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Preface


Modern science is a team sport. Who’s in the team is partly a matter of luck, and I regard myself as being particularly lucky in the teams I’ve played with over the years. Not only couldn’t I have written this book without chance meetings over the years with many people, I wouldn’t even have thought about it.


One such meeting, at a conference in Ravello, was with Carlo Semenza, psychologist, psychiatrist and neuroscientist from Padua University in Italy. This led to a long collaboration, initially on disorders of language, but latterly on mathematical cognition and their disorders.


I probably wouldn’t have started thinking seriously about numerical abilities without the initial prompt of my then-student Lisa Cipolotti. Lisa was one of Carlo’s brilliant students, who asked to come to London to do a PhD on aphasia, but when she actually arrived she decided that rather than aphasia – which was very well studied – she wanted to work on a disorder very few people were researching. So we agreed to study the neuropsychology of mathematics, which at that time very few people anywhere were working on. Together with Carlo and his Austrian student Margarete Hittmair, we formed a team with the pioneering neuropsychologist Elizabeth Warrington at the National Hospital for Neurology in London, to investigate acquired disorders of mathematics, supported by a grant from the European Community. This also created a longer-term link between Padua and London that continues to this day.


Studying neurological patients revealed, first, that the key brain region for numerical processes was in a small part of the parietal lobe, and the adult brain network appeared to be independent of other cognitive processes (this was not a new discovery, but recapitulated in more detailed studies going back to the 1920s), but more interestingly it seemed to be organized into distinct components, each of which could, in some cases, be separately affected by brain damage. This was the adult brain, but I started to think that about how the brain develops these components and why these particular regions. Do we inherit a brain organized to extract numerical information in the environment? And if so, how deep into evolutionary history do these roots go? Can this inheritance go wrong, as in colour blindness?


In 1989, when Lisa first came to work with me, studies of numerical cognition were confined to separate silos with very high walls: neuropsychology of mathematical disorders, adult cognitive psychology, child development, animal studies, mathematical education, philosophy of mathematics and the beginnings of brain imaging. Practitioners in these silos rarely talked to each other, but I and a few others thought that the whole field would be advanced if they did. Then came another slice of luck. My friend Tim Shallice, at the International School of Advanced Studies in Trieste, found some money to fund a week-long workshop in Trieste in 1994, with which we were able for the first time to bring together many of the world’s top scientists, and some of the world’s top students, and give them the opportunity to talk to each other. As an almost immediate result, I managed to organize and find funding for a European network of six labs, Neuromath, and then a second network of eight labs, Numbra, to collaboratively pursue this interdisciplinary approach. Through the Trieste meeting and the networks, I have been able to meet, discuss and collaborate with an astounding number of inspiring scientists. Stanislas Dehaene was at the Trieste meeting and has been one of the most important shapers of this whole field, and his contribution has been fundamental to my own thinking. No high-class symposium would be complete without a philosopher, and we were lucky that my colleague at UCL, Marcus Giaquinto, was an outstanding philosopher of mathematics, and was able to keep us, me in particular, on the philosophically straight and narrow.


One student who was in Trieste at the time but wasn’t officially at the Trieste meeting was Marco Zorzi. He spent some time in my lab doing ground-breaking work on using neural networks to model reading, and later to model basic arithmetic processes. Currently, Professor Zorzi in Padua runs one of the most innovative labs in the world for mathematical cognition.


Randy Gallistel and Rochel Gelman also were at the meeting, where we became friends, and I have since spent many happy hours in various parts of the world, often starting at breakfast, with Rochel and Randy, arguing about the nature of mathematical abilities in humans and other animals. Their approach to these issues, as you will see, has influenced me profoundly.


Randy, Giorgio Vallortigara, a brilliant animal experimenter at the University of Trento in Italy, and I organized a wonderful four-day meeting at the Royal Society in 2017 on ‘The Origins of Numerical Abilities’ that attracted an amazing group of scientists approaching the subject from many different perspectives, from archaeology to insects. Four days devoted to number – actually five, because the previous day Ophelia Deroy organized an international symposium on the philosophy of mathematics at the Institute of Philosophy in London. Five days on number: I was in heaven. In one sense, this book is an attempt to make the contents of these meetings available to the general reader.


Christian Agrillo from Padua, at the time a student, first got me interested in the numerical abilities of fish. I am currently collaborating with Caroline Brennan and Giorgio on a project about the genetics on numerical abilities of zebrafish. Tetsuro Matsuzawa, who I first met at a Neuromath network summer school, invited me to the Primate Research Institute of Kyoto University to observe his inspiring work with chimpanzees.


Fundamental to my whole approach has been my work with Bob Reeve on the early development of numerical abilities in mainstream Australia and with indigenous groups there.


My work has been supported over the years by many organizations and foundations. The Leverhulme Trust has supported our work with Aboriginal children, and our current fish study with Brennan and Vallortigara. The Australian Research Council has supported Reeve and me on our longitudinal studies of mathematical development. The Wellcome Trust has supported many of our studies with children, adults and neurological patients.


I must say a word of thanks to my literary agent, Peter Tallack of the Science Factory. He managed to get the project off the ground after years of my trying unsuccessfully to do it.


I had been interested in the foundations of mathematics since reading Bertrand Russell in my teens, and in particular Gödel’s theorem, when I met, by luck, Diana Laurillard, a student of maths and philosophy, by gatecrashing her bonfire night party in 1967. Despite the brief interruption of a police raid, I learned that she was also interested in Gödel’s theorem. The other piece of luck is that Diana remained interested in my work and in me until the present day. We now work together on how to turn evidence from the science into practical applications in education. She also patiently listens to, and corrects, my ideas. So some of the errors in this book have escaped even her close scrutiny.









Chapter 1


The Language of
the Universe


Galileo (1564–1642) said that the universe is written in mathematics and we cannot read it unless we become familiar with the characters in which it is written. Eight hundred years earlier, the great Persian mathematician Al-Khwarizmi (in Latin, Algorithmi) (c.780–c.850) wrote ‘God set all things in numbers.’ In 1960, physics Nobel Laureate Eugene Wigner (1902–1995) wrote a famous article entitled ‘The Unreasonable Effectiveness of Mathematics in the Natural Sciences’. Mathematics, he said, had an uncanny ability to describe and predict phenomena in the physical world. The suggestion is that maths isn’t just a tool to describe the world, but rather there is something about it that is profoundly mathematical. This is an idea that goes back even further than Al-Khwarizmi to Pythagoras (c.570–495 BCE), who allegedly said that all things are made of numbers.


In one sense, this is obvious nonsense, but perhaps there is a deeper truth here. Pythagoras may have been the first to observe the numerical structure of musical pitch, and we still use terms such as harmonic mean and harmonic progression. He also documented the relationship between numbers as shapes, and again we still use his terms: squares, cubes, triangular numbers and pyramidal numbers. Once we get into the mind of the Pythagoreans, it is possible to think of the world as being built, in a rather atomic or molecular way, out of these numerically defined objects.


Finding mathematical structures in the world is the work of people we would now call scientists, and it is them that Galileo, Al-Khwarizmi and Pythagoras were addressing. It has also been assumed that scientists in the rest of the universe, provided they were intelligent enough, would be able to read the language of the universe. If they wanted to show us that they were indeed intelligent, they would broadcast something numerical. The challenge of communicating with aliens by radio was taken up enthusiastically by Nikola Tesla (1856–1943), who claimed to have intercepted a signal from ‘another world, unknown and remote’. It began with counting: ‘One . . . two . . . three . . .’.1 The American scientist Carl Sagan (1934–1996), in his science fiction novel Contact, had his extra-terrestrials sending a sequence of prime numbers.


In 1960, the Dutch mathematician Hans Freudenthal (1905–1990) published his Lincos code (Lingua Cosmica) that encoded not just numbers, by the number of pulses, but relations between them, such as equals to, greater than, and so on, to prove to the recipient intelligences that we were an equally advanced civilization.1 In the movie version of Contact (1997), SETI (search for extra-terrestrial life) astronomers receive a radio transmission from space that has a Lincos-like dictionary embedded in the message.


But do you really have to be an advanced civilization, or even very smart, to have some understanding of the language of the universe? Can the relatively dumb fellow species of our own world also read the language of the universe, at least the type of characters proposed in Lincos, the whole or natural numbers 0, 1, 2, 3, and the relations among them?


In the physical world, whole numbers are fundamental: the water molecule has three atoms, two hydrogen and one oxygen; nitric oxide NO (an important cardiovascular signalling molecule) has two atoms, nitrogen and oxygen; nitrous oxide N2O is an anaesthetic and has three atoms, two nitrogen and one oxygen; nitrogen dioxide NO2 is a nasty pollutant, and has one nitrogen and two oxygen. We have four limbs, insects have six, spiders and octopi have eight. We have two eyes, but some spiders have eight.


These are real properties of the real world. Things would be very different if these numbers changed – for example, if we had three arms and three eyes. The mathematical structure of the world is important to us as scientists, but it could be important to other creatures too. Consider the following numbers in the real world.


I can see three ripe fruit on that tree and five on this tree. I can hear five invaders to my territory, but there are only three of us. There are three little fish like me over there, and five here. I can hear five croaks to a phrase over there and six near the lilypad. I passed three big trees between home and the food source.


All these numbers have an evolutionary significance, and if a creature can recognize them, this could afford an adaptive advantage. Foragers benefit from selecting the tree with five ripe fruit over the one with three, and the female frog benefits by mating with the male able to produce six croaks in a breath over the one that could only manage five (see Chapter 8). Lions are more likely to survive and reproduce if they only attack invaders when they outnumber them (see Chapter 5).


These ideas are the starting point for this book. Can our unique mathematical abilities have an evolutionary basis? How is it possible to tell if creatures without language can respond to the numerical structures of the universe?


In fact, there has been a hundred years of research into animal abilities to read the mathematical structure of their worlds. Now that doesn’t mean that their abilities, if they exist, are evolutionary antecedents of our own. That would require a genetic link between us and them. There is an example that could serve as a clue. We know that there are genes for timing that have been conserved for more than 600 million years, from before the invertebrate line (insects, spiders and so on) separated from the vertebrate line (fish, reptiles and mammals). They are helpfully labeled CLOCK, PER (for period) and TIM (for regulating the time of the daily circadian rhythm). We can find these genes in fruit flies (Drosophila melanogaster) and the descendants of these genes from a common ancestor in humans. Timing is a mathematical property of the world because duration can be represented by a number. Thus we may find genes for numerical abilities to go with the timing genes.


What is number? What is counting?


Before delving any deeper I had better come clean about what I mean by numbers and by counting. All readers of this book think they know what a ‘number’ is. They may think of the words one, two, three, or of symbols – 1, 2, 3 – or both. Because we have been brought up in a numerate culture and have learned to count with counting words, we may habitually think of counting as necessarily reciting ‘One, two, three . . .’. Scientists have to be more specific.


Of course, there are many kinds of number: positive whole numbers, sometimes called natural numbers; integers which include negative numbers; fractions, reals (decimals), imaginary (i, the square root of –1) and even the late, great John Conway’s surreal numbers. Among the whole numbers are ordinals for ordered sequences, like pages in a book or house numbers in a street, which do not directly reference magnitude. So my house is number 44, but it is exactly the same size as my neighbours’ in 42 and 46. This page is the same size as the next. There are also numerical labels for TV channels and phone numbers. These refer neither to the magnitude nor order. And it doesn’t make sense to ask whether my phone number is larger or smaller than yours, nor to ask if it comes before or after yours. The type of number that does indicate magnitude is a cardinal number. These denote the size of a set.2


The idea of a set that underlies the idea of cardinal number needs some further explaining. Think of the set of three things – for example, the set of three coins in the fountain. Sets and their sizes do not depend on what the objects are: they can be three coins (physical objects), three knocks on the door (sounds) or three wishes (thoughts). The important thing is that these sets have nothing in common apart from their threeness. This leads to an ancient philosophical difficulty I will return to in the final chapter.


For the rest of the book when I talk about numbers I will mean cardinal numbers unless I specify otherwise. However, I want to introduce a new term, numerosity, to refer to set size rather than the logical and mathematical term cardinality. This is because we are talking about what goes on inside the brain of an animal, not about logic or mathematics.


I follow the eminent scholar Randy Gallistel in his proposal for assessing whether an animal, or a human, is actually capable of representing numerosity in their brains.3 He sets out two criteria:




(a) Do they represent numerosity as a distinct property of a set, separable from the properties of the items that compose the set?





This is exactly in line with what I have described.


It is not enough to represent numerosity; you also have to be able to do something with it. You have to be able to calculate, to do what Gallistel calls ‘combinatorial operations’ of a certain type.




(b) Do they perform with the representatives of numerosity combinatorial operations isomorphic [equivalent] to the arithmetic operations that define the number system (=, <, >, +, –, ×, ÷)?





Thus, we can ask whether the animal can in some way recognize that two sets have the same numerosity (=), and that set A is larger than set B (A > B), and that the sum of sets A and B is equal to set C (A + B = C). Division and multiplication you might think to be much more difficult, but for an animal to calculate how frequently food or a predator occurs this is a matter of division (e.g. 3 appearances per day = 24 hours/8-hour intervals). When it comes to navigation – ‘dead reckoning’ in sailing vocabulary – this involves quite complicated calculations.


Now these are fairly tough criteria. But I would elaborate (a) to ask to what extent can an animal abstract from a particular set to a novel set? In other words, can they assess whether sets with different types of object have, for example, the same or different sizes? For instance, can the animal notice that a set of sounds has the same numerosity as a set of food items? Other species, indeed some humans, may be able to apply numerosities only to some sorts of objects, perhaps those vital to one’s life but not to other things. They may not be able to tell whether a set of one type of object, for example petals on a flower, has the same numerosity as other types of objects, such as landmarks, as I will try to explain a bit later.


Gallistel’s two criteria reflect current philosophical thinking about the foundations of mathematics.2 They also reflect how arithmetic is typically taught around the world: 1–1 enumeration of sets of objects, ensuring that enumeration does not depend on the nature of the objects (abstraction), and then working with the arithmetical consequences of operations on sets – comparing, combining and adding, splitting sets, subtraction, and so on.


WHAT IS COUNTING?


Most readers of this book, if they think about counting at all, will think of it as an activity that is intentional, purposeful, conscious and usually accompanied by the use of counting words. And an intention and purpose of this activity is establishing the numerosity of a set. This characterization rules out all non-human counting, and as we will see in the next chapter, some human counting. No other creatures have counting words – apart from the parrot Alex in Chapter 6 on birds – and ascribing intentions, purposes or consciousness to non-humans is, to say the least, controversial. We may be willing to ascribe them to the great apes or to pet dogs, but to fish or insects? No way.


Suppose you have to count the number of dolls on the table, and do this by counting out loud one, two, three dolls. This enables you to establish the size of the set of dolls on the table: three. Rochel Gelman and Randy Gallistel in their ground-breaking book, The Child’s Understanding of Number (1978), listed the ‘counting principles’ that characterize human counting.4 The ‘cardinal principle’ states that the counting process yields the cardinality of the set with the last word of the count, provided of course that all the objects are counted and each object is counted once and only once (1–1 enumeration). That is, there is a strict one-to-one correspondence between the counting words and the objects in the set. They also note that to have a sense of set size, it doesn’t matter which object you start counting with; the size will always be the same. So for the set of three objects A, B, C, it doesn’t matter whether you start with A, B or C, you will still end up with the numerosity of three. They call this the ‘order-irrelevance principle’. Finally, they note that sets can be sets of anything, three dolls, three chimes, or three wishes. This they call the ‘abstraction principle’. These principles are required for humans to be competent counters using counting words. They bring together the cultural tools – the counting words – with the concept of set size. I’ll say more about how children learn to count with counting words in the next chapter.


Now consider one way in which we count the members of a set without necessarily using counting words, by using a very simple and cheap device called the tally-counter (see Figure 1). The button on the top is pressed once for each object counted – the one-to-one correspondence principle. The total of the count is given in the readout from the last button press – the cardinal principle. Anything that is countable can be counted (the abstraction principle) and the set can be counted starting with any member (the order-irrelevance principle).


To use the tally-counter a person also has to count. That’s the hard part. Suppose you are a shepherd counting sheep but not goats – you have to be able to decide which is which. Then suppose you have to decide whether you have more sheep than goats – you will have to count the goats with a separate counter and then inspect the readout to see which number is larger. The tally-counter has a memory – a readout – that indicates the number of objects counted. Of course, you could use the same tally-counter twice, once for sheep and once for goats, but then you would need a memory for the sheep, set the counter to zero and start again for goats. In both cases, you also need a mechanism for carrying out the comparison. I’ll show how this might all work in a moment.
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Figure 1. Tally-counter


The English philosopher John Locke (1632–1704) made an early attempt to characterize number and counting in a way that anticipates our tally-counter in An essay concerning human understanding (1690). He said the simplest idea is one; one can be repeated, ‘and by adding repetitions together’ – like repeating the button pushes – we get the complex idea of larger numbers. ‘Thus, by adding one to one, we have the complex idea of a couple,’ etc.5


This is an example of recursion, a procedure or function, that calls itself to do it again. Locke is proposing a particular form of recursion called ‘tail recursion’, where a procedure generates the last item (the tail) by adding one and then calls itself to carry out the procedure again, adding another one.


As to counting words, Locke says we should give each complex idea ‘a name or sign, whereby to know it from those before and after’. The tally-counter can be thought of as an implementation of Locke’s proposal. Each button press is a repetition of one, and the sum of button presses is given by a ‘sign’, in this case a readout in digital form.


The other issue is the degree of abstraction involved in numbers and counting. Big Ben chimes five times at five o’clock and we have five fingers on each hand, but chimes and fingers have no other properties in common. So how can brains, even tiny ones, deploy these abstract ideas, and how can we tell that they do so? We can ask humans to count out loud or say whether the number of fingers and chimes is the same, but we can’t ask fish. To what extent can other creatures generalize the numerosity in one modality – sounds, for example – to numerosities in other modalities – visible objects, actions and so on? This will be a matter for a selector rather than the counter. Although I have given this component a special name, it is really based on widespread ideas in cognitive science and neuroscience. It is a way of focusing on or attending to an object or an event. The selecting process does not have to be conscious or even intentional, which are controversial concepts when applied to non-human animals. It simply picks out one or more objects from the environment for further action.6 We can use a single tally-counter to count the chimes and the fingers, as long as it can access two memory locations.


A NEURAL COUNTING MECHANISM


Of course, we don’t literally have tally-counters in our heads, but do we have some kind of neural equivalent? The tally-counter is a linear accumulator with a memory. That is, the contents of the accumulator is strictly proportional to the number of objects.


That our brains possess such a mechanism is an old idea that actually comes from work with animals. The same accumulator mechanism can also measure duration which is needed when animals need to calculate the rate or frequency of events.7


The accumulator mechanism needs four components:




•An internal generator, like an oscillator or pacemaker, of which there are many in the brain, which sends pulses at regular intervals to an accumulator.


•A normalization process that treats all objects or events as equivalent.


•A gate to control the transmission of the pulses between generator and the accumulator. When a selected object or event is to be counted, the gate is opened to allow a fixed number of pulses into the accumulator.


•An accumulator that temporarily stores the pulses.





As well as these components, the accumulator counting system needs a working memory to store the results of the current count, and a reference memory for future use. To go back to our shepherd, the number of sheep is transferred to the reference memory, and the current count of goats to the working memory. Figure 2 is one way of representing the accumulator.


There is, as I noted, a further component that is neurally much more expensive: the selector. This chooses the objects to be counted, like sorting sheep from goats. There also needs to be a mechanism for carrying out ‘combinatorial operations’ – for example, a combinatorial operator for deciding whether the set of sheep is larger than the set of goats (isomorphic with <, > or =), or the total number of sheep plus goats (addition), or exactly how many more or fewer there are of sheep than goats (subtraction).
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Figure 2. This is the earliest version of this model by the animal psychologists Warren Meck and Russell Church.7 They used the term ‘pacemaker’ and the ‘gate’ for normalized objects or events by allowing a fixed number of pulses for each object or event to go through to the accumulator. Here I show each object as two pulses. To carry out combinatorial operations that are equivalent to arithmetic there will need to be a ‘working memory’ to store the state of the accumulator temporarily plus a ‘reference memory’ so that the operations, including comparison, can be carried out (<, >, =, +, –, ÷, x).


Meck and Church proposed that the same accumulator mechanism could also be used in a continuous mode to measure duration. The gate is held open for the duration of the event so that the content of the accumulator is linearly proportional to the duration. Thus both numerosities and events are coded in the same way as contents of the accumulator, and continuous quantities such as duration are coded in the same way as a level in the accumulator. Because numerosity and duration are coded in a ‘common currency’, the accumulator level, it is possible to compute parameters important to the organism such as the rate or the probability of an event occurring (duration/number).


This is a very simple device, like the tally-counter, that needs few neurons to implement, as we will see when I come to the counting abilities of insects and spiders, which have very tiny brains (fewer than 1 million neurons compared with our 85+ billion). The expensive element in the system is the selector, as in the sheep and goats example. The selector also has to decide whether it is something other than a sheep or goat and whether it is actually a single object (e.g. not a lamb suckling its mother’s teat).


The linear accumulator has several attractive features. It meets Gelman and Gallistel’s three counting principles: abstraction – anything the selector can identify can be counted; order-irrelevance – it doesn’t matter which object is counted first, second and so on; and cardinality – the final level of the accumulator is the total of the count.


Accumulators also meet Gallistel’s second criterion of the representation of number: that operations on accumulators or on memories of their output are isomorphic with arithmetical operations: comparing levels of two or more accumulators or the reference and working memories (=, <, >); combining is the linear sum of the accumulators (+); and subtracting is the linear result of taking one accumulator from another (–). Division and multiplication come into play when computing rates or probabilities, which we will see that animals can do.


An alternative view


Although many scientists subscribe to a version of the accumulator theory, currently the most popular approach in the scientific literature on basic numerical abilities in humans and other animals postulates two separate systems, one for small numerosities (≤4) and one for larger numerosities (>4).10 In the two-system account, the first system is premissed on a perceptual system designed to track objects and briefly remember them, called the ‘object tracking system’ (OTS). The limit of four items corresponds to the number of objects one can attend to at any one time and the corresponding working memory of them, and the limit of the numerosity of objects that can be accurately and speedily recognized without counting. It is assumed that this mechanism operates with ‘parallel individuation’ of the objects in this small set; that is, it does not serially scan the array of objects and then add them to a temporary store, but rather takes them all in at once. This is sometimes called subitizing (from the Latin subitus, meaning ‘sudden’), and implies that it is as easy and as fast to recognize the numerosities of all sets from one to four.11


The second system for numerosities greater than four is called the ‘analogue magnitude system’ or the ‘approximate number system’ (ANS). The characteristics of this system are, first, that the mental representation of a numerosity is approximate, so that, for example, the representation of five objects will to a lesser extent also include the representations of fourness and sixness, and to an even lesser extent, threeness and sevenness. Second, the representations are logarithms of the numerosities.


This alternative approach has been challenged in several ways. The assumption that there are two separate systems has frequently been disputed. For example, the response time to name the number of object in the subitizing range (≤4) actually depends on the number. It’s not just ‘sudden’ recognition of numerosities one to four. Rather, there is an increase in the time to recognize the numerosities of randomly arranged dots briefly exposed: an increase of 30 msecs from one to two, 80 msecs from two to three, 200 msecs from three to four, and thereafter an increase of 300+ msecs per item.11 One implication is that the reaction time can be fitted with a single curve consistent with a single mechanism.12 In fact, there is evidence from monkeys (Chapter 4) and humans of a continuity of numerosities from the small number range right up to thirty.13


The other argument against a separate subitizing mechanism is that no one has found distinctive activations in the brain, and we tried really hard to find them in the parietal lobes.14 That was twenty years ago, but a recent study with much more precise high-resolution scanning and better analysis tools found that activations for all numerosities from one to nine were located interspersed in the same brain regions, not just the parietal lobe but also visual (occipital) and frontal cortices.15 This doesn’t mean that there aren’t neural differences, only that they have yet to be identified, which may be very difficult given that our most powerful imaging tools may still be too crude to pick out the differences.


The other important claim for the ANS is that the internal representations are logarithms of the numerosities. Elizabeth Brannon and Dustin Merritt point out that these two models ‘predict the same behavioral signatures’ on tasks involving ordering numerosities, for example in picking the larger or the smaller because the ‘noisiness’ (variability) of the representations is similar. ‘To adequately differentiate the logarithmic and linear with scalar variance hypotheses, it is necessary to use a task that required subjects to base their behavior on the difference between two points on a continuum,’ they argue.


Brannon and her colleagues used this principle in a study with pigeons. Their finding is consistent with a linear internal representation.17 Slava Karolis, Teresa Iuculano and I, in a study of humans, have used the differences between numbers on a scale to 100 and also found evidence in favour of a linear internal scale.18


Of course, the other problem with logs of numbers is that it is hard to do simple linear addition and subtraction without an antilog table since log A + log B = log AB. As we will see in later chapters, there is clear evidence that many animals can add and subtract. Do animals – including us – have an antilog table in our brains?


Now it is true that both adults and especially children look as though they have a logarithmic mental number line because large numbers are underestimated and therefore compressed together and small numbers are overestimated with the result that they are more spread out.19 However, this compression does not mean that the mental scale is logarithmic. Indeed, it has been known for more than a hundred years that our judgements have a ‘central tendency’ to overestimate small values and underestimate large ones for all kinds of things without having a logarithmic mental representation of the scale.20


What about really large numerosities when there isn’t enough time to count all the objects? A ground-breaking study of subitizing by George Mandler and Billie Jo Shebo implied that beyond about ten objects a completely different system is used.11 Subsequent researchers have suggested that for these large visual arrays, we use a method of estimation based on area and density. That is, if the objects, such as dots, cover a large area or are densely arrayed, then the observer – human or other animal – does something like multiply area by density to get the estimate of numerosity. This seems to me entirely plausible. The estimate may then be mapped on to an internal representation, such as accumulator height or location on an internal number line, to get ‘about 30’ or ‘about 100’.


Methodologies for study of other species


There are two main methods for testing whether a creature, human or not, can represent the number of objects in a set. The first is ‘doing what comes naturally’. This can be explored in the lab, and it can be observed in the wild. For example, one can offer the creature two bits of food and three bits of food and see if it selects the larger. This method is sometimes called ‘going for more’, which is what we assume the creature will do both in the wild and in controlled conditions in the lab. The second tests whether the creature can learn to select on the basis of numerosity even if it doesn’t come naturally – for example, learning to pick the display with more dots to get a reward.


I’ll now briefly outline some of the basic principles for applying these methods.


*


The Clever Hans problem. Let me start with the famous example of an animal which, despite appearances, did not count: the horse Clever Hans. He flourished at the turn of the century and was able to produce answers to arithmetical problems by tapping his foreleg. Some of these problems would be too difficult for many high school graduates. He was able to add fractions such as ⅖ and ½, and have the answer by tapping out the numerator, 9, and the denominator, 10, separately. He could find factors, for example, of 28, and tapped out correctly 1, 2, 4, 7, 14 and 28. He could give square roots and cube roots. Extraordinary. Obviously, people thought fraud must be involved; but it wasn’t. He was tested by a panel of psychologists and animal trainers, but none could find evidence of fraud. To cut a long and very interesting story short, Hans was indeed clever, but not at arithmetic. He was very sensitive to cues given off by the tester, not only by his trainer but even by members of the panel brought in to investigate. Hans was cued to stop tapping by the movement of the tester’s head, eyebrows, or the dilation of his nostrils as Hans approached the correct number. Oskar Pfungst, who finally discovered the cueing, found himself unable to stop providing the cues when he tested Hans. Subsequent research has tried to avoid this problem by keeping the experimenter concealed from the animal. (For a nice account of this issue, see a report from animal behaviour expert Hank Davis21).


The first question in many animal experiments is: does the animal respond to (or notice) difference in numerosity, taking everything else into account? In nature, changing the number of objects changes lots of other non-numerical features. ‘Everything else’ will include the total amount of stuff, such as the amount of blackness if it is black dots, or the amount of fishness if it’s fish; but it also includes sizes of black dots and how densely they are arranged.


Here’s the problem: if you want to know whether the observer notices the change from one black dot to two black dots (and the dots are the same size), then there will be twice as much blackness for two black dots. If you then try to control for the amount of blackness by making the two black dots half the area of the single dot, the observer, human or not, may be noticing the difference in the size of the dots, or the total length of the edges of the dots. Unfortunately, too many researchers think that controlling for the amount of stuff does the job. It doesn’t. There are various ways round this. One way is to randomly change size, area and density from trial to trial. This works if the sequence is quite long. Another approach is to change the objects completely, for example from dots to squares, but here you have to take into account that the viewer may be noticing both the change of object and the change of number, and this necessitates quite a long experiment to sort it out statistically.


The third way is to use a method called ‘match-to-sample’. In this you present the subject with a sample of, say, two dots and the task is to find another set of two dots, again trying to control for co-occurring changes.


The ground rules for this method with animals were laid down by the German ethologist Otto Koehler (1889–1974), who worked mostly with birds, but also with other species. He made the sample very different from the choices: see Figure 3 (overleaf).


The match-to-sample method has been used with many different species, though rarely with humans. Koehler also used another way of doing match-to-sample. He would allow the bird (or squirrel: he tested these also) to see or touch a sequence of boxes, some with a bait in them, and then match the number of baits collected to a box with same number of dots. That is, the animal counts n baits and is then rewarded by selecting another box with n dots on its lid. This is a fuller abstraction than matching of dots on two lids as in Figure 3.
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Figure 3. Match-to-sample in corvids. The bird is shown a sample (the larger square) and is rewarded by locating the lid with same number of objects, here dots of various sizes.22


One can go even further with this method, for example by matching the number of sounds to the number of objects, or the number of actions. In our study of Aboriginal children in Australia, the task was to match the number of sounds made by hitting two sticks together by putting out the same number of counters on a mat (see Chapter 2). This kind of cross-modal matching is a powerful test of representing the numerosity of sets, and doing so in a very abstract way.


I will describe variations on these two basic paradigms in subsequent chapters.


*


Weber’s Law and the Weber Fraction. This is a very important law that crops up innumerable times in the discussion of numerical processing. Weber’s Law is mainly relevant to whether an animal can notice the difference between two numerosities. The German physician Ernst Heinrich Weber (1795–1878) was perhaps the first to discover that our ability to accurately discriminate between two quantities – he started his research with the discrimination of weights – did not depend on the absolute difference between the two weights but on the proportional or ratio difference between them. That is, it is easier to pick the heavier of 1 vs 2 kilos than 10 vs 11 kilos. It is also easier to pick out candlelight in a dark room than in bright sunlight. And I wonder if years seem to go faster when you’re older because each additional year is a smaller ratio of all your years.


These observations led Weber to formulate his now eponymous law: ΔI/I is a constant, where I is the reference value of, in this case, weights, and ΔI is the difference in weight. So, for numbers, if you have to choose the larger of 3 and 4, the absolute difference is 1, but the incremental ratio difference is ¼, or 0.25. If you have to choose the larger of 13 and 14, the absolute difference is ⅟14 or 0.07, much smaller, and therefore a more difficult decision. The value of the constant – the just noticeable difference – will depend on many factors, including individual differences. Some individuals will have better discrimination than others, and this will turn out to be very important (see Chapter 2 on humans and Chapter 8 on fish). For example, if my personal Weber fraction for numerosity comparisons is about 0.20, I’ll have no trouble distinguishing 1 vs 4 (0.75) dots or 3 vs 4 (0.25) dots, but I will struggle with 13 vs 14 dots (0.07).


Now when making a discrimination, there will be other factors to take into account. The brain is noisy. This means that with two weights or two numerosities, A and B where objectively A>B, you will sometimes judge that B>A, especially if the ratio difference between A and B is close to your just noticeable difference.


In fact, noisiness increases with the magnitude – the higher the number, the more the curves are spread. This feature of brain activity is called ‘scalar variability’ – that is, the larger the number, the more likely the error and the larger the error is likely to be. Errors scale precisely in proportion to the magnitude of the number. To put it more technically, the coefficient of variation (standard deviation/N, where N is the number) is a constant.


Our world of numbers


I once decided just for fun to see just how pervasive numbers are in the modern world, using myself as a subject. In the course of my work as a scientist, and particularly as a scientist working on how the brain deals with numbers, naturally I would be experiencing far more numbers than the typical citizen. So I assessed how many numbers I would experience on a Saturday when I wasn’t working but just reading the paper, going for a walk, listening to the radio and doing a little light shopping. There were car numbers, parking signs, a postcode (zip code) on every street corner, bus numbers on buses and bus stops, and prices in shop windows. Of course, the newspaper provided a lot – page numbers, dates, financial information and many numbers on the sports pages, which I read avidly. Listening to the news on the radio meant even more numbers about weather, deaths, business and sport. I calculated that I experienced about 1000 numbers every waking hour.


I thought I would check this number again on a Saturday with a similar shopping route, about 1 mile there and 1 mile back.


I also get The Economist on Fridays and read it mostly on Saturdays. Lots of numbers in that as well. During the Covid-19 pandemic, we were daily assaulted by even more numbers: infections, deaths, vaccinations, costs. In the happy, or unhappy, event of an election, the numerical assault is almost overwhelming. Think of the CNN coverage of the US presidential, House and Senate elections in 2020. Numbers by state, by district, by exit polls for each of these contests; numbers as the counts come in; projections of the final score. Before the election there were more numbers: daily polling results leading to forecasts of the final outcome.


There was no escape from numbers on my brief shopping trip. I probably saw about 200 parked cars in two miles – OK, I didn’t actually count them, but all kerb parking spaces were fully occupied. At two large digits per car, that’s 400 digits, plus about 50 moving vehicles, that’s another 100. At each corner there is a number designating the postal district. Say another 25 digits. On the way there and back there were road signs indicating parking times, speed limits and numerical restrictions of various types. Then there was shopping; just three items were bought, but outside every shop there was a sign indicating its phone number plus other information, and special offers. My walk took me past a cemetery and signs memorializing the celebrated dead. Even in death, there is no escape from numbers.


Overall, I probably experienced far more than 1000 numbers per hour reading the paper and shopping, but the rest of the day was more relaxed with a friend for lunch, but more numbers discussed. The costs of redecoration, the time of this and the time of that, as well as very visible digital clocks and thermometers for the inside and outside temperatures. Radio and TV provided many more – channel idents, current times, programme times, episode numbers and of course the news.


My guess was still about 1000 numbers per hour when not working. That’s about 16,000 per waking day, or about 6 million per year, not counting dreaming numbers, or numbers when working, whether as a scientist, a shop assistant at the cash register, a shelf-stacker or a banker.


Most of the numbers I experienced when shopping were entirely irrelevant to me, apart from deciding on the purchases. Most of the numbers in the newspapers were of marginal interest as well. Nevertheless, unattended and even unconscious numbers are registered by the brain even when they are irrelevant or even if we are actually not aware of them.23 I describe an experiment we did that demonstrates this in Chapter 2.


Numeracy is important for a numerate society


It’s not just the number of numbers that’s important, it is how we understand them. Poor understanding of numbers is a serious handicap for individuals and a major cost for nations. It makes individuals less employable, creates a risk of depression in adulthood, and lowers lifetime earnings significantly.24 In the UK about 25 per cent of adults have poor functional numeracy – that is, 15 million adults are estimated to have numeracy skills lower than those expected of an 11-year-old. Of these, 6.8 million have skills below the standard expected for a 9-year-old.24 These problems persist into adulthood: 74 per cent of 37-year-olds have problems with division, 57 per cent with subtraction, 15 per cent could not manage their household accounts and 8 per cent could only manage their household accounts with difficulty.25 Low numeracy causes poorer educational outcomes, lower earnings and trouble with the law, and impacts on mental and physical health.26 It is a cause of distress, low self-esteem, stigmatization and disruptive behaviour in class.27 A recent report stated that the cost of adult low numeracy ‘can be counted in lost earnings – the £25 billion . . . would be added to our collective pay packets if numeracy skills could be levelled up’. That is about £1700 per person per annum.28


Indeed, low numeracy can be a matter of life and death. A large-scale study of adults with colorectal cancer in the UK and US found that those with low numeracy were less likely to intend to participate in screening and were more likely to be defensive in getting cancer information, and hence more likely to be untreated or treated too late.29


Low numeracy is also a cost to nations. In 2009, it was calculated that the cost of the lowest 6 per cent of numeracy to England is about £2.4 billion a year in lost taxes due to lower earnings, higher rates of unemployment, and increased costs of crime, social security, education and health.25 At today’s prices, the number would be higher.


A more serious numeracy problem is developmental dyscalculia, which affects 4–7 per cent of children.30 Child and adult sufferers have extremely poor numeracy and struggle with simple numerical tasks such as remembering PINs or times tables, telling time and calculating journeys. This condition persists into adulthood and needs specialist help. Dyscalculia has even more profound implications for the individual than the low numeracy described above. A major government report in 2008 stated that:




Developmental dyscalculia . . . can reduce lifetime earnings by £114,000 and reduce the probability of achieving five or more [acceptable grades in a public exam] by 7–20 percentage points.31





Needless to say, the incoming Conservative government ignored this report and the plight of dyscalculic sufferers for 13 years. In 2020, the government’s chief scientific adviser wrote to the prime minister, Boris Johnson, to recommend recognition and intervention for dyscalculia. I am not holding my breath.


Worries about the state of the nation’s mathematical competence in the UK – especially basic arithmetical competence – go back at least to the nineteenth century. In his foreword to the Cockcroft Report on mathematics education in 1982, Sir Keith Joseph, then secretary of state for education and science, wrote that ‘Few subjects are as important to the future of the nation as mathematics.’32 Since Cockcroft, there have been two more major reports. Similarly, the US National Research Council noted that ‘The new demands of international competition in the 21st century require a workforce that is competent in and comfortable with mathematics.’33


The link between numeracy and economic development was clearly established in an OECD modelling exercise. It showed that the level of basic numeracy is a causative factor in a nation’s long-term economic growth.34


So how well we humans who live in numerate societies deal with numbers is important both to ourselves as individuals and to our communities. In the next chapter, we’ll see that humans living in non-numerate societies also have a mechanism for reading the language of the universe that can be revealed by appropriate testing.


Looking ahead


We now have criteria – representing the numerosity of sets, and carrying out arithmetic operations on these representations – for telling whether an animal, human or not, can represent and calculate with numerosities, and there is an outline of the two main methods of finding out if the animal meets those criteria, and with what limitations.


I will also try to explain why numbers are important to animals. We used to be taught that animals had various ‘drives’ that they try to satisfy. Which drive is dominant will depend on current circumstances. Most animal studies are about the drive to reduce hunger, since this is easiest to control in the lab. We’ll see in Chapter 9 that cuttlefish behaviour depends on whether it’s hungry or not. If it’s hungry it will go for one big prawn; if it is satiated it will go for two small prawns. However, we can observe the role of number in the drive to avoid danger or death, and the drive to mate.


Although we now know much more about numerical abilities in animals including human infants and adults than we used to, there are still vast gaps in our knowledge. Some animal classes have been more investigated than others. Christian Agrillo and Angelo Bisazza from Padua University, Italy, have a useful summary of the most and least investigated classes up to 2017 as far as numerical abilities are concerned. I have updated their figure to 2021 and included invertebrates (Figure 4).
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Figure 4. The graph shows the number of results returned from a search for (‘numerical abilities’ + animals) and a search for (‘numerical competence’ + animals) on Google Scholar.


There are many reasons for the discrepancy among species. One reason is that a particularly brilliant scientist has shown how rewarding studying a species or group of animals can be. Another is that the more is known about a species, the more new research can build on those findings. The primacy of primates is due to the fact that they are more closely related to us than other species, and it is believed they can tell us more about our own abilities.


There is another serious limitation of our knowledge of the numerical abilities of animals. Rarely do studies explore the upper limits of accurate counting; rarely do they explore the kinds of calculation that the organism finds possible; and, as will become clear, not all take into account the other cues that the animal might have used in the task. Not all experimenters follow Koehler as strictly as needed to draw conclusions.


Finally, there are extraordinary feats of computation that I will argue have to involve numbers but are still not well understood, and that is in animal navigation. We know that birds, whales, turtles, fish and even invertebrates undertake extraordinary journeys between their foraging and breeding grounds. These fundamentally depend on these creatures having at least a map and a compass, but it also means they have to measure distances to locate where they are and how to return by the shortest route. Think of how Google Maps encodes map information as an array of numbers, ultimately 0s and 1s, and computes routes over those numbers. These animal navigators have to have something equivalent to Google Maps both to represent their environment and to compute routes in it.


Being able to read the numerical language of the universe is vital for non-human animals, as life, death and reproduction all depend on this ability. And it is important for us to understand that our own extraordinary numerical abilities are founded on a simple mechanism that we share with many other, perhaps all other, creatures.









Chapter 2


Can Humans Count?


The language of the universe is mathematical and being able to read this language is useful and indeed adaptive for both human and non-human inhabitants. I suggested that we and other creatures possess a very simple mechanism, the accumulator, that enables enumerating sets of objects or events.


So an obvious first question is, given these proposals, can humans count? Maybe not all of them, according to Dave Barry in the Washington Post (25 August 1996). ‘They discovered that the bees were locating the feeder by COUNTING THE LANDMARKS. Yes! Bees can count! This means that bees, in terms of math skills, are ahead of most American high school graduates.’ OK, the Washington Post is not a peer-reviewed scientific journal, and no data from high school graduates are presented, and this is unfair to American students. You and I can count. Everyone you know can count, even American students. In fact, there are some amazing human counters with extraordinary numerical skills.


In Chapter 1, I argued that counting is only relevant and only makes sense when the results of a count can be used in a combinatorial process that is isomorphic with arithmetical operations. This is true for us humans, and as I will show, for other animals as well. So when we ask whether humans can count, we are also asking what humans can do with the results of counting, namely arithmetic.


Most of us have heard of individuals with remarkable numerical skills – for example, Kim Peek (1951–2009), the model for Dustin Hoffman’s character in the movie Rain Man. Others will have encountered the extraordinary recent feats of Rüdiger Gamm (born 1971), who taught himself to calculate numbers with very high powers in his twenties to win a prize on a German TV show. He takes less than five seconds to solve tasks such as 68 x 76 = ?. For me this would take seven steps with six intermediate results that I would have to hold in memory or write down. (Two-digit squares, such as 682, take him just over a second because they are simply retrieved from memory.)1


Nowadays, there are even mental calculation world cups. These include finding the square roots of six-digit numbers, calendar calculations (‘What day was 3 January 1649?’), multiplying two eight-digit numbers, and so on. (Gamm only came fifth when he participated!)


In fact, there is a long history of individuals with remarkable numerical skills. Invariably they develop a kind of intimacy with numbers from an early age. When George Bidder (1806–1878), an exceptional calculator and a leading engineer of his time (a collaborator with the locomotive engineer Robert Stephenson) was learning to count to 100, the numbers became ‘as it were, my friends, and I knew all their friends and acquaintances’.2 Another exceptional calculator, Wim Klein (1912–1986), said ‘Numbers are friends for me . . . It doesn’t mean the same for you, does it, 3,844? For you it’s just a three and an eight and a four and a four. But I say, “Hi, 62 squared.” ’


All extraordinary calculators have in memory an enormous store of number facts. Take the New Zealand mathematician Alexander Aitken (1895–1967): for him the year 1961 evoked the thoughts 37 x 53, 442 + 52, and 402 + 192. He could also recite the first 100 decimal places of π.3 Why did he learn all this stuff? For Aitken, a teacher ‘chanced to say that you can use factorization to square a number: a2 + b2 = (a + b)(a − b) + b2. Suppose you had 47 – that was his example – he said you could take b as 3. So (a + b) is 50 and (a − b) is 44, which you can multiply together to give 2200. Then the square of b is 9, and so, boys, he said, 472 is 2209. Well, from that moment, that was the light, and I never went back.’3


In a famous story, the eminent English mathematician G.H. Hardy visited Srinivasa Ramanujan (1887–1920), whom Hardy regarded as the greatest mathematician since Gauss. He mentioned that the taxi in which he had come was number 1729, ‘a rather dull number’. ‘No, Hardy! It is a very interesting number. It is the smallest number expressible as the sum of two cubes in two different ways.’4


Perhaps even more extraordinary are the number skills of many children in Japan, China, Taiwan and India, who are subjected to extensive abacus training, usually in after-school classes. This can involve many years and hundreds of hours of deliberate practice, often directed towards success in competitions. After a while, an actual physical abacus is no longer needed, indeed is a handicap. Experts use a mental abacus. One type of competition is called ‘flash anzan’, where competitors must add numbers presented at a rate where it is scarcely possible to read them, let alone remember and manipulate them. Here’s an example, taken from Alex Bellos’s book Alex in Numberland. Children looked at a screen. After three beeps to alert them, the following numbers appeared so fast that Alex, an expert mathematician, could barely read them:
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