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Introduction
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an anyone be a genius? I believe that they can.
And certainly, if you’ve taken the trouble to
pick up this book, I believe that you can.


Perhaps you are shaking your head in disbelief now.
After all, few people in history have the distinction
of being called geniuses. It’s unlikely that you solved
one of the Millennium Prize Problems last week. And
maybe you don’t even think you’re good at maths at all.


But what is a genius? The mathematicians (and
scientists, philosophers and artists) in this book who
are called geniuses, and who have produced some truly
profound ideas, would not attribute their success to
some kind of innate talent, but to hard work and luck.
‘Nothing comes from nothing’, says Shakespeare’s King
Lear. Ideas do not spring from a void, but are created
through reading other people’s ideas, discussing them,
playing with them, making mistakes and persevering.
Being wrong is as important to genius as being right,
because it is only through mistakes that we find
solutions to problems.


Just as, with time and training, most of us can become
good writers, singers or runners, most of us are capable
of excelling at mathematics too. Get Smart: Maths
won’t provide a shortcut to solving the Riemann
hypothesis and winning a million dollars, but it will
provide an introduction to 50 different fundamental
concepts in mathematics, which I hope will inspire you
to delve deeper, read further, make conjectures, start
discussions and keep exploring. Maybe you will be
blown away by the idea that infinity comes in different







sizes, or maybe you will be intrigued by the thought of
creating a new tiling pattern. Maybe you will search for
a new prime number, or maybe you will try to get rich
by beating the casinos.


This book need not be read sequentially, but most
chapters will make more sense if they are read in
order with the other chapters in their section. For
example, the chapter on the Poincaré conjecture will
make better sense if read after those on Topology
and Identifying Shapes. And while the ideas may be
unfamiliar, the structure of each chapter is the same.
Five ‘Are You a Genius?’ questions should help to
gauge your current understanding of a topic as well
as encouraging you to read the chapter to find out the
answers! (The answers are on the last page of each
chapter, but see if you can figure out the answers
yourself after reading the main text.) ‘Ten Things a
Genius Knows’ will lead you through key aspects of the
topic, discussing its main ideas, their history, our latest
understanding and any unsolved problems. ‘Talk like a
Genius’ provides interesting talking points for dinner
parties, while the ‘Bluffer’s Summary’ should allow you
to pretend you know what you’re talking about, even if
the details have made little sense!


Anyone can be a genius: all you need is an idea that
excites you. I hope you find excitement in the ideas
contained within this book, and I hope you will let me
know if it sets you on a path of exploration that leads
you to the next big idea.


Julia Collins
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Number
systems


‘God created the integers and all
else is the work of man.’


LEOPOLD KRONECKER


Civilizations around the world have developed
different systems for representing numbers,
from tally marks to Roman numerals, and from
Babylonian marks in wet clay to our modern
Hindu-Arabic numerals. While all of these systems
allowed humans to investigate numbers as abstract
concepts, it was the invention of a place-value
system that was the truly genius idea. It is through
a place-value system that we can work with infinite
decimals as well as whole numbers and fractions,
giving us a way of expressing every conceivable
number. Without it, the modern world, with all its
technology, science and economics, could not exist.
And yet the idea is not without its own paradoxes
and difficulties.


Ever struggled with long division or infinite
decimals? Don’t worry – you’ve been grappling
with what is arguably mankind’s greatest
invention.







1 In Roman numerals,
CXXV × VII = DCCCLXXV.


TRUE / FALSE


2 The Babylonians had no symbol
for zero.


TRUE / FALSE


3 In a base 20 system, we would
write 1/4 as 0.5.


TRUE / FALSE


4 The number 0.999 . . ., with
infinitely many 9s, is equal to 1.


TRUE / FALSE


5 Our decimal system can represent
numbers that other positional
systems cannot.


TRUE / FALSE





8


GET SMART: MATHS






[image: image]





TEN THINGS A GENIUS KNOWS


1 How numerals were invented


Are numbers invented or discovered?
Philosophers may never agree on the answer to this,
but in either case the concept of a number is arguably
mankind’s most genius idea. In English, we have
many number words that are related to particular
objects: we talk about a brace of pheasants, a quartet
of musicians, a dozen eggs, a score of miles, a grand
(of money). But inventing a word and a symbol for
the abstract concept of ‘three’, as it applies to any
object, was a great step of sophistication. Sumerians,
in about 3100 BCE, are thought to have been the first
to invent written numerals. They used clay tablets
to record trade and realized that having a symbol for
‘ten’ and a symbol for ‘sheep’ was more efficient than
using the sheep symbol ten times.


2 Different ways to design numerals


When designing symbols for numbers, which
numbers should we give symbols to? If every number
had its own symbol, there would be too many to
remember, but if very few had symbols, then writing
out large numbers would take lots of space. Imagine
writing out 2018 using only tally marks! Many early
civilizations, such as the ancient Egyptians, Romans
and Greeks, used an additive numerical system. In
this method, symbols are created for special numbers
(usually 1, 10, 100, 1000, etc., and sometimes also 5,
50, 500) and they are added up to create the required
number. So, in the Roman system, X was 10, V was
5 and I was 1, so XXVIII = 10 + 10 + 5 + 1 + 1 + 1 = 28.
In this system addition is easy, but multiplication is
almost impossible without the use of a tool like an
abacus.


3 How place value works


Another method of writing numbers is using a
positional system, otherwise known as place value.
In this system, the position of a numeral within a
number determines its value. For example, 123 is
different from 321 in our decimal system. This is
because the second column from the right multiplies
a digit by 10, the third column by 100, the fourth
column by 1000, and so on, in increasing powers
of 10. This special value of 10 is called the base. It
determines how many symbols are needed in the
system. Since we use base 10, we need ten symbols:







0,1,2, . . . 9. Binary numbers use base 2 and need only
two symbols: 0 and 1, with the columns representing
increasing powers of 2. The Babylonians used base
60, combined with an additive notation for numbers
of 59 or less.


4 The importance of zero


A positional system has many advantages
over an additive one: few symbols are needed, new
symbols are not needed for larger numbers, and
multiplication is much easier. But for a positional
system to work effectively, it is important to be able
to indicate when a column is empty, otherwise the
numbers 110, 101 or 11 would be indistinguishable
from one another. The Babylonians used a large
base, so context was normally sufficient to determine
their numbers without the need for an extra symbol,
but later they did invent a symbol for zero, as did
the Mayans (who used base 20). These symbols for
zero were not seen as numbers in themselves, but
as placeholders for empty columns. The true use of
zero as a number that could be added to, or multiplied
with, other numbers was developed in India in the
seventh century by the mathematician Brahmagupta,
who was also the first to provide rules on how to use
negative numbers in mathematics.


5 Using place value to write fractions


A positional system provides an easy way to
represent numbers less than 1. Just as moving one
column to the left multiplies a number by the base,
moving one column to the right divides a number by
the base. In our decimal system, the column to the
right of the units is worth 1/10, the second column to
the right is worth 1/100 and so on, so 0.25 means
2 × (1/10) + 5 × (1/100) = 25/100 = 1/4. In the Babylonian
base 60 system, 1/2 is 30/60 so would be written 0;30,
while 5/8 is 37 × (1/60) + 30 × (1/3600) so would be
written 0;37,30. (Here the semicolon indicates the
first column after the units, to distinguish it from
the decimal point.)


6 What makes a good base


Not all fractions are straightforward to write in
base 10. For example, we cannot write the fraction
1/3 except as 0.333 . . ., using an infinite number of
decimal places. As 10 is 2 × 5, any number that is
not a multiple of only 2s and 5s will have this same
problem. In this regard, the base 60 system of the
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Babylonians is better than ours, as there are many
more fractions that can be written as finite numbers.
For example, 1/3 is 0;20 and 1/6 is 0;10. But no matter
what base is chosen, there will always be fractions
that need an infinite number of decimal places to be
represented. The Babylonians were not able to write
down 1/7 in their system, and instead used the closest
finite approximation that they could find. Modern
computers will similarly develop rounding errors
whenever infinite decimals are involved.


7 The misconceptions about
infinite decimals


Infinite decimals cause trouble both for computers
and for our intuition. It is a difficult thing to think of
the number 0.333 . . . as genuinely having an infinite
number of 3s, rather than being a process that is
getting closer and closer to the value of 1/3. Even if
we believe that 1/3 = 0.333 . . ., multiplying both sides
by 3 gives us the unpalatable result that 1 = 0.999 . . ..
Most people, while happy to believe that 0.333 . . . is
really 1/3, find it hard to believe that 0.999 . . . is really
equal to 1, thinking of it instead as a number that
is just slightly below 1. Mathematically, there is no
problem with these equalities, but they show why
place value can be hard to teach and understand.


8 That numbers are not always unique


The fact that 1 is equal to 0.999 . . . causes a
problem, not only because it challenges our intuition,
but because it means that some numbers can be
written in more than one way. Similarly, we can
show that 0.25 also equals 0.24999 . . ., and 5.341
equals 5.340999 . . .. Indeed, any finite decimal has a
second way of being written with infinitely many 9s.
This is not an issue specific to our decimal system:
a positional system with any base will have this
property.


9 What real numbers are


The collection of all numbers that have
finitely many digits to the left of the decimal point,
and infinitely many after it, are called the real
numbers. They encompass all the integers (whole
numbers, positive and negative), rational numbers
(numbers that can be written as one integer
divided by another), and irrational numbers
(numbers that are not rational). These numbers
are usually visualized as lying on a number line,







with numbers getting larger to the right and
smaller to the left. Zero is in the centre, marking
the transition from positive to negative numbers.
A positional system using any base greater than,
or equal to, 2 is capable of representing all real
numbers.







10  Why real numbers are the basis


 of mathematics


The construction of the real numbers is considered
to be the foundation of all modern mathematics, and
this would not have been possible without a place-
value system. Throughout history, mathematics
has advanced by people ‘discovering’ new numbers,
such as zero, negative numbers, and irrational
numbers, but we can show now that the real
numbers are complete – there are no gaps and no
numbers we have not yet found. Real numbers
allow the study of continuous processes, including
concepts such as limits and calculus, and hence
modern science could not exist without their
invention.
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TALK LIKE A GENIUS


[image: image]Vestiges of the Babylonian base 60 system can
be seen in the way that we have 60 seconds in a
minute, 60 minutes in an hour, and 360 degrees
in a circle. [image: image]


[image: image]During the French Revolution, decimal time
was introduced and used for a number of years.
The day was divided into ten hours; each hour
had 100 minutes and each minute had 100
seconds. A month was divided into three weeks
of ten days each. The new system did not catch
on, and attempts to decimalize time were finally
abandoned by 1900. The Chinese, however, have
had many successful decimal calendar systems
throughout their history. [image: image]


[image: image]In modern society we are often conflicted
over whether the digit 0 is an actual number or
a placeholder for an empty column. This can
be seen on the computer keyboard, where 0
appears after the 9 (whereas, as a numeral, it
should come before the 1), and in our calendar
system, where there is simply no year 0 at all.
The word “zero” traces its origins back to the
Arabic sifr, meaning “empty”. [image: image]







WERE YOU A GENIUS?


1 TRUE – In Roman numerals, D = 500, C =
100, L = 50, X = 10, V = 5 and I = 1. Therefore,
this calculation states that 125 × 7 = 875,
which is true.


2 FALSE – This was true in the early days of
their civilization, but the Babylonians later
developed a symbol for when a column was to
be left empty.


3 TRUE – The column immediately to the
right of the decimal point is worth 1/20, so 0.5
represents the number 5/20 = 1/4.


4 TRUE – One proof asks: what is
1 – 0.999 . . .? The answer is smaller than any
real number and so it must be zero.


5 FALSE – All positional systems are
capable of representing all real numbers.








The invention of a place-value
system, where a digit has different
values depending on where it
appears within a number, is what
gave humans the ability to write
down every conceivable quantity,
not just whole numbers.
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Binary
numbers


‘There are 10 types of people in
the world: those who understand
binary, and those who don’t.’


UNKNOWN


The simplest form of counting is also the one that is
the most integral to our modern, technology-based
society, being the language in which computers are
programmed. Understanding the limitations of binary
is key to avoiding errors, even on something as simple
as a spreadsheet. Binary numbers are used in other
ingenious ways to catch and correct errors in data
transmission, making it possible to send messages
across the world and even across the solar system.


How is it that just two little symbols – 0 and 1 –
have become the language of all technology?







1 The binary number 10101 is equal
to 21.


TRUE / FALSE


2 Some whole numbers can be
written in a number of different
ways using binary.


TRUE / FALSE


3 A byte in a computer is a single
binary digit, represented by an on/
off switch.


TRUE / FALSE


4 Using the decimal number 0.1 in
any computer calculation will
result in a rounding error.


TRUE / FALSE


5 Digits can be added to binary
numbers that can detect and
correct errors.


TRUE / FALSE
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TEN THINGS A GENIUS KNOWS


1 What binary numbers are


In binary there are only two symbols: 0 and 1. To
represent a number using only these two symbols, we
use a positional system with base 2, so the columns
represent the 1s, the 2s, the 4s, the 8s, and so on, with
each column worth twice that of the one to its right.
(This is the same idea as in our decimal notation,
where each column is worth ten times that of the one
on its right.) We call the numbers 1, 2, 4, 8 . . . , powers
of 2 because they are repeated multiples of 2, and
we write them as 20, 21, 22 . . ., with the superscripts
indicating how many multiples of 2 create the
number. The numbers 1, 2, 3, 4, 5, 6, 7 in binary are 1,
10, 11, 100, 101, 110, 111. The binary number 10011 is
equal to the decimal number (1 × 16) + (0 × 8) + (0 ×
4) + (1 × 2) + (1 × 1) = 19. To avoid ambiguity between
decimal numbers and binary numbers, the notation
of (.)2 can be used for binary numbers, so (101)2
means five, not one hundred and one.







2 How to convert a decimal number
into binary


Every decimal number can be written in a unique
way using binary. One way to convert a decimal
number into binary is to repeatedly halve the number,
keeping track of the remainders at each stage.
To convert 27 into binary
we do the following: halve
27 to get 13 with remainder
1, then halve 13 to get 6 with
remainder 1, then halve 6
to get 3 with remainder 0,
then halve 3 to get 1 with
remainder 1, then halve 1 to
get 0 with remainder 1. The sequence of remainders
were 1, 1, 0, 1, 1, so 27 is written in binary as (11011)2.
Indeed, 27 = 24 + 23 + 21 + 20 = 16 + 8 + 2 + 1, so the
answer is correct.







3 The invention of binary numbers


Many ancient civilizations around the world
and throughout history have represented numbers
using only two symbols. They include the Chinese,
Polynesians, Indians and indigenous Australians.
However, German mathematician Gottfried Leibniz
is credited with inventing our modern binary number
system in 1679. Designing it initially as a system for
encoding logical statements, Leibniz realized that
it was the perfect system for building a mechanical
calculator that could use ‘moving balls to represent
binary digits’. Though he never built such a device,
the idea became the basis for modern computers.


4 How computers use binary


The 0 and 1 of binary are represented in a
computer by the on/off of a switch. In this way a
bank of eight switches can represent all the numbers
from 0 to 255. A single binary digit in a computer is
called a ‘bit’, while eight bits is called a ‘byte’. A byte
is usually the smallest unit of memory in a computer;
this is because it is both a convenient power of 2 and
also the number of bits needed to encode a single
character of text. For example, the ASCII system uses
bytes to encode uppercase and lowercase letters, the
numerals 0–9, basic punctuation symbols, a space,
and commands such as ‘return’ and ‘backspace’.


5 How to add in binary


A circuit that adds binary numbers, called a
binary adder, is one of the most basic and important
components of any computer. The simplest version,
called a half-adder, adds up two single binary digits.
If both digits are 0, the answer is 0. If one digit is a
0 and the other is a 1, then the answer is 1. If both
digits are 1, then the answer is 0 with a 1 carried over
to the next column. (This is similar to adding 5 + 5
in decimal and getting 0 with a 1 carried over to the
10s column.) For example, if we add 101 to 011 then
we first add the rightmost digits to get 1 + 1 = 0 with a
carry of 1. Next, we add the middle two digits plus the
carry to get 0 + 1 + 1 = 0 with a carry of 1. Finally, we
add the first two digits plus the carry to get 1 + 0 + 1 =
0 with a carry of 1. So the answer is 1000. (In decimal,
this calculation is saying that 5 + 3 = 8.)
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6 The limitations of binary


We can represent fractions in binary, as we can
in any positional system. The column to the right of
the decimal place represents 1/2, the next column to
the right represents 1/4, the next 1/8 and so on. If we
write the number (0.11)2, this is 1/2 + 1/4 = 3/4. But only
fractions whose denominator is a power of 2 can be
written down using finitely many digits. The number
1/3 in binary is 0.010101 . . . with infinitely many 01s,
and 1/10 is 0.000110011 . . . with infinitely many 0011s.
Since computers only have a fixed amount of memory,
they have to round off these numbers, and this is
called a ‘floating point error’. Working in base 10,
and continually converting to binary, is a particular
problem, and can be seen in a simple spreadsheet.
Start with a cell containing 1 and successively
subtract 0.1 until you reach 0. Due to rounding errors,
the computer will believe this value to be slightly
bigger than 0; more specifically, about 1.38 × 10-16.


7 How to use binary to check for errors


When information is sent, there is always a
possibility for error. A signal sent to the Mars rover
can have a digit corrupted as it traverses the solar
system, making the rover fall off a cliff by turning
left instead of right. To detect these possible errors,
a ‘parity bit’ is added to the end of a binary number.
If the number of 1s in the original message is an odd
number, then the parity bit is 1, and if the number
of 1s in the original message is even, then the parity
bit is 0. A machine receiving the message 1101011,
where the last digit is a parity bit, will know that
the message is corrupt because there are four 1s in
the original message, but the parity bit is not 0. This
means that one of the digits has changed between the
sending and receiving of the message.


8 How parity bits can correct errors


A single parity bit can detect that a message
has an error, but it cannot say which digit is wrong.
A ‘Hamming code’ adds a number of parity bits to a
message, allowing errors not only to be detected, but
also corrected. Again, it uses binary numbers to achieve
this feat. The digits that are in positions that are
powers of 2 (that is, the 1st, 2nd, 4th, 8th positions) are
the parity bits. The parity bit in position one checks all
digits whose positions are odd (that is, the positions
whose binary representation has a 1 in the units







column). The parity bit in position two checks all digits
whose binary representation has a 1 in the 2s column,
and so on. This means that if, for example, the parity
bits in positions one, four and eight are wrong, then the
digit in position 1 + 4 + 8 = 13 is the one that has been
corrupted.


9 The most efficient way to correct errors


There are other ways in which we could detect
and correct errors in a message. For example, we
could transmit each binary digit three times, so that
instead of sending 1011, we would send 111 000 111
111. If we received the message 111 001 111 110, we
could still reconstruct the original message by taking
the majority digit in each set of three, reasoning that
it is unlikely that two of the extra check digits would
be wrong. The drawback to this method is that the
messages being sent are three times longer than the
original. The Hamming code described above is the
most efficient way of detecting and correcting single-
digit errors. For a four-bit message, three extra check
digits are required, instead of the eight extra needed
for the ‘repeat each digit three times’ method.


10 How printers use binary to encode
secret data


In 2005, it was revealed that almost all brands of
colour printer were printing miniscule yellow dots
on every page, using binary code to identify the
time, date and individual printer used to create a
document. The dots are not visible to the naked eye,
but appear under blue light using a microscope or
magnifying glass. In the example of a Xerox printer
(below), each row represents binary digits, while
columns represent different data types. The first row
and first column are parity bits, confirming the data
has printed correctly. The codes for most printers are
still yet to be decoded.





14


GET SMART: MATHS






[image: image]





TALK LIKE A GENIUS


[image: image]Contrary to what most people think, a kilobyte
does not always mean 1000 bytes, as it should
in the metric system. Since computers work in
powers of 2, it is common for programmers to
use the word kilobyte to represent 210 = 1024
bytes. While the difference isn’t very much
for a kilobyte, the metric/binary differences
are noticeable for megabytes, gigabytes and
terabytes. To distinguish between the two uses,
a lowercase k is used for the metric system
(for example, kB) and an uppercase K for the
binary system (for example, KB). This is also
why phone or electronic device memory rarely
corresponds to the advertised number. [image: image]


[image: image]Hamming codes can be used for the following
party trick. Ask someone to think of a number
between 0 and 15. You can ask them seven yes/
no questions, and they can lie at most once.
Using the idea that four of the questions are
checking for data (that is, the four binary digits
of the number) and three of the questions are
parity bits, you can impress your audience by
saying not only the number that was thought of
but also which of the answers was the lie. [image: image]


[image: image]In June 2017, the FBI were investigating top-
secret documents that had been leaked to the
press. From creases on the document it was
clear that it had been printed and folded. Secret
yellow microdots placed by the printer were
later used to verify the date and time of the
printing, confirming that it was not a forgery. [image: image]







WERE YOU A GENIUS?


1 TRUE – 10101 = (1 × 16) + (0 × 8) +
(1 × 4) + (0 × 2) + (1 × 1) = 21.


2 FALSE – Every whole number has a
unique binary representation.


3 FALSE – A binary digit in a computer is
called a ‘bit’ and eight bits is a ‘byte’.


4 TRUE – When the number 0.1 is written in
binary, it has infinitely many binary digits,
so memory limits on a computer will always
result in rounding errors.


5 TRUE – Parity bits added to numbers
in clever ways can detect if the number is
correct and, if it is not, can tell where the
error is.







A binary system represents all
numbers using just the symbols 0
and 1, and is the basis for how all
computers work.
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Irrational
numbers


‘There is geometry in the
humming of the strings, there
is music in the spacing of the
spheres.’


PYTHAGORAS

Pythagoras believed that everything in the world could
be explained by whole numbers and their ratios, from the
harmonies in music to the very form of our solar system.
When his disciple, Hippasus, demonstrated that there
existed numbers that could not be expressed as fractions,
Pythagoras had him drowned. These numbers became
known as ‘irrational’, invoking a continued mistrust of
their character. But it was not until the 19th century that
mathematicians discovered an even darker and more
enigmatic side to irrational numbers, which, today, many
are still trying to understand.


The overwhelming majority of numbers
have no pattern in their decimal expressions,
creating a constant struggle for the
mathematicians (and computers) trying to
make sense of them.







1 The digits of π will eventually
repeat, though they may take a long
time to do so.


TRUE / FALSE


2 The sum of two irrational
numbers is always an irrational
number.


TRUE / FALSE


3 The imaginary number
i = √–1 is transcendental.


TRUE / FALSE


4 There are only finitely many
transcendental numbers.


TRUE / FALSE


5 Some numbers cannot be
described using any finite formula
or algorithm.


TRUE / FALSE
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TEN THINGS A GENIUS KNOWS


1 What an irrational number is


An irrational number is one that
cannot be written as a ratio of two
whole numbers. The first such number
to be discovered was the square root of
2. This number clearly exists: it is the
length of the hypotenuse in a right-angled triangle
with two sides of length 1. But any attempt to show
that it can be written as a ratio of two whole numbers
will lead to a contradiction. Such an argument was
hinted at by Aristotle and first proved in full by
Euclid in his Elements. In fact, the square root of any
number that is not a perfect square (like 4 or 25) is
easily proved to be irrational. A more interesting
example of an irrational number is π, which was only
proved irrational in 1761.


2 The problem with irrational numbers


Irrational numbers are difficult to deal with
because they can never be written down exactly.
A rational number (one that can be written as
a ratio of whole numbers) will always have a
repeating decimal. Some terminate completely,
such as 1/2 = 0.5; some repeat quickly, such as 1/3 =
0.3333 . . .; and others repeat on a longer scale, such
as 1/19, which repeats every 18 digits. Conversely,
every repeating decimal can be written as an
integer fraction. So, an irrational number must
have a decimal expansion that never repeats
itself. (This is true in every base, not just base
10.) This can make computing irrational numbers
very difficult. Some people dedicate their lives to
finding the next digit of π! It also means that, when
irrational numbers are used in computations, there
will be rounding errors because it is impossible for
computers to represent such numbers exactly.


3 How to think about numbers algebraically


One way to get around the difficulty of
writing down irrational numbers is not to think
of what they are but what they do. The Egyptian
mathematician Abū Kāmil in the ninth century CE
was the first to think about numbers as solutions
of equations. He thought of √2 as the number
that solves the equation x2 = 2. That is, √2 is the
number whose square is 2. This makes it easy to
manipulate the number algebraically without







worrying about what its exact value is. Another
example is the golden ratio ϕ whose value is (1+
√5)/2, and which can be thought of as the number
that solves the equation x2 − x − 1 = 0.


4 What algebraic numbers are


The imaginary number i = √-1 does not fit
on our familiar number line and does not make
much sense in terms of anything that exists in
the real world. But using Abū Kāmil’s idea, we
can represent it as the solution of x2 = −1 and
work with it algebraically. It is neither rational
nor irrational, but it is an algebraic number: it
is the solution of a polynomial equation with
integer coefficients. A polynomial is the sum of
powers of a variable x (that is, x, x2, x3 etc.) and its
coefficients are the numbers that multiply these
powers. So the expression 2x5 + 52x3 − 7 = 0 is an
integer polynomial equation, but x3 + √3 x = 0 is not
because √3 is not an integer.


5 Whether all numbers are algebraic


Mathematicians wondered whether all
numbers were algebraic and if Pythagoras
was right after all, in asserting that whole
numbers were the key to understanding the
universe. Then, in 1884, Joseph Liouville
constructed a number that he could prove was
not the solution to any polynomial equation
involving whole numbers. This number is
0.11001000000000000000001000 . . . – it has a 1
in the decimal places that are factorial numbers.
(These are numbers that are products of all
smaller numbers, so 1! = 1, 2! = 1 × 2, 3! = 1 × 2 × 3,
and so on.)


6 What a transcendental number is


A transcendental number is a number that is
not algebraic. Liouville had constructed the first
example of such a number ‘artificially’, but in 1873
Charles Hermite showed that e, the mathematical
constant that arises naturally in calculus, is also
transcendental. Within ten years of Hermite’s
proof, Ferdinand von Lindemann proved that π was
transcendental. So-called 'continued fractions',
written in the style shown here, offer another way of
constructing many transcendental numbers. We can
find decimal approximations for such numbers by
truncating the continued fraction further and further
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down. In the example here, the first approximation
is 1, while the second is 1 + 1/2 = 1.5. The third
approximation is 1 +
1/(2 + 1/3) = 1 + 3/7 or
1.42857, and so on.
The further down we
truncate, the closer the
value of the decimal
will come to the true
value of the continued
fraction.


7 What we know (and don’t know) about
transcendental numbers


Despite Hermite and von Lindemann’s achievements
over 100 years ago, mathematicians have still
not been able to prove some basic facts about
transcendental numbers. They do not know whether
or not ππ is transcendental, nor whether π√2 is. They
can show that at least one of π + e and πe must be
transcendental, but they cannot prove which one.
Surprisingly, they do know that πeπ is transcendental.
The problem of deciding whether a number is
transcendental was considered so important that it
became part of Hilbert’s list of 23 problems posed
in the famous 1900 Congress of Mathematicians.
Hilbert’s 7th problem asked for a proof of whether ab
was always transcendental if a was algebraic (and not
0 or 1) and b was irrational. Gelfond and Schneider
provided the proof in 1935.


8 How many transcendental numbers exist?


Given how few transcendental numbers are
known, it would be easy to believe that they are a rare
breed of numbers, occasionally encountered, but
nothing to concern the average person. In fact, not
only are there an infinite number of them, but there
are an uncountable infinity of them. (See page 53).
Most numbers are transcendental. If you threw a dart
at a number line, the dart would almost certainly land
on a transcendental number.


9 Methods for computing transcendental
numbers


Transcendental numbers cannot be written in terms
of simple equations, but this does not mean that they
cannot be computed to any desired precision by a
computer. There are often other ways to express
such numbers, such as continued fractions (as in the







example above), or infinite series. The number e,
which is incredibly important in science, is
straightforward for a computer to calculate, using
formulae such as:







 – that is, adding the fractions with factorial numbers
in the denominators. It is an infinite sum, so of
course a computer cannot calculate it entirely, but
it can find the answer to any finite precision that is
needed for a calculation.


10 What uncomputable numbers are


The final blow to Pythagoras’ vision of the
universe came in the 20th century, when men such
as Alan Turing and Marvin Minsky showed that
most numbers are not only transcendental, but are
also uncomputable. A number is uncomputable
if there is no finite algorithm or formula that
can compute its digits to any required degree
of accuracy. The existence of such numbers is
unlikely to impact our everyday lives, although
it does have a deep part to play in the logic
underpinning mathematics and the question of
whether computer programs can finish running
in a finite amount of time.





18


GET SMART: MATHS






[image: image]





TALK LIKE A GENIUS


[image: image] The golden ratio is sometimes called the ‘most
irrational’ of numbers because it is the number
that is most difficult to accurately approximate
by fractions. This is because it can be written as
a continued fraction with 1s all the way down,
and truncations of this continued fraction
produce a sequence of fractions that take a
very long time to get close to the true value
of the golden ratio. The larger the numbers
within the continued fraction, the better the
approximations will be. [image: image]


[image: image] The number π is currently known to over
22 million million decimal places, with the
most recent record breaker being in 2016.
The computation took over 100 days.
A perhaps more impressive record breaker
is William Shanks, who in 1873 computed
527 digits entirely by hand. [image: image]


[image: image] The proof that π is transcendental resolved
once and for all that it was impossible to
“square the circle”; that is, to find a square with
the same area as a given circle using only a ruler
and a compass. This had been an open question
since Babylonian times. In 1894, a man named
Edward Goodwin was so convinced that he had
a method to square the circle that he proposed
a bill in the Indiana General Assembly that his
results should be taught in school. This would
have meant enshrining in law that π was exactly
3.2. Thankfully, the bill did not become law,
although it did pass its first reading. [image: image]







WERE YOU A GENIUS?


1 FALSE – π is an irrational number, and
these numbers can never be represented by a
repeating decimal number.


2 FALSE – For example √2 + (1 − √2) = 1.


3 FALSE – It is a solution of the equation
x2 + 1 = 0, so it is an algebraic number.


4 FALSE – There are uncountably infinitely
many transcendental numbers.


5 TRUE – Such numbers are called
uncomputable numbers.







Most numbers are not only
irrational but are transcendental,
meaning that they cannot be
described by finite equations
using only whole numbers.
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Imaginary
numbers


‘The imaginary number is a fine
and wonderful resource of the
human spirit, almost an
amphibian between being and
not being.’


GOTTFRIED WILHELM LEIBNIZ


Throughout history, people have struggled with different
types of number, from negative numbers to zero to infinite
decimals, but it is square roots of negative numbers
that have stretched people’s imagination the most. But,
imaginary or not, these numbers uncannily explain the
world in which we live, making them an indispensable
tool for any budding genius.


Modern physics explains the world using
numbers that do not even exist. This paradox
is as hard to imagine as imaginary numbers
themselves.







1Imaginary numbers (other than
zero) do not exist anywhere on the
regular number line.


TRUE / FALSE


2The square root of any negative
number can be written as a
multiple of i, the square root of −1.


TRUE / FALSE


3It is impossible to divide a real
number by an imaginary number.


TRUE / FALSE


4It is impossible to square root
an imaginary number without
inventing another new kind of number
to deal with the answer.


TRUE / FALSE


5Quantum physics needs both real
and imaginary numbers so that it
can keep track of a particle’s position
and momentum at the same time.


TRUE / FALSE
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TEN THINGS A GENIUS KNOWS


1 How to think about the square root of a
negative number


What is −1? This number does not really ‘exist’, in the
sense that we cannot have −1 sheep in a field. But we
can deal with it mathematically by thinking about
what it does: it is the number that, when added to 1,
gives zero. (The farmer with −1 sheep is in debt, so
that once they give a sheep to someone, they will have
no sheep.) A similar thing happens with the square
root of 2 (the number that multiplies by itself to give
2): we cannot truly make sense of it numerically
because it is an infinite decimal that never repeats.
But we know it is a number that, when squared,
gives an answer of 2. When mathematicians came
across the idea of the square root of −1, they could
not make sense of it, because there is no number on
the number line that can multiply by itself to give
a negative number. But they gave it a symbol, i (for
imaginary), and were able to use it in calculations by
knowing that i2 = −1.


2 What a complex number is


We invent a special symbol, i, for √−1, but what
happens for the square roots of all the other negative
numbers? Thankfully, we do not need symbols for
all of them, because the square root of any negative
number can be written as a multiple of i. For example,
√−9 = √ (9 × -1) = √9 √−1 = 3i. The square root of any
negative number is called an imaginary number.
Imaginary numbers can be added to real numbers,
forming complex numbers. A complex number has
the form a + bi, where a and b are real numbers. The
number a is called the real part, while b is called the
imaginary part.


3 How to visualize complex numbers


Square roots of negative numbers clearly do not fit
anywhere on the number line. To visualize them, we
add in a new axis at right
angles to the real number
line. This picture is called
the complex plane and
is like a coordinate grid,
with real numbers along
the horizontal axis and
imaginary numbers up the
vertical axis. A complex







number a + bi has coordinates (a,b) in the picture. For
example, 2 + 3i has coordinates (2,3), while 5 − 2i has
coordinates (5,−2).


4 How to do arithmetic with
complex numbers


Complex numbers can be added, subtracted,
multiplied and divided, just like any other numbers,
but a little algebra is needed to figure out how to
do this properly. Addition and subtraction are
straightforward: add the real parts and the imaginary
parts of the complex numbers separately. For example,
(2 + 3i) + (5 − 2i) = (2 + 5) + (3 − 2)i = 7 + i.
Multiplication requires us to remember how to
multiply out brackets, and that i2 = −1. So, (2 + 3i) × (5
− 2i) = (2 × 5) + (2 × −2i) + (3i × 5) + (3i × −2i) = 10 − 4i
+ 15i − 6i2 = 10 + 11i + 6 = 16 + 11i. Division is the most
complicated operation and is done using a clever trick
involving the complex conjugate of the number. If a
complex number like 2 + 3i is multiplied by the same
number but with the imaginary part made negative
(2 − 3i), then the answer is always a real number.
Dividing by a complex number is the same as
multiplying by its complex conjugate and then
dividing by this real number.


5 The relationship between complex numbers
and trigonometry


One reason that complex numbers are so important
in science is that they are very closely related to the
trigonometric functions of sine and cosine. They are,
in some sense, a bridge between the mathematical
areas of algebra and geometry. The position of a
complex number in the complex plane can be given
by its real and imaginary coordinates, but it can also
be given by finding its distance, r, from the origin
and the angle, θ, it makes from the positive real
axis. Using some basic trigonometry, we can write
a complex number a + bi as r(cos θ + i sin θ). Any
area of physics based on
wave functions, such as
electromagnetism, requires
trigonometry, and so can
be modelled by complex
numbers.
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6 How to do rotations using
complex numbers


The relationship between complex numbers and
trigonometry goes deeper than just being able to use
sine and cosine to represent complex numbers. We
can use complex numbers to do transformations
of images, such as scaling and rotation. Imagine a
graphic designer who has an image that they would
like to rotate 90 degrees anticlockwise and scale to
be twice as big as before. Traditionally, this would
be done using a 2 × 2 matrix, which involves four
different multiplications and two additions for each
point in the image – a process that becomes time-
consuming when the image is large. But the same
result can be achieved by multiplying each point by
the complex number 2i. It turns out that whatever
combination of scaling and rotation the designer
wants to achieve, there is a single complex number
that can do this in one multiplication.


7 How complex numbers ‘complete’ the
real numbers


Without imaginary numbers, not every quadratic
equation has a solution. For example, the equation
x2 + 1 = 0 has no solutions if x is restricted to being
a real number. Allowing x to be a complex number,
it turns out that every quadratic equation has a
solution. When we look at cubic equations – for
example, x3 + x + 1, we may wonder whether we will
need to invent yet more numbers in order to ensure
that we will always get a solution. Amazingly, we do
not. No matter how big our equations get, allowing x
to be a complex number means that we will always
find a solution. This is called the fundamental
theorem of algebra and, for mathematicians, is one of
the most important properties of complex numbers.
The complex numbers are said to ‘complete’ the real
numbers because they can solve any polynomial
equation involving real numbers.


8 Why complex numbers are used in quantum
physics


Imaginary numbers are at the heart of quantum
physics, from Schrödinger’s equation to Heisenberg’s
uncertainty principle. Why is it not possible to write
these equations using only real numbers? One reason
is that quantum physics needs ‘two-dimensional’
numbers to encode basic principles. A quantum
system is modelled using a wave equation that makes







predictions about the probability of particles being in
particular places at particular times. If this equation
is created using only real numbers then it predicts
that the momentum of the particles is always zero,
which is not true. But if the equation is formulated
using complex numbers, then it can keep track of
both the position and momentum of the particles
at the same time. The special arithmetic of the
complex numbers is also important here: it is things
such as the use of complex conjugates that make the
predictions of the wave equation come out correctly.


9 How to make four-dimensional
complex numbers


Complex numbers are indispensable tools to
scientists when modelling systems that require
two coordinates, such as electromagnetic waves
or quantum systems. Mathematicians wondered
whether there was a way of expanding the notion of
complex numbers to model three-dimensional (3-D)
systems. It turns out that there isn’t, but there is a
way of expanding complex numbers to a 4-D system.
These numbers are called the quaternions, and they
have three different types of imaginary number: i, j
and k. The quaternions have the strange property of
being non-commutative. That is, multiplying two
quaternions in a different order will usually give a
different answer.


10 Where quaternions are useful


A quaternion is written as a + bi + cj + dk where
a, b, c and d are real numbers. Just as multiplication
by complex numbers allows us to do rotations in
2-D, multiplication by quaternions allows us to
do rotations in 3-D, and it turns out to be far more
efficient than any other method. One alternative is
to use a rotation matrix, but this is a 3 × 3 object so
requires nine numbers to specify it, compared with
four for the quaternion. Rounding errors obtained
by performing many rotations in a row are also
minimized by using quaternions instead of matrices,
and it is much easier to do a ‘smooth rotation’, such as
camera panning, in a computer game.
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TALK LIKE A GENIUS


[image: image] In the 15th century, Italian mathematicians
solved disputes by having duels – albeit
with equations rather than swords. One
mathematician, Tartaglia, accused a rival,
Cardano, of stealing his formula for cubic
equations, and so he duelled with Cardano’s
student Ferrari. Cardano had taken Tartaglia’s
formula, but he and Ferrari had adapted it to
solve a wider class of problems, including the
novel idea of using square roots of negative
numbers to get solutions. Tartaglia lost the
duel, lost his job and died in poverty. [image: image]


[image: image] The formula for quaternion multiplication
came to Sir William Rowan Hamilton as he
was walking along the Royal Canal in Dublin.
He was so excited by his discovery that he
used his penknife to carve the equations
into the side of Broom Bridge. The original
markings have since been eroded, but a plaque
is now there to mark the inscription. [image: image]


[image: image] Lord Kelvin claimed that quaternions were
“an unmixed evil to those who have touched
them in any way”, and they were largely
ignored by mathematicians and scientists
until the late 20th century. Today, they are
indispensable in computer graphics, flight
dynamics and for satellite navigation. [image: image]







WERE YOU A GENIUS?


1 TRUE – Imaginary numbers sit on their
own number line, which is at right angles to
the regular one.


2 TRUE – For example, √−4 = √(4 × −1) = √4
√−1 = 2i.


3 FALSE – There is a method for dividing
real numbers by imaginary numbers, giving
another imaginary number as the result.


4 FALSE – The square root of any imaginary
number is a complex number – that is, a sum
of real and imaginary numbers, so no new
types of number need to be created.


5 TRUE – If only real numbers are used, the
wave equation in quantum physics predicts
that all particles have a momentum of zero.







An imaginary number is the
square root of a negative number
and, despite being very hard
to imagine, is used to model
quantum mechanics, electrical
signals and motion in computer
games.
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Fermat’s Last
Theorem


‘I have discovered a truly
remarkable proof of this theorem,
which this margin is too small to
contain.’


PIERRE DE FERMAT


This tantalizing quote led to 350 years of frustration
for mathematicians, who searched in vain for Fermat’s
proof of his simple conjecture: that two cubes could
never sum to make another cube, nor two fourth
powers sum to make another fourth power, and so on.
Fermat made many other conjectures, all of which
were quickly checked by other people, leaving this one
as the ‘last theorem’ to be solved. The eventual proof,
in 1995 by Andrew Wiles, was truly a work of genius,
bringing together all the major ideas in 20th-century
number theory and spawning many new ideas.


Equations using only whole numbers may seem
the simplest of all equations, but they turn
out to be the most complicated, often keeping
mathematicians puzzled for hundreds of years
at a time.







1 There are only finitely many right-
angled triangles where all the side
lengths are whole numbers.


TRUE / FALSE


2 Fermat had no evidence for the
truth of his conjecture.


TRUE / FALSE


3 It is possible for a number to be
simultaneously both a square and
a cube.


TRUE / FALSE


4 Every whole number bigger than
2 is either a multiple of an odd
prime number or a multiple of 4.


TRUE / FALSE


5 An obscure conjecture relating
elliptic curves to modular forms
turned out to be the key to proving
Fermat’s Last Theorem.


TRUE / FALSE





20


GET SMART: MATHS






[image: image]





TEN THINGS A GENIUS KNOWS


1 How many integer-sided right-angled
triangles there are


Is it possible to add two square numbers to get
another square number? Yes: for example, 32 + 42 =
52 (9 + 16 = 25). Another example is 52 + 122 = 132. In
fact, the ancient Greek mathematician Euclid proved
that there were infinitely many solutions to the
equation x2 + y2 = z2. This result has an interpretation
in geometry through Pythagoras’ theorem, which says
that, in a right-angled triangle, the sum of the squares
of the two shorter side lengths gives the square of the
hypotenuse. Euclid’s result showed that there were
infinitely many different right-angled triangles whose
side lengths were all whole numbers (integers).


2 What Fermat’s Last Theorem says


In 1637, the French mathematician Pierre
de Fermat saw Euclid’s result and wondered if a
similar theorem might be true for higher powers. Is it
possible to add two cube numbers to get another cube
number? Or to add two fourth powers to get another
fourth power? After trying many examples and
failing, he conjectured that it was impossible to find
such numbers – not just for cubes, but for any power.
This conjecture became known as Fermat’s Last
Theorem. Its formal statement is that the equation
xn + yn = zn has no positive integer solutions for any
value of n greater than 2.


3 What Diophantine equations are


Fermat’s equation is an example of a more
general object called a Diophantine equation, which
seeks integer solutions for polynomial equations
with two or more unknowns. For example, we might
notice that the square number 9 is one more than the
cube number 8, and wonder whether there are any
other solutions to the equation x2 − y3 = 1.
Or we might ask whether a number could be the
sum of two cubes in two different ways and come
up with the Diophantine equation x3 + y3 = z3 + w3.
Because of the restriction of only finding integer
solutions, Diophantine equations are notoriously
difficult to solve. In 1900, David Hilbert challenged
mathematicians to find an algorithm that could
decide if a general Diophantine equation had
solutions, but in 1970 it was finally proved that
such an algorithm could not exist.







4 How the first few cases of the
conjecture were proven


Although Fermat did not write down a proof of his
conjecture, he did give a proof in the particular
case when n = 4. He did this using a method called
‘infinite descent’, where he first assumed that such
an equation had a solution and then derived a
contradiction from this. If there were a positive
integer solution to the equation x4 + y4 = z4, then
Fermat showed how to use this first solution to
generate another, smaller solution, and then use that
solution to get a smaller one, and so on, creating an
infinite sequence of smaller and smaller solutions.
Since we cannot keep writing down smaller and
smaller positive integers, such a sequence cannot
exist, so the first solution could never have existed.
A similar approach was used by Leonhard Euler to
prove the result for n = 3, but mathematicians were
unable to make it work for many other higher powers.


5 Why not every case of Fermat’s Last
Theorem needs to be proved


Although it seems as if proving Fermat’s Last
Theorem for the cases n = 3 and n = 4 were just two
rungs on an infinite ladder of cases, each of these
proofs in turn gives the result for an infinite number
of values of n. For example, if a solution existed for
the case n = 6, so that A6 + B 6 = C 6 for integers A, B
and C, then this would mean that (A2)3 + (B 2)3 =
(C 2)3, which would be a solution for n = 3, but we
already know this is impossible. In general, if a
solution existed for a composite number pq, then
solutions would also exist for p and q. This reasoning
means that it is sufficient to prove Fermat’s Last
Theorem for the odd prime numbers and for the
number 4, since any integer greater than 2 is a
multiple of these numbers.


6 Why Lamé’s wrong solution was interesting


In 1847, Gabriel Lamé presented a supposed
proof of Fermat’s Last Theorem. His method was
to introduce complex numbers in order to factorize
Fermat’s equation and to try to find a contradiction.
If ζ is a complex number with the property that
ζn = 1, then Fermat’s equation can be written as
xn + yn = (x + y)(x + ζy)(x + ζ2y) . . . (x + ζn-1y).
However, this line of reasoning was invalid because
it implicitly assumed that complex numbers could
be factorized uniquely – similarly to how integers
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can be uniquely factorized into prime numbers. This
assumption is wrong when n is a prime bigger than
23. The investigation of this phenomenon led to a
whole new field of number theory pioneered by Ernst
Kummer, who redefined the notion of a complex
prime number and was able to prove Fermat’s Last
Theorem for infinitely many different primes, though
still not all of them.


7 What the Taniyama-Shimura-Weil
conjecture is


The next breakthrough in Fermat’s Last Theorem
came in 1955 when the Japanese mathematicians
Goro Shimura and Yutaka Taniyama made a wild
conjecture relating two completely different
branches of mathematics. An elliptic curve is
a special curve drawn in the plane that comes
from an equation of the form y2 = x3 + ax + b, with
the additional stipulation that there be no self-
intersections or cusps in the curve. A modular form
is a mathematical function of complex numbers that
is highly symmetric in a number of ways. Taniyama
and Shimura believed that it was possible to relate
every (rational) elliptic curve to a modular form, but
this seemed to be so far-fetched that it was not taken
seriously for over ten years, until André Weil found
some evidence that the conjecture might be true.


8 The relationship between Taniyama-
Shimura-Weil and Fermat


In 1984, the German mathematician Gerhard Frey
created new interest in the Taniyama-Shimura-Weil
conjecture when he showed how it could potentially
be used to prove Fermat’s Last Theorem. If Fermat’s
equation had an integer solution, then this solution
could be used to construct an elliptic curve that was
so unusual it was highly unlikely to be related to a
modular form. So if Fermat’s Last Theorem were
false, the Taniyama-Shimura-Weil conjecture would
be false. Conversely, if Taniyama-Shimura-Weil
were true, Fermat’s Last Theorem would be true, too.
The American mathematician Ken Ribet was able
to prove that Frey’s intuition was correct, paving the
way for a new line of attack on the problem.







9 How Andrew Wiles proved Fermat’s Last
Theorem


Andrew Wiles is a British mathematician who had
harboured a lifelong desire to prove Fermat’s Last
Theorem. On hearing Frey and Ribet’s results he
laboured in secret for seven years trying to prove a
special case of Taniyama-Shimura-Weil that would
imply Fermat’s Last Theorem. In 1993, he presented
his finished proof to the mathematical community,
but when the proof was checked, a gap was found
that meant a further year’s work was needed to make
the argument watertight. The final proof, published
in May 1995, brought together a huge number of
mathematical ideas, including Galois theory, group
theory, Iwasawa theory (related to Kummer’s work),
algebraic geometry and category theory.


10 Where Fermat’s Last Theorem leads next


Although Fermat’s Last Theorem is now
proved, the ideas that were generated in Wiles’s
proof have provided new insights and conjectures
that are still keeping mathematicians occupied.
The full Taniyama-Shimura-Weil conjecture was
proved by various people between 1996 and 2001,
confirming the unexpected link between elliptic
curves and modular forms. This theorem itself has
turned out to be a special case of a bigger programme
of work called the Langlands conjectures, which
is considered to be a ‘grand unified theory of
mathematics’.
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