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Introduction


In 2014 the Iranian Maryam Mirzakhani became the first woman to win the highest honour of mathematics, the Fields Medal. To her, mathematics often felt like ‘being lost in a jungle and trying to use all the knowledge that you can gather to come up with some new tricks’. ‘With some luck’, she added, ‘you might find a way out.’


Mirzakhani, who died in July 2017 at the age of 40, ventured deeper into the mathematical jungle than most. This New Scientist Instant Expert book is for those wandering on the periphery looking for a way in.


Willingly or unwillingly, most of us have gleaned some idea of what the mathematical terrain looks like. There are symbols, equations and geometrical shapes. There are problems with right answers, truths that are seemingly universal, and proofs that are logically watertight. Above all, there are numbers.


But how does it all hang together? What makes numbers and mathematics special – and some numbers and bits of mathematics more special than others? This is too broad a subject to hope to give a comprehensive overview but, by drawing on the thoughts of leading researchers and the very best of New Scientist, we hope to build up a picture.


After a brief introduction to the nature and scope of mathematics itself, we start where it all started: with the fascinating properties of numbers. We look at zero and infinity, the prime numbers, and at inescapable oddball numbers such as the ‘transcendentals’ e and π and the imaginary unit i. Via a brief diversion through the problems of probability and statistics, we arrive at the cutting edge of modern mathematical methods and examples of how they are applied in some unexpected areas of our lives, before considering the deepest problem of all: how exactly does mathematics relate to reality?


For many on the outside, the wonder of mathematics lies in the way it seems to be a universal language that helps us better understand the world. Many practitioners would agree, but they add that its beauty lies in how, from simple beginnings and using only the tools of purest abstract logic, you can create worlds that seem to transcend our own.


Mirzakhani studied the geometry of a thing called moduli space, which can be envisaged as a universe in which every point is itself a universe. She described the number of ways a beam of light can travel a closed loop in a two-dimensional universe – an answer you cannot find by staying in your ‘home’ universe, but only by zooming out and navigating an entire multiverse.


That’s further than most of us can aspire to go. But I hope that this book will provide you with your own satisfying journey of mathematical discovery – a way in, at the very least.


Richard Webb, Editor
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What is mathematics?


What does mathematics consist of? Is it an invention or a discovery? Does it come naturally to us, or must we learn it? When it comes to the true character of mathematics, many questions remain unresolved…


 


The pillars of mathematics


For most of us, mathematics means numbers. The manipulation of numbers is certainly where humanity’s mathematical journey started. But we have built a formidable, far more extensive edifice on that foundation.


Arithmetic is what we all know: addition, subtraction, division, multiplication and so on. The ability to understand and manipulate numbers in the abstract was the bit of mathematics that we began to develop first, in a formal way as much as six millennia ago. But watertight logical rules of arithmetical manipulation were devised only from the mid-nineteenth century onwards, with the development of set theory.


You can read more about the development of set theory in Chapters 2 and 3 on zero and infinity, and about numbers themselves in Chapters 4 and 5, which deal with the prime numbers, the atoms of the number system, and other particularly intriguing numbers, π, ϕ, e and i.


Probability theory, developed from the seventeenth century onwards, builds on the rules of arithmetic to create its own set of laws for dealing with the chance and uncertainty that is everywhere around us in the world. Originally applied to games of chance, it gained new significance in the twentieth century with the application of statistical methods to analyse large sets of data, and also with the development of quantum theory, which suggests that reality itself is ruled by chance.


Probability and statistics are the subject of Chapter 6, and you will find more on the connection with quantum theory in Chapter 9 on the relationship between numbers and reality.


Beyond the manipulation of numbers is ‘higher’ mathematics, with three main pillars:


  1  Geometry is probably the most familiar. It begins with a sense of space: formal geometry codifies the principles for describing how things in space can be related to each other, for example to form a triangle. But it’s a static description of things.


  2  Analysis is the second pillar of higher mathematics. It deals with things that move and change with time. It notably includes integral and differential calculus, together with many other sophisticated variations on the theme.


  3  Algebra allows us to represent and manipulate knowledge in terms of numbers, symbols and equations, and as such is the broadest pillar of formal higher mathematics. It encompasses esoteric subjects such as group theory (the study of groups, where groups are sets of elements which satisfy certain properties), graph theory (which studies how things are interconnected, such as the computers on the Internet or neurons in the brain) and topology (the mathematics of shapes that can be deformed continuously, without breaking and re-forming them).


Each of these sprawling subjects would be worthy of a book in its own right, but you will gain a flavour of the insights they give and problems they present throughout this book, and particularly in Chapters 7 and 8, dealing with the great unsolved problems of mathematics and the application of mathematics to problems in the everyday world.


Before all that, though, we turn our attention to one of the hardest philosophical questions of mathematics: where does it all come from?


Mathematics: invention or discovery?


Whenever we run to catch a ball or dart through heavy traffic, we do mathematics – entirely unconsciously. That makes sense. The natural world is a complex and unpredictable place. Habitats change, predators strike, food runs out. An organism’s survival depends on its ability to make sense of its surroundings, whether by counting down to nightfall, triangulating the quickest way out of danger, or assessing the spots most likely to have food. That means doing mathematics: manipulating numbers, assessing position and movement using trigonometry and calculus, and weighing up probabilities.


This points to a truth that is both profound and difficult to pin down: reality is in some sense mathematical. Karl Friston, a computational neuroscientist and physicist at University College London, observes that there is simplicity, parsimony and symmetry in mathematics. If you were treating it as a language, it would win hands down over all other ways of describing the world.


One immediate consequence is that we are not the only organisms to have ‘mathematical’ abilities. From dolphins to slime moulds, organisms across the evolutionary tree seem to analyse the world mathematically, deciphering its patterns and regularities in order to survive. If the environment unfolds according to mathematical principles, Friston argues, then the anatomy of the brain must also recapitulate those mathematical principles.


But human brains, with their seemingly unique ability for symbolic representation and abstract thinking, have taken that further. We have made mathematics a conscious activity that, to a greater or lesser extent, must be learned. The exact moment when culture transformed our instinctive senses into a recognizable, conscious mathematical ability is lost in the mists of time, but in the 1970s archaeologists investigating the Border Cave on the western scarp of the Lebombo Mountains in South Africa discovered a series of bones with notches, including the fibula of a baboon etched with 29 such marks. Dated to some 40,000 years ago, they seem to have been an aid to counting – the oldest evidence we have for an emerging conscious understanding for representing and manipulating numbers.


Systems for counting and measuring reached new heights in the fourth millennium BCE, in the sophisticated Mesopotamian culture of the Tigris–Euphrates valleys. Here, in what today we call Iraq, the first consistent symbolic representations of numbers were used to keep track of days, months and years, to measure areas of land and amounts of grain, and perhaps even to record weights. As humans took to the seas and studied the skies, we began developing numerical methods for navigation and for tracking celestial objects.


This conscious mathematics was a product of cultural necessity: an invention that helped to make sense of the world and do things such as trade and travel. With the help of mathematical tools, we have over the past 6,000 years built an immense pyramid of mathematical knowledge. Ancient Greek mathematicians such as Euclid formalized rules of geometry (see Figure 1.1) in around 300 BCE; Hindu and Arabic mathematicians a thousand or so years later began creating the number systems we are familiar with today and developing tools for the symbolic representation and manipulation of numerical quantities: algebra.
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FIGURE 1.1   Euclid’s Elements, seen here in its first printed edition from 1482, was a seminal primer of geometry.


But even the great blooming of modern mathematics in the seventeenth-century Age of Enlightenment served only to further our understanding of things within our experience. The calculus of Isaac Newton and Gottfried Leibniz, for example, allowed us to calculate the trajectory of moving bodies on Earth and in the heavens. The coordinate system invented by René Descartes provided an algebraic representation of geometric shapes. Emerging theories of chance and probability helped us to deal with uncertainty and lack of information.


But mathematics has since expanded into ever more abstract domains, and told us things we could not have hoped to understand by observation alone. As it has done so, it has assumed less and less the character of an invention, a product purely of human brains, and more and more that of a revealed truth, a discovery waiting to be made.


When, for example, at the turn of the twentieth century, the mathematician David Hilbert extended the algebra of conventional 3D space to one with an infinite number of dimensions, it seemed a purely abstract development with little application to the real world. But a couple of decades later it turned out that the state of a quantum particle could best be described using such a ‘Hilbert space’. The underlying mathematics remains key to our attempts to make sense of quantum mechanics – a theory of which we have as yet no intuitive physical understanding.


To many physicists today, the success of mathematics as a language to describe reality speaks to a prime role it has in the organization of the universe. Others would not go so far, arguing that we still just invent mathematics to satisfy our need to describe the world differently in different contexts.


Consider the following sequence of events. The most famous of the geometrical axioms that Euclid laid down is that parallel lines never meet. But on the curved surface of the globe, for instance, parallel lines do meet – all lines of longitude meet at the North and South Poles. The exploration by German mathematician Bernhard Riemann and others of such non-Euclidean geometries led to the discovery – or invention – of a rich vein of mathematics that Einstein would use to formulate his general theory of relativity. The warping of space-time by massive bodies in general relativity is dictated by the rules of Riemann’s geometry, not Euclid’s.


For Andy Clark, a cognitive philosopher at the University of Edinburgh, the universe is filled with all kinds of patterns and regularities and ways of behaving. So any creature that wants to build a mathematics is going to have to build it on top of regularities that are constraining the behaviour of the stuff they encounter. Follow this logic, and if mathematics is an organizing principle, it is one we impose on the world.


Gödel’s incompleteness theorems, an ironically rather precise bit of mathematics developed by the Austrian mathematician Kurt Gödel in the 1930s, show that there will always be questions that mathematics will never have the tools to answer (see Chapter 3). That also suggests that it is too early for us to make any sweeping statements about mathematics being a universal truth. We’ll return to these thoughts at the end of the book, but in the meantime we are far from what mathematicians would regard as a proof one way or the other.


Our mathematical brains


We all have an innate ability to do a form of mathematics unconsciously, to navigate our way around the world and survive. But the origin of our ability to manipulate numbers is a more intriguing case. Is it learned, or does it tap into something inbuilt? Counting things, after all, has no obvious survival value.


In 1997 the cognitive psychologist Stanislas Dehaene proposed that we are born with a conscious sense of number, in the same way that we are conscious of colours: evolution had endowed humans and other animals with ‘numerosity’, an ability to immediately perceive the number of objects in some pile of objects. Three red marbles would produce a sense of the number three just as they would produce a sense of the colour red.


Evidence quickly started to accumulate in support of this ‘nativist’ view of numerical ability, with experiments showing, for example, that six-month-old infants could distinguish between arrays of different numbers of dots. Other studies suggested that humans come with a built-in mental number line – that we instinctively represent numbers spatially, with values increasing from left to right. Experiments appearing to demonstrate that some other animals, from chimps to chickens, can distinguish small numbers seemed to provide supplementary evidence.


The development of numbers
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The development of numbers
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But, before long, some researchers grew uncomfortable with the conclusions of these studies. The subjects might, for example, be distinguishing arrays of dots based not on number but on other attributes such as their spatial distribution or area of coverage. Tali Leibovich of the University of Haifa in Israel points out that it makes sense that we would have evolved to assess these things: if you are hunting or being hunted, you need to act quickly, which would mean using all available cues.


Soon, a different hypothesis emerged: instead of being born with an innate sense of number, we are born with a sense for quantities such as size and density that are correlated with the numbers of things, and our conscious mathematical ability builds on this. ‘It takes time and experience to develop and understand this correlation,’ says Leibovich.


More refined tests in children tend to support this view. Children younger than about four years of age cannot understand that five oranges and five watermelons have something in common: the number five. To them, a bunch of watermelons simply represents more ‘stuff’ than the same number of oranges.


Observations of different human cultures provide additional evidence. The Yupno people of Papua New Guinea have a complex language including subtle demonstrative pronouns indicating whether something is physically higher or lower than the speaker, how many things there are, and exactly how near or far they are (English, by contrast, has only four demonstratives: this, that, these and those). But the Yupno do not use the supposedly universal mental number line, nor do they have comparatives in their language to say that something is bigger or smaller. Rafael Núñez of the University of California San Diego, who has studied the Yupno culture for many years, says that it is not just the lack of exact quantification: they also lack grammatical properties to support something as simple as a comparison of size or weight.


Núñez points also to a study of 189 Aboriginal Australian languages, of which three-quarters were found to have no words for numbers above three or four, while a further 21 went no further than five. To Núñez, this suggests that exact numerosity is not innate, but a cultural trait that emerges when circumstances, such as agriculture and trading, demand it. ‘Hundreds of thousands of humans who have language, sometimes very complicated and sophisticated language, don’t have exact quantification,’ he says.


And some people definitely learn numerosity better than others. In 2016 Dehaene reported the results of scanning the brains of 15 professional mathematicians and 15 non-mathematicians of equal academic ability. They found a network of brain regions involved in mathematical thought activated when mathematicians reflected on problems in algebra, geometry and topology, but not when they were thinking about unrelated areas. No such distinction was visible in the non-mathematicians.


Crucially, this ‘maths network’ does not overlap with brain regions involved in language, suggesting that once the mathematically able develop and learn the language for manipulating symbols, they start thinking in ways that do not involve normal language. For Friston, it is as though these people are able to download an intuition into another world, the world of mathematics, and stand back and let it talk back to them. That ability probably leans on many other things: language to communicate concepts, working memory to hold and manipulate concepts, and even cognitive control to overcome innate biases in our brains.


When mathematics goes wrong


As a product of the random processes of natural selection, our unconscious mathematical models of the world are, seen from the point of view of conscious mathematics, not perfect. Sometimes they prioritize keeping us alive at the expense of accuracy – a source of all sorts of common mathematical pitfalls.


This is one reason, for instance, why we find it so difficult to assess probabilities. We tend to inflate our estimate of risks – better safe than sorry – and see patterns where there are none. That lies behind things such as the gambler’s fallacy, the mistaken belief that, if the roulette wheel keeps landing on red, a bet on black is the safer one to make (see Chapter 8).


Or take the Weber–Fechner effect, which governs our response to external stimuli. It states that our ability to discriminate between sensations diminishes as their magnitude increases. While a 2-kg weight can easily be distinguished from a 1-kg weight, for example, weights of 22 kg and 21 kg are harder to tell apart. Similar things apply to the brightness of lights, the volume of a sound and even the number of objects you can see.


Experiments show that other animals share these inbuilt flaws – but as yet only we humans have developed the ability to identify and potentially overcome these flaws, in the form of conscious mathematics.


How to think about mathematics


How do its practitioners get themselves thinking mathematically? Ian Stewart of the University of Warwick, UK, sees his subject as akin to a language – but one that, thanks to its inbuilt logic, writes itself. ‘You can start writing things down without knowing exactly what they are, and the language makes suggestions to you,’ he says. Master enough of the basics, and you rapidly enter what sports players call ‘the zone’. In this state, Stewart has found, things get much easier and you are propelled along.


But what if you lack such a maths drive? It’s wrong to think that it’s all down to talent, says mathematician and writer Alex Bellos: even the best exponents can take decades to master their craft. He believes one of the reasons people don’t understand maths is that they simply don’t have enough time.


Sketching a picture of the problem helps. Take negative numbers. Five sheep are easy enough to envisage, but minus five sheep are really difficult to get your head around. It was only when someone had the bright idea of arranging all the existing numbers 0,1,2,3…on a line that it became obvious where the negative numbers fitted in. Similarly, complex numbers only really took off with the advent of a ‘complex plane’ in which to depict them (see Chapter 5).


Analogies also help. Stewart’s advice is that, if thinking about ellipses oppresses you, consider instead a circle that has been squashed and work from there. Overall, contrary to the impression of mathematics as a discipline of iron logic, the best way to attack a problem of any sort is often to get a brief overview of it, skip over anything you cannot work out and then go back and fill in the details. ‘A lot of mathematicians say it’s important to be able to think vaguely,’ says Stewart.




Interview: Inspiration from Rubik’s cube


Mathematical genius is measured in Fields Medals. Two, three or four medals are awarded once every four years to mathematicians under the age of 40. Together with the Abel Prize, they are regarded as the highest honour in mathematics. Manjul Bhargava – one of the youngest people to be made a full professor at Princeton University, aged 28, in 2003 – was awarded one in 2014. Here he reveals the unusual ways his mathematical brain works.


Did the Fields Medal mean more to you than any other award you have won?


Any award is a milestone, which encourages one to go further. I don’t know that I think of any award as meaning more to me personally than any other. The mathematics that led to the medal was far more exciting to me than the medal itself.


The award citation says that you were inspired to extend Gauss’s law of composition in an unusual way. What does that mean, and what did you do?


Gauss’s law says that you can compose two quadratic forms, which you can think of as a square of numbers, to get a third square. I was in California in the summer of 1998, and I had a 2 × 2 × 2 mini Rubik’s cube. I was just visualizing putting numbers on each of the corners, and I saw these binary quadratic forms coming out, three of them. I just sat down and wrote out the relations between them. It was a great day!


Have any of your other discoveries had unusual origins?


I do tend to think about things very visually, and the Rubik’s cube is a concrete example of that visual approach. But that one is probably the most unusual and unexpected origin of all.


You have proved several theorems. Do you have a favourite?


Mathematicians often say that choosing a favourite theorem is like choosing one’s favourite child. Although I don’t yet have any children, I understand the sentiment. I enjoyed working on all the theorems I have proved.


Are there any mathematicians, living or dead, whom you have particularly looked up to?


My mother [Mira Bhargava, a mathematician at Hofstra University in Hempstead, New York] has been a source of inspiration to me from the very beginning. She was always there to answer my questions, to encourage and support me, and she taught me how much the human mind is capable of.
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Zero


It is the embodiment of nothing, but is it something? We start our exploration of numbers with a concept mathematicians have wrestled with for centuries. Is zero a number, or isn’t it?


 


An untameable nothing


Zero does not behave like a normal number. Add any two numbers together and you will get a different number – unless one of them is zero. Multiply any number by zero, and the result is only ever zero – again, something that happens with no other number. And don’t even try to divide a number by zero: mathematicians generally call that result ‘undefined’ because, if you do it, pandemonium ensues (see ‘Proving 1 = 2’ below).


These quirks are partly why zero existed as a symbol long before it was accepted as a number. This symbolic zero is familiar as a ‘placeholder’ in our positional numerical notation based on powers of 10. Take the string of digits ‘2018’, for example. It has a value equal to 2 × 103 + 0 × 102 + 1 × 101 + 8. Zero’s role is pivotal: were it not there, we might easily mistake 2018 for 218, or perhaps 20018, and our calculations could be out by hundreds or thousands.
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