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PROLOGUE

The Wings of the Eagle




THE EAGLE HAS LANDED

THE VOICE from the spaceship Eagle, just above the surface of the moon, was clearly understandable despite the static. The other voice came from the Johnson Space Flight Center in Houston, Texas, and, not surprisingly, was much clearer. Both men spoke in short, efficient, factual statements, without outward emotion.


EAGLE: 35 degrees. 35 degrees. 750, coming down at 23. 700 feet, 21 down. 33 degrees. 600 feet, down at 19...540 feet...400...350 down at 4.... We’re pegged on horizontal velocity. 300 feet, down 3½ ... a minute. Got the shadow out there...altitude-velocity lights. 3½ down, 220 feet. 13 forward. 11 forward, coming down nicely...75 feet, things looking good.

HOUSTON: 60 seconds.

 



 



EAGLE: Lights on. Down 2½. Forward. Forward. Good. 40 feet, down 2½. Picking up some dust. 30 feet, 2½ down. Faint shadow. 4 forward. Drifting to the right a little.

HOUSTON: 30 seconds.

EAGLE: Drifting right. Contact light. Okay, engine stop.

HOUSTON: We copy you down, Eagle.

EAGLE: Houston, Tranquillity Base here. The Eagle has landed.



I was a twenty-two-year-old graduate student when Neil Armstrong and Buzz Aldrin landed on the moon. Today, thirty years on, I still get a deep thrill whenever I read the transcript of those last few minutes of the descent, as Armstrong guided the lunar landing craft—which the crew had christened the Eagle—to the spot where humans would first set foot on another planet.

As the culmination of a decade-long struggle to put a man on the moon (and bring him back alive), the actual landing did not represent a huge technological advance over the previous Apollo missions. To use Armstrong’s own words, as he made the historic first step onto the moon’s surface, the Apollo 11 moon landing was just “one small step for [a] man.” But the symbolic importance of the event was inescapable. It was, as Armstrong went on to say, “One giant leap for Mankind.” Although often touted as an achievement for science and engineering—which it was—I have always felt that the Apollo 11 mission was much more a triumph of the human spirit, and of two mental abilities that on the face of the earth are unique to humans: mathematics and language.

Getting to the moon was heavily dependent on mathematics, which underpins all the sciences and all of engineering. Every aspect of the mission was calculated(!) to the finest detail: how much fuel to carry for each stage of the flight to the moon; what path to take so that fuel would not be wasted in correcting the path; how much fuel would be required for the landing; how much for taking off again; how long each engine burn should last; how much oxygen was needed to keep the crew alive. The dialogue between Eagle and ground control during the final descent was almost entirely mathematical. They had little room for error: after Armstrong finally maneuvered the Eagle to a safe landing, there was just ten seconds’ worth of fuel left.

So, it took mathematics to get to the moon. But where did language come in? Why do I say the moon landing was a triumph for language? Because the Apollo mission was a huge collaborative enterprise involving the coordinated efforts of thousands of people. Although only two men made those historic first steps on the moon, the project involved many thousands of individuals, spread all over North America—and elsewhere on the globe, if you include the people manning the tracking stations. Language provided the thread that tied the team together and allowed them to coordinate their actions to produce a single event.

Of course, it doesn’t require a moon landing to remind us that language and mathematics are powerful tools. Both have led to countless other achievements that have transformed not only humankind but much of our planet.

One of my aims in this book is to convince you of just how remarkable and powerful—and uniquely human—language and mathematics are. Let me once again quote Neil Armstrong. When the lunar module broke free from the command ship that would remain in orbit above the moon during the course of the moon walk, Armstrong declared that “The Eagle has wings.” The acquisition of language and mathematics gave humanity the wings to soar above our fellow creatures.

My other aim is to argue that these two faculties are not separate: both are made possible by the same feature of the human brain.

Along the way, I shall examine the questions of what exactly is mathematics, what exactly is language, and how they arose. I shall also consider a third, distinctly human faculty: our ability to formulate—and follow —complicated plans, worked out in advance, incorporating various alternatives to be followed, depending on how things turn out at the time. This faculty is closely linked with our abilities to use language and to do mathematics. And it too played a major role in the Apollo missions, every detail of which was worked out well in advance, with every imaginable contingency accounted for.

For example, the main flight plan called for the on-board computer to  land the Eagle at a site determined months before the flight. But in the event, the lunar crew saw that the chosen site was uneven and littered with boulders. As they descended toward the moon’s surface, Armstrong overrode the computers and landed the spacecraft manually. The possibility of a manual landing had been considered well in advance, and the Apollo crew had trained for it.

This last human ability—to imagine the future taking several different paths, and to make adaptable plans in response to our imaginings—is, in essence, the source of the other two (mathematics and language). Arguably, therefore, it is the most important of all.




THE MATH GENE?

Before we begin, I should clear up one thing: there is no “math gene” in the sense of a specific sequence of human DNA that confers mathematical ability. There are, of course, genes that affect our ability to do mathematics. But, in calling this book The Math Gene, I am simply adopting a common metaphor. Roughly speaking, by “the math gene” I mean “an innate facility for mathematical thought,” just as authors sometimes use “the language gene” to refer to our innate facility to acquire and use language. Of course, both facilities are genetically determined (at least in part), as is almost everything else about us. But talk of a single “gene” for mathematics is purely metaphorical—as it almost always is when we read of “a gene for X.”

My argument that you possess the math gene—i.e., that you have an innate facility for mathematics—is simply this: your genetic predisposition for language is precisely what you require to do mathematics. Now, the chances are that you have a great command of your native language but feel far less confident about your mathematical ability. Indeed, like millions of your fellow humans, you may even be “math phobic.” Thus, in making my case, I will have to explain why many people seemingly cannot  use a basic ability that I am claiming they possess. Part of the explanation is that most people do not really know what mathematics is. So I must also explain what mathematicians—people like myself—think of as “mathematics.” It’s not just numbers and arithmetic. Once you know what mathematics is really about, and once you see how our brains create language, you should find it far less surprising that thinking mathematically is just a specialized form of using our language facility.






1

A MIND FOR MATHEMATICS


I HATED MATHEMATICS when I was in elementary school. In 1971, at the age of twenty-four, I emerged from university a Ph.D. in mathematics and have been a professional mathematician ever since. The crucial change came when I was fifteen, when I discovered what mathematics was really about.

Although I hope to give you some idea of what I discovered and why I fell in love with it, that is not my main aim in this book. Rather, I want to solve a puzzle that has intrigued me for most of my adult life: how did our ancestors acquire a mind for mathematics?

By answering this question, we may begin to understand why so many people find mathematics impossibly hard.




NOT ENOUGH TIME

Why do I think that the acquisition of mathematical ability presents a puzzle? It’s a question of time. The human species has had a recognizable concept of abstract numbers for at most 8,000 years. Formal, symbolic mathematics with equations, theorems, and proofs is little more than 2,500 years old. Calculus was developed in the seventeenth century; negative numbers came into widespread use in the eighteenth, and modern abstract algebra, where symbols like x, y, and z denote arbitrary entities, is a mere 150 years old.

Yet 8,000 years is nothing like enough time for the human brain to undergo major evolutionary developments. The 2,500-year history of formal mathematics is a mere eye-blink in evolutionary time. It has taken the human brain over 3,500,000 years to evolve to its present state. Einstein’s brain differed little from that of Iron Age Man. Yet nothing we would call mathematics existed in the Iron Age.

Whatever features of our brain enable (some of) us to do mathematics must have been present long before we had any mathematics. Those crucial features, therefore, must have evolved to fulfill some other purpose. What purpose? (I’ll phrase this more carefully later on.) My answer to this question has a startling consequence: everybody has the math gene.

The reason is simple to state: the features of the brain that enable us to do mathematics are the very same features that enable us to use language —to speak to others and understand what they say.

If I am right, then another question arises. Why are so many people seemingly unable to do math? If the basic facility to do mathematics is the same one that enables us to speak and understand speech, how come so few are able to use that facility for mathematics, given that every four-year-old is fluent with language? This second question requires us not only to look into the very heart of both language and mathematics, but also to ask ourselves what is the purpose of language—how did it evolve?

To develop my thesis, not only must I describe the nature of mathematical  thought—mathematics is a woefully misunderstood subject—but I must also examine the way the brain works and how it evolved to its present state.

I shall also have to look deeply into the nature of language. I will have to explain the difference between language, which appears to be unique to humans, and a system of communication, which many species possess in varying degrees of complexity.

Much of my account will differ little from what you will find in most books on human evolution. But occasionally, the standard account does not fit the known facts. In particular, the most common reason given for the evolution of language is that it was driven by the need for ever greater communication—that communication was its original purpose, if you like. I find this explanation problematic. Far more likely, I will suggest, is that language first arose as a by-product of a growth in the brain’s representational power. Only after language had arrived on the scene did its use in communication become a major selection factor.

The main activity that prepared the human brain for being able to do mathematics, I will suggest, was nothing to do with the physical world, as you might have expected; rather it was keeping track of interpersonal relationships in an increasingly complex society. Although you may find this suggestion surprising, it is not in conflict with other authorities on the issue, for the simple reason that no one else has yet attempted to explain how our capacity for mathematical thought evolved! (Numerical ability, yes; but not mathematical ability.) If my explanation is correct, we can begin to understand why so many people find mathematics so hard, and how we might modify mathematics instruction so that a greater proportion of people may learn it.

That then is the journey in front of us. How likely is it that I am correct?

As a mathematician, I feel confident when describing mathematics. I cannot bring the same confidence to the evolution of the human brain. But then, no one can. Piecing together a coherent account of the way our species evolved is a tricky business. The experts often disagree  significantly about what happened, when, and why. No evolutionary argument can really escape the criticism that it is merely a “Just So Story.” (The less loaded term is “rational reconstruction.”) Of course, it is important (and I try) to be consistent with what is known for certain. But the known facts admit a wide range of possible interpretations.




IT’S NOT JUST NUMBERS

One consequence of our investigation is that we shall discover why people fall largely into two groups: those who find mathematics almost completely incomprehensible, and the much smaller group for whom it seems to come fairly easily—with almost no one in between those extremes. It turns out that those who can do mathematics have a secret.

Other questions we shall be able to answer are:
• Can you use language to help you be better at math? (Yes.)

• Do mathematicians think in language? (No.)

• What does it feel like to a mathematician to do mathematics?

• Do mathematicians have different brains? (No.)





Before we go any further, I should make it clear that this is a book about mathematics, not arithmetic. There’s a big difference. Arithmetic is a part of mathematics, but most mathematics is not about arithmetic.

Since arithmetic is what schools teach first, and since many people stop learning mathematics before they have progressed to anything else, it’s not surprising that the words “mathematics” and “arithmetic” are often taken to be synonymous. But in fact, the more advanced parts of mathematics have little to do with arithmetic or numerical computation, or even with numbers at all in the usual sense. Indeed, some of the best mathematicians are not very good with figures.

Still, much of what I shall say about mathematics has implications for  arithmetic. In particular, as our story develops, we shall discover why many people have trouble with arithmetic.

For instance, we shall see why so many individuals have difficulty learning their multiplication tables, particularly the answers for 8 × 7, 9 × 6, and 9 × 8. (It is not too inaccurate to say that their problem stems from the brain’s being too smart, not too dumb, and that the key to mastering the tables is to override the brain’s natural intelligence.)

Other questions about arithmetic that we shall be able to answer are:
• Why do so many people dislike mathematics so much?

• Do Chinese and Japanese children have a built-in advantage over American and European children when it comes to learning mathematics? (Yes.)

• Do any animals have a sense of number? (Yes, many do, up to a point.)

• Can any animals do arithmetic? (Ditto.)

• What about newborn babies? (Yes. This fascinating answer required considerable ingenuity to obtain.)





Clearly, it’s quite a journey we are about to embark on. What we discover along the way will not only tell us a lot about ourselves and about the natures of language and of mathematics, it also has significant implications for mathematics education.

Before we take the first step, however, I had better make good on my promise to tell you just what mathematics is. What does the word mathematics mean to a mathematician?




WHAT IS MATHEMATICS?

What is mathematics? If you ask this question of the first person you meet on the street, you will most likely hear that “mathematics is the study of  number.” If you insist that your respondent be more specific, you may elicit the suggestion that mathematics is “the science of numbers.” But that is about as far as you will get, and it is not an adequate description of mathematics. It is out of date by 2,500 years! The answer to the question “What is mathematics?” has changed several times since then.

Until around 500 BC, mathematics was indeed about numbers. Ancient Egyptian, Babylonian, and Chinese mathematics consisted almost solely of arithmetic. It was largely utilitarian and very much of a “cookbook” variety. (“Do such and such to a number and you will get the answer.”)

Between 500 BC and AD 300, mathematics expanded beyond the study of numbers. The mathematicians of ancient Greece were concerned more with geometry. Indeed, they regarded numbers in a geometric fashion, as measurements of length, and when they discovered that there were lengths to which their numbers did not correspond (called irrational lengths), their study of numbers largely came to a halt. For the Greeks, with their emphasis on geometry, mathematics was about numbers and shape.


Only with the Greeks did mathematics change from a collection of techniques for measuring, counting, and accounting into an academic discipline having both aesthetic and religious elements. At the start of the Greek period, Thales introduced the idea that the precisely stated assertions of mathematics could be logically proved by formal argument. For the Greeks, this approach culminated in the publication, around 350 BC, of Euclid’s mammoth thirteen-volume text Elements, reputedly the second most widely circulated book of all time after the Bible.

After the Greeks, although mathematics advanced in several parts of the world—notably in Arabia and China—its nature did not change until the middle of the seventeenth century, when Sir Isaac Newton (in England) and Gottfried Wilhelm Leibniz (in Germany) independently invented the calculus. In essence, the calculus is the study of motion and change. Before calculus, mathematics had been largely restricted to the static issues of counting, measuring, and describing shape. The new techniques to handle motion and change enabled mathematicians to study the  motion of the planets and of falling bodies on earth, the workings of machinery, the flow of liquids, the expansion of gases, physical forces such as magnetism and electricity, flight, the growth of plants and animals, the spread of epidemics, and the fluctuation of profits. Mathematics became the study of numbers, shape, motion, change, and space.


At first, calculus was mainly directed toward the study of physics, and many of the great seventeenth- and eighteenth-century mathematicians were also physicists. But from about 1750 onward there was increasing interest in the mathematical theory, not just its applications, as mathematicians sought to understand what lay behind the enormous power of calculus. By the end of the nineteenth century, mathematics had become the study of numbers, shape, motion, change, space, and the mathematical tools that are used in this study. This was the start of modern mathematics.

The growth of mathematical activity in the present century can best be described as an explosion in knowledge. In 1900, all the world’s mathematical knowledge would have fit into about 1,000 books. Today it would take maybe 100,000 volumes to contain all known mathematics. Not only have existing branches, such as geometry and calculus, continued to grow, but many quite new branches have sprung up. At the turn of the century, mathematics consisted of about twelve subjects: arithmetic, geometry, calculus, and so on. Today, there are between sixty and seventy distinct categories. Some subjects, like algebra or topology, have split into subfields; others, such as complexity theory or dynamical systems theory, are completely new.




THE SCIENCE OF PATTERNS

Given such diversity, how does today’s mathematician answer the question, “What is mathematics?” The most common answer is that mathematics is the science of patterns. This is fine once you understand exactly what mathematicians mean by “patterns” and how they go about examining them. 


As this book progresses, we will examine several examples of different branches of mathematics. In the meantime, let me mention that the patterns studied by the mathematician can be either real or imagined, visual or mental, static or dynamic, qualitative or quantitative, utilitarian or recreational. They arise from the world around us, from the depths of space and time, and from the workings of the human mind. Different kinds of patterns give rise to different branches of mathematics. For example, number theory studies (and arithmetic uses) the patterns of number and counting; geometry studies the patterns of shape; calculus allows us to handle patterns of motion; logic studies patterns of reasoning; probability theory deals with patterns of chance; topology studies patterns of closeness and position.

Because these patterns are, for the most part, highly abstract, their description and study require an abstract notation. For instance, the symbolic notation of algebra is the most appropriate means of describing general behavioral properties of addition and multiplication. The commutative law for addition, for example, could be written in English:
When two numbers are added, their order is not important.





However, it is more economically written as:
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The complexity and abstraction of most mathematical patterns make anything other than symbolic notation prohibitively cumbersome to use. And so the development of mathematics has involved a steady increase in the use of abstract notations.

The first use of algebraic notation in mathematics seems to have been by Diophantus, who lived in Alexandria around AD 250. In his treatise Arithmetica, generally regarded as the first “algebra textbook,” Diophantus used special symbols to denote the unknown in an equation and to denote  powers of the unknown, and he employed symbols for subtraction and for equality.

Modern mathematics books are awash with symbols, but mathematical notation no more is mathematics than musical notation is music. A page of sheet music represents a piece of music, but the notation and the music are not the same; the music itself happens when the notes on the page are sung or performed on a musical instrument. It is in its performance that the music comes alive; it exists not on the page but in our minds. The same is true for mathematics. When read by a competent performer (that is, someone trained in mathematics), the symbols on the printed page come alive—the mathematics lives and breathes like some abstract symphony in the mind of the reader.

Of course, this similarity can only be taken so far. Although only someone well trained in music can read a musical score and hear the music in her head, it requires no special training to enjoy a musical performance. But the only way to appreciate most mathematics is to learn how to “sight-read” the symbols. Although the structures and patterns of mathematics resonate in the human mind every bit as much as the structures and patterns of music, human beings lack the mathematical equivalent of ears. Mathematics can only be “seen” with the “eyes of the mind.” It is as if we had no other way to appreciate the patterns and harmonies of music than sight-reading.

For many people, the highly abstract notation is a deterrent to their understanding of mathematics. (It has been said that every equation an author includes in a “popular” science book halves its sales.) But without algebraic symbols, large parts of mathematics simply would not exist. The issue is a deep one having to do with human cognitive abilities. The recognition of abstract concepts and the development of an appropriate language are two sides of the same coin.

The use of a symbol such as a letter, a word, or a picture to denote an abstract entity goes hand in hand with the recognition of that entity as an entity. To use the numeral “7” to denote the number 7 we must recognize  the number 7 as an entity; to use the letter m to denote an arbitrary whole number we must have the concept of a whole number. The symbol allows us to think about and manipulate the concept.

We shall come back to this issue later. In the meantime, let me give you an overview of the journey on which we are about to embark.




WHAT DOES IT TAKE TO MAKE A MATHEMATICAL MIND?

A number of mental attributes contribute to our ability to do mathematics. We shall look in detail at each of these attributes (which are not all independent from each other) as our story unfolds. In particular, we shall ask ourselves when and how our ancestors acquired each of these abilities, and how they combined to give mathematical ability. We shall also ask whether the inability to do mathematics stems from a lack of one of these abilities or if the problem lies with bringing them together in the right way—or with some other cause. For now, let me say a little about the most significant ones.


Number sense: Along with several other species, humans have a sense of numerosity. We recognize the difference between one object, a collection of two objects, and a collection of three objects. We also recognize that a collection of three objects has more members than a collection of two. This sense is not something we learn; we are born with it.


Numerical ability: Number sense, the ability to distinguish and compare small numerosities, does not require a concept of numbers as abstract entities or an ability to count. Numbers and counting are learned (although there is some evidence that counting has an instinctive basis). With considerable effort, chimpanzees and apes may be taught to count up to ten or so. But as far as we know, only humans are able to continue the number sequence indefinitely and to count arbitrarily large collections.


Algorithmic ability: An algorithm is a specified sequence of steps that lead to a particular goal—the mathematician’s equivalent of a recipe for  baking a cake. Doing arithmetic requires an ability to learn various sequences of operations on numbers. Other parts of mathematics require one to apply algorithms to other kinds of entities. For example, solving a quadratic equation involves following an algorithm of algebraic manipulations.

These three attributes provide most of the ingredients for being able to do arithmetic. Individuals who are good at arithmetic, however, often use additional attributes as well. For example, my childhood difficulty in learning my multiplication table—I was one of the last in the class to do it—became easier when I realized that I only needed to learn half the entries. If I knew that 7 × 9 63, then I could find the answer to 9 × 7 by applying the logical rule that order is not important in multiplying: 9 × 7 is the same as 7 × 9. To this day, I work out 9 × 7 by first turning it around to give 7 × 9 and then calling on my memory to retrieve the fact that 7 × 9 = 63.

The remaining attributes all contribute, to a greater or lesser extent, to mathematical (as opposed to arithmetic) ability.


The ability to handle abstraction: To my mind, a limitation in coping with abstraction presents the greatest barrier to doing mathematics. And yet, as I shall show, the human brain acquired this ability when it acquired language, which everyone has. Thus, the reason most people have trouble with mathematics is not that they don’t have the ability but that they cannot apply it to mathematical abstractions. It will be an interesting challenge to explain how this situation evolved.


A sense of cause and effect: Like many other species, humans seem to acquire this sense at a very early age. Its survival advantage is obvious.


The ability to construct and follow a causal chain of facts or events: The ability to construct and follow fairly long causal chains appears to be unique to humans beyond the first few years of life. As I shall explain, our ancestors acquired this ability when they acquired language. The mathematician’s proof (of a theorem) is a highly abstract version of a causal chain of facts.


Logical reasoning ability: This is the ability to construct and follow a  step-by-step logical argument. It is closely related to the ability above, and is fundamental to mathematics.


Relational reasoning ability: Much of mathematics is about the relationship between (abstract) objects. I shall argue that reasoning about mathematical relationships between mathematical objects is no different from reasoning about physical relationships between physical objects or about human relationships between people. Since most of us engage in such reasoning every day, this once again raises the question why so many people find it hard to reason about mathematical objects.


Spatial reasoning ability: The ability to reason about space is crucial to many species’ survival. This ability, which forms the basis for geometry, may also be used to reason about domains that are not, on the face of it, spatial. Indeed, many of the major discoveries in advanced mathematics stem from mathematicians finding novel ways to view problems in a spatial fashion. (The proof of Fermat’s last theorem in 1994 came about in that way.)

Those, then, are the mental abilities that combine to give us the ability to do mathematics. Our quest for the origins of mathematical ability reduces in large part to a search for the origins of each of the abilities we have just considered. The framework for that search is human evolution. Each of the abilities listed above carries a cost in terms of the brain’s energy consumption. (Some carry other costs as well.) Thus, it must have provided a survival advantage that outweighed the cost. In some cases—for example, spatial reasoning or a sense of cause and effect—that advantage is obvious. Other cases require us to dig deeper.




THE PUZZLE OF BRAIN SIZE

One aspect of the human brain that I did not list is size. Modern imaging techniques have shown that large parts of the brain are active when a person is doing mathematics. Thus, a large brain seems to be a crucial prerequisite  for mathematical ability. The brain’s structure—the number and nature of the connections between individual neurons—is also believed to play an important role.

How, then, did Homo sapiens come to have such a large and highly structured brain? The cost of such a large brain is enormous—the brain makes up less than 2 percent of the body’s mass, yet uses about 20 percent of its energy—so its survival advantage must have been enormous as well. In which case, how is it that through the entire history of life on earth, only one species has developed a brain of anything like the size (relative to body weight) of the human brain?

The human brain is nine times larger than is normal for a mammal of our body size, and thirty times larger than the brain of a dinosaur of the same body size. Its actual size varies between 1,000 and 2,000 cubic centimeters, with the vast majority between 1,400 and 1,500 cubic centimeters. Within this range there is no obvious correlation between size and intelligence. Some very intelligent people have brains of around 1,000 cubic centimeters, and others who show no signs of what we would call high intelligence possess 2,000-cubic-centimeter giants. In fact the Neanderthals, those supposedly dim-witted hominids who died out about 35,000 years ago, had slightly larger brains than ours, with most falling in the range of 1,500 to 1,750 cubic centimeters.

In terms of relative brain size, our closest rivals are the dolphins and porpoises, and after them the non-human primates—apes, chimpanzees, and monkeys. But all lag well behind us in the brain-to-body-weight ratio.

Because we’ve inherited such a brain, we can provide a long list of things we can do with it: science (including mathematics), technology, art, and culture are all products of our individual and collective intelligence. But these are very recent developments. The hominid brain reached its present size about half a million years ago—long before science, art, or culture could have influenced its evolution. How, and for what purpose, did such a large and powerful brain evolve in the first place? And what  enabled it to turn its power to mathematical thought some half a million years later?

This is the journey before us. Although our main focus is not our arithmetical ability, it is there that I shall begin. For just as numbers and arithmetic provide—for most of us—the gateway to the rest of mathematics, so too they provide a convenient place to start on our quest.






2

IN THE BEGINNING IS NUMBER


THE GREAT nineteenth-century German mathematician Leopold Kronecker once wrote, “God made the integers, all else is the work of man.” (The integers are the positive and negative whole numbers.) His point was that, starting with the integers, it was possible to develop all of mathematics. Given that many contemporary branches of mathematics have little to do with numbers, his observation can be misleading when applied today. Nevertheless, the integers do play a fundamental role in mathematics. And, of course, they represent most people’s first introduction to mathematics.

As I indicated in the previous chapter, our ability to handle numbers—to count collections and to do arithmetic—rests largely on three mental capacities: number sense, numerical ability, and algorithmic ability. How common are these abilities? To what degree do other species have the same or similar abilities? How and when did our ancestors acquire them, and what survival benefits did they confer?

In this chapter, we’ll take a look at the number sense. In the following chapter, we’ll move on to examine arithmetical ability.

Number sense holds a number of surprises. One is that, no matter how mathematically inept we think we are, every one of us has a built-in number sense and a rudimentary arithmetical ability. Another surprise is that babies exhibit these basic abilities when they’re just a few days old. Still another surprise is that many animals, from the pigeon to the chimpanzee, possess similar number sense and arithmetical ability.

Unlike our ability to perform mathematical reasoning, our basic number sense seems quite independent of language. Thus the discussion of number in this chapter and the next is not a part of my overall argument about language and mathematics, which will come later. Yet there is a connection. As I shall describe in the pages that follow, we use our facility with language to extend our innate number sense and make numbers perform useful work for us.




THE NUMBER SENSE

So you think you don’t have a head for figures? Okay, answer the following questions as fast as you can:

[image: 003]

As soon as you have done that, pick a number between 12 and 5; any one, the first one that comes into your head.

Done that?

You picked the number 7, didn’t you? How did I know? Because I knew you would follow your innate number sense. (If, despite my instructions, you did not pick the first number that came into your head, you  might not have chosen 7; but the chances are that, even then, 7 was your choice.) Why 7?

Here is the explanation offered by the cognitive psychologists. The first four questions were all subtractions. Although they were all very easy, answering them got your mind into “subtraction mode.” Then, when presented with the numbers 12 and 5, you subconsciously computed—or at least estimated—the distance between them, namely 12—5 = 7, making the number 7 salient in your mind. (If you are one of the rare people who, despite following my instructions, did not give 7 as your answer, the chances are very high that you chose a number close to 7—namely, 6 or 8.)

Notice that 7 is not roughly halfway between 5 and 12; if that were the principle subconsciously guiding your choice, you would have picked 8 or 9. The number 7 lies toward one end of the given range. Why did you not pick 10, which is placed at the other end of the range? After all, 10 is much more common in daily life than 7, given that 10 is the base for our method of arithmetic.

When you think about it, there are several rational choices. But when you are first presented with the challenge, 7 is the number that spontaneously pops into your mind, the distance between 5 and 12.

Quick, what is 8 times 7? It’s 54, right?

Or is it 64? Or 56, perhaps? If you are like most people, each of these answers seems “reasonable.” Why is it that, despite hours of drill in elementary school, most of us have so much trouble with our multiplication table? Especially when each of the numbers being multiplied is 6, 7, 8, or 9?

Okay, one more. Here’s a number comparison test. For each of the following pairs of numbers, say which is greater:

 



1 and 50 
5 and 4 
25 and 24

 



You may not have been aware of it, but if someone had been timing your response (say by asking you to press one of two buttons depending  on which of the pair was the greater), you would discover that it took you longer to answer the second question than the first, and longer still to answer the third. Why?

You might explain that you answered the first more quickly because “the two numbers are so far apart, it’s obvious that 50 is bigger than i.” But what’s that got to do with it? I didn’t ask you how far apart they were. I asked which was the greater.

How about the second and the third examples? Arithmetically, these are the same: each is a pair of successive numbers, with the greater written first. Indeed, if you simply ignore the first digits in the third example (which you may, since it’s the same digit in both numbers), the two examples are identical. And yet it has been shown on many occasions that everyone takes measurably longer to decide between 25 and 24 than between 5 and 4. A difference of 1 is somehow more easily recognized for pairs of small numbers than for larger ones.

The fact is, you have an innate sense of number. You have had it since you were a few days old, and quite possibly you were born with it. And we humans share this number sense with chimpanzees, rats, lions, and pigeons.

I am not saying you are “good at sums” or that you “know your multiplication table.” But regardless of your prowess in the mathematics class, your mind does have a sense for number. Numbers—at least small ones—have meaning for you, just as do words and music, and that meaning is not something you had to work at to learn. You were either born with it or born with a natural ability to acquire it effortlessly and unavoidably at a very early age.

The term “number sense” was introduced by Tobias Dantzig in his 1954 book Number: The Language of Science. He wrote:
Man, even in the lower stages of development, possesses a faculty which, for want of a better name, I shall call number sense. This faculty permits him to recognize that something has changed in a small collection when,  without his direct knowledge, an object has been removed or added to a collection.





Stanislas Dehaene took the term “number sense” as the title of his recent book. It’s a good book. It contains most of what you will find in this chapter, and a great deal more. I recommend that you read it. It does, however, have one flaw: its subtitle, “How the Mind Creates Mathematics.” Not only does the kind of basic number sense that Dehaene focuses on have little to do with mathematics, but at no point does he even begin to tell us how the mind creates mathematics. Indeed, he barely scratches the surface of how the mind performs arithmetic, which is just one branch of mathematics, and an atypical one at that. This book, in contrast, is very definitely about all of mathematics. My intention is to understand how the human mind acquired the ability to perform mathematical reasoning.

Since mathematical thinking seems to be unique to humans, we may gain some insight into the key factors that led to it by comparing our mathematical ability with that of other species. In particular, to demonstrate that mathematical ability is nothing other than linguistic ability used in a slightly different way, it should be helpful to see what mathematical abilities are possessed by creatures that do not have language.

There is in fact a fairly extensive literature on laboratory studies of number sense in animals. (Dehaene lists some good sources in his book.) One of the first to realize that animals have a sense of number was the German psychologist Otto Koehler. During the 1940s and 1950s, Koehler suggested that two important prerequisites for arithmetic were the ability to compare the sizes of two collections presented simultaneously and the ability to remember numbers of objects presented successively in time. Both of these abilities form part of what I am here calling number sense. Koehler showed that birds have both abilities.

In one case, a raven called Jakob was repeatedly presented with two boxes, one of which contained food. The lids of the boxes had different  numbers of spots arranged randomly. A card placed alongside the two boxes bore the same number of spots—although arranged differently—as the lid of the box with the food. Through many repetitions, the raven learned that to obtain the food, it had to open the box whose lid bore the same number of spots as the card. In this way, it was eventually able to distinguish two, three, four, five, and six spots.

In another experiment, Koehler trained jackdaws to open the lids of a row of boxes to obtain food until they had taken a given number of pieces, say four or five. Each box contained one, two, or no pieces of food, distributed randomly on each repetition, so there was no possibility of the birds basing their actions on a geographic feature such as the length of the row of boxes they opened. Rather, they had to keep an inner tally of how many pieces they had taken; in our terms, they had to count.

Another illustration of birds’ numerical abilities comes from Irene Pepperberg, who trained her African Gray parrot Alex to say how many objects it saw on a tray, a task that required that the bird not only distinguish numerosities but also associate an appropriate vocal response with each number.

Many birds also exhibit a sense of numerosity in the number of times they repeat a particular note in their song. Members of the same species born and reared in different regions acquire a local “dialect,” with the number of repetitions of a particular note varying from one location to another. Thus, although many aspects of a bird’s characteristic song may be genetically determined, the number of repetitions of a particular note seems to be acquired by a young bird imitating the older birds around it, most likely its parents. For example, a canary raised in one area may repeat a particular note six times, whereas one raised elsewhere will repeat the same note seven times. Since the number of repetitions is constant for each bird, this means that the bird can “recognize” the number of repetitions in its song.

One obvious survival advantage to being able to compare numbers of objects in collections is that it helps a group of animals to know whether  to defend their territory against an attack or to retreat. If the defenders outnumber the attackers, it might make sense to stay and fight; if there are more attackers, the wisest strategy might be to make a bolt for it. This suggestion was put to the test a few years ago by Karen McComb and her colleagues. They played tape recordings of roaring lions to small groups of female lions in the Serengeti National Park in Tanzania. When the number of different roars exceeded the number of lions in the group, the females retreated; but when there were more females, they stood their ground and prepared to attack the intruders. They seemed able to compare number across two different senses: the number of roars they heard versus the number of lionesses they observed, a task that seems to require a fairly abstract number sense.




THE HORSE THAT DIDN’T KNOW 2 + 2 = 4 AND THE RAT THAT DID

Claims that various animals have been shown to possess a number sense are sometimes dismissed by the experts. Much of the blame for this reaction can be laid at the feet of a horse living in Germany at the start of the twentieth century. After more than ten years’ effort, a certain Wilhelm von Osten claimed to have taught arithmetic to his horse, Hans. Both horse and master became celebrities, and the German newspapers carried stories about “Clever Hans.”

A typical demonstration would see von Osten and his horse surrounded by an eager audience. “Ask him what is three plus five,” someone would call out. Von Osten would write the sum on chalkboard and show it to the horse, who would then carefully tap his hoof on the ground exactly eight times. Other times, von Osten would show Hans two piles of objects, say four in one pile and five in the other. Hans would tap his hoof nine times.

Even more impressive, Hans could apparently add fractions. If von  Osten wrote the two fractions ½ and ⅓ on the board, Hans would tap his hoof five times, then pause, then tap six times, to give the correct answer ⅚.

Of course, there were suspicions of a trick. In 1904 a committee of experts gathered together to investigate the matter, among them the eminent German psychologist Carl Stumpf. After carefully observing a performance, the committee concluded that it was genuine—Hans really could do arithmetic.

One person, however, was not convinced by the committee’s findings. Stumpf’s student Oskar Pfungst insisted on further testing. This time, Pfungst wrote the questions onto the board himself, and he did so in such a way that von Osten could not see what was written. This enabled him to do something Stumpf had not. On some occasions, Pfungst wrote down the question that had been given to him. Other times, he changed it. Whenever Pfungst wrote down the question as given to him, Hans got it right. But when he changed the question, Hans gave the wrong answer —in fact, he answered the question von Osten thought had been given to the horse.

The conclusion was inescapable: von Osten had been doing the arithmetic. Through some subtle cue, perhaps a raised eyebrow or a slight shrug, he had been instructing Hans when to stop tapping his hoof. As Pfungst acknowledged, von Osten could well have been oblivious to this. Having worked so hard to train him, von Osten very much wanted his four-legged protégé to succeed. Doubtless, he became very tense as Hans’s tapping got to the crucial number, and presumably Hans was able to detect some external manifestation of that tension. Thus, while Pfungst’s investigation showed that Hans’s performance did not require unusual arithmetical powers, it did show that humans could communicate with horses by means of the subtlest actions.

The case of Clever Hans showed the importance of proper design for any psychological experiment, to eliminate any possibility of subtle communication of clues. Unfortunately, the affair made subsequent claims of arithmetical abilities in animals extremely difficult to get taken seriously.  And yet nothing Pfungst did showed that animals could not have number sense. He simply showed that, in Hans’s case, it was von Osten who had performed the calculations, not the horse.

In fact, a number of carefully conducted studies have shown that some animals can indeed perform some kind of arithmetic. One convincing series of demonstrations was carried out in the 1950s and 1960s by the American animal psychologists Francis Mechner and Laurence Guevrekian.

The idea was to deprive a rat of food for a short period and then put it into a closed box with two levers, A and B. Lever B was connected to a mechanism that delivered a small amount of food. But to activate lever B, the rat first had to depress lever A a fixed number (n) of times. If the rat depressed lever A fewer than n times and then pressed lever B, it received a mild electric shock and no food. Thus, to eat, the rat had to learn to press lever A n times and then press lever B.

At first, by trial and error, the rats discovered that, in order to get food, they had to press lever A a certain number of times and then press B. With repeated trials, they gradually learned to estimate the number of times they had to press lever A. If the apparatus was set up so that four presses of lever A were required to activate lever B, then, over time, the rats learned to press lever A about four times before pressing lever B.

The rats never learned to press lever A exactly four times on every occasion. In fact, they tended to overestimate, pressing it four, five, even six times. Given that they received an unpleasant shock if they pressed lever A fewer than four times, this “play safe” strategy makes sense. In any event, it did seem that the rats were able to estimate four presses. Likewise, in an apparatus set up so that lever A had to be pressed eight times, they learned to press it about eight times. In fact, they could learn to press lever A as many as sixteen times.

To avoid any possibility that the rats were judging time rather than the number of presses, the experimenters subsequently varied the degree of food deprivation. The more hungry the rats were, the more rapidly  they pressed the lever. Nevertheless, rats trained to press level A four times continued to do so, and there was a similar effect with the rats trained to another number. Time was not the factor; they were estimating the number.

Notice that I have not said that the rats counted. What the experiment showed is that, through training, rats are able to adjust their behavior to press a lever about a certain number of times. They may have been counting, albeit badly. But there is no evidence for this. I think it’s far more probable that they were simply judging or estimating the number of presses, and moreover doing so as well as we ourselves could if we did not count.

Other experiments performed on rats—some of which are described by Dehaene—point to the same conclusion: rats have a sense of number.

What evolutionary advantage led to selection for a number sense in rats? One possibility is the need to remember navigational information, such as its hole was the fourth one along after the third tree. It’s also useful in keeping track of other animals in the vicinity, be they friends or predators.

As it happens, an experiment was performed that could be said to have addressed this very issue, but as things turned out, the result was not at all what was expected.
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