonians used mathematics in their astronomy, in the number of degrees in a circle or full rotation: 360. A system based on the number 60 has mathematical merits, one of which is that 60 can be divided by no less than eleven smaller numbers, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20 and 30, which yields obvious benefits for the apportioning of quantities.


The numbers 1–60 were denoted by just two symbols that were easy to inscribe on the clay tablets used for recording them: a vertical single line and a wedge. The number 1 was the line symbol and the numbers 2–59 were denoted by different combinations of the two symbols. The Babylonians read their notation from left to right, and the number was defined by the relative position of symbols in the row: in other words, the same as our system today. When they got to 60 they started again and used the same vertical single-line symbol for number 60 as they did for number 1: the only way to interpret it would be by context, so that if angles were being measured it would more likely be 60 degrees than 1 degree. They did not have an equivalent for zero.
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THE TWO BABYLONIAN NUMBER SYMBOLS
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THE NUMBER 23 IN BABYLONIAN SYMBOLS


The Ancient Egyptians developed a different and sophisticated system, expressed amply in their extraordinary construction of the pyramids, a feat that required a knowledge of three-dimensional geometry and fairly accurate measurement. From around 2700 BC the system emerged, based on the number 10. For the numbers up to 9 they used vertical-line tally marks, then two different symbols for numbers 10 and 100. Unlike the Babylonians, the Egyptians wrote from right to left. The symbols for larger numbers were ornate: for example, a bird represented the number 100,000.
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ANCIENT EGYPTIAN SYMBOLS FOR 10 AND 100
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THE NUMBER 234 IN ANCIENT EGYPTIAN SYMBOLS


The Egyptians’ mathematics was tied principally to practical matters, but they possessed some elaborate arithmetical tricks. Their scheme for multiplication was ingenious. In our modern system, mental multiplication requires our knowing our multiplication tables, often taught by rote in school. But children living in the early Egyptian times would effectively need just the two-times table, for they approached multiplication by a method geared to the use of the abacus.


The Vedic Aryans


Further east, during the second millennium BC the Vedic Aryan civilization spread from Central Asia into India’s Indus Valley, and records of its method of arithmetic are dated to around 1000 BC. In this culture 19 mathematical ‘sutras’, or word formulae, were found among the poetry, literature and wisdom contained in the ancient Hindu texts known as the Vedas. The sutras provided shortcuts for, or alternative ways of, addressing a range of arithmetical problems. One, the ‘vertical and cross-wise’ sutra, for example, helps with the multiplication of whole numbers – a lengthy mental calculation in our modern number system. It works by a combination of multiplication and addition. If we wanted to multiply 13 by 24 – let’s assume we’re using our familiar symbols – we first write 13 over 24 in a grid.
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A VEDIC ARYAN NUMBER GRID


The ‘vertical’ numbers are multiplied and then aligned to produce the number 212: that is (1 × 2) + (3 × 4) → 2 + 12 makes 212. Then the diagonal, ‘cross-wise’ terms, added together, give the number of tens: that is (1 × 4) + (3 × 2) → 4 + 6 = 10 which makes 100.


Now, adding 212 and 100 produces the correct result of 312. The method may appear to be a sleight of hand, but its validity lies in the principle that to multiply two numbers, say ab × cd, actually requires the multiplication of (10a + b) × (10c + d).


The advent of zero


Zero was a latecomer as a mathematical symbol. It has two main functions, and the first to manifest itself was as a placeholder, a way to distinguish (for example) the number 27 from the number 207. Neither the Babylonians, the Egyptians, the Greeks, nor the Romans had a symbol for it – they had nothing for expressing ‘nothing’. The second function of zero is as a genuine number, and here the origins go back to the Indian mathematician Brahmagupta, who attempted to integrate it into the number system around AD 600.


The Latin name for zero (cifra) evolved into zefro and in Italian became zero. In French, chiffre (‘zero’) was translated as ‘cipher’ in English, a usage now obsolete. In English we use ‘nought’ to mean zero, a derivation from the word ‘nothing’. Nought is really a mathematical misnomer, for it would be wrong to think of the number 0 as nothing. It is certainly something, a symbol that gives our modern notation its ultimate power. As Brahmagupta realized, the mathematical challenge was to harmonize the interloper number 0 with the rest of the number system.


Number bases and the vigesimal legacy


Mathematicians speak of underlying number ‘bases’ for the counting systems of different cultures. They may be understood as the core units, or building blocks, of a counting system. Our modern base is ten – the decimal system, reflected in its ten symbols 0–9. But history has witnessed cultures that, adapting numbers to their needs, have adopted bases of 2, 3, 4, 5, 12, 20, and of course the Babylonians’ 60. There are traces of that mixed heritage in our system even now, as evidenced in the language of numbers. In German and English, for instance, the words ‘eleven’ (German elf) and ‘twelve’ (German zwölf) appear linguistic oddities, forming a break between the numbers up to ten and the subsequent ‘teen’ numbers that derive from the word ‘ten’. They are a legacy of a base 12 system, as indeed is the pre-decimal quantity of 12 pence in a shilling.


In what is today Guatemala and south-eastern Mexico, the pre-Conquest Mayan civilization adopted a base 20 number system, which we refer to as a ‘vigesimal’ system. (Interestingly, the Mayans were also one of the first peoples to formulate a notation for numbers based on a positional system that embraced a concept of zero.) The roots of such systems are often traced to our ten fingers and ten toes, and many cultures contain legacies of base 20 systems. In English (and its French and German counterparts), the ‘teen’ sequence of numbers breaks off at nineteen to make way for the special word ‘twenty’.





‘The creator of the universe works in mysterious ways. But he uses a base ten counting system and likes round numbers.’


SCOTT ADAMS, AMERICAN CARTOONIST





The quantity 20 imbues our language and culture in further ways. It has a synonym in the word ‘score’, a word most memorably invoked in the Book of Common Prayer’s description of a 70-year lifespan as ‘threescore years and ten’. English imperial measures include the hundredweight (cwt), and it takes 20 cwt to make a ton. And, of course, before decimalization of pounds sterling (in 1971), there were 20 shillings to every £1. The French language contains a remnant of the base 20 system in its unusual word for eighty – quatre-vingt (‘four-twenty’).


The decimal system


Despite this multifarious legacy of number systems, the world today has coalesced around the base ten ‘decimal’ system.


In many ways, it is a natural human choice: we have ten fingers on which to count. The Ancient Romans operated a base ten system for counting with whole numbers but their system of fractions was based on 12 for easier handling, since 12 is divisible by 2, 3, 4 and 6. (Some historians have accounted for 12 as a base because we have three joints in each finger, making 12 on each hand, here excluding thumbs.) In truth, the Roman contribution to the development of mathematics was minimal. But the language of Latin evolved into many of the modern European languages, so Latin has largely given us our words for numbers; and the Roman system for writing numbers, I, II, III, IV, V, …, X, etc., endures in parallel with the ‘ordinary’ digits we use, particularly in the recording of dates.
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