

[image:]

[image:]

The Publishers would like to thank the following for permission to reproduce copyright material.

Photo credits

p.5 composite created with images by © vladstar/stock.adobe.com and © PiyawatNandeenoparit/stock.adobe.com; p.9 © rukawajung/stock.adobe.com; p.38 © ifeelstock/Alamy Stock Photo; p.48 © Getty Images/Thinkstock/iStockphoto/fuchs-photography; p.50 © Getty Images/Thinkstock/iStockphoto/ fuchs-photography; p.52 © Greg Reid p.55 top © Jesper Jørgen Fotografi ApS © All rights reserved for VELUX; bottom © Hive Energy.

Acknowledgements

Every effort has been made to trace all copyright holders, but if any have been inadvertently overlooked, the Publishers will be pleased to make the necessary arrangements at the first opportunity.

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Gibson cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of the home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests and other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton Park, Abingdon, Oxon OX14 4SE. Telephone: (44) 01235 827827.
Fax: (44) 01235 400454. Email: education@bookpoint.co.uk. Lines are open from 9 a.m. to 5 p.m., Monday to Friday, with a 24-hour message answering service. Visit our website at www.hoddereducation.co.uk. If you have queries or questions that aren’t about an order you can contact us at hoddergibson@hodder.co.uk.

© Greg Reid 2019

First published in 2015 © Greg Reid

This second edition published in 2019 by

Hodder Gibson, an imprint of Hodder Education

An Hachette UK Company

211 St Vincent Street

Glasgow, G2 5QY

	Impression number

	5

	4

	3

	2

	1

	Year

	2023

	2022

	2021

	2020

	2019

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk.

Cover photo © Aliaksandra - stock.adobe.com

Illustrations by Aptara, Inc.

Typeset in CronosPro-Lt 13/15 pts by Aptara, Inc.

Printed in Spain

A catalogue record for this title is available from the British Library.

ISBN: 978 1 5104 5243 5
eISBN: 978 1 5104 5177 3

[image:]

Introduction

Exam preparation

By the time they sit a Higher, many students already know what study methods work for them and what it takes to be successful. You may have passed National 5 Computing Science, but it is important to understand that the step up to Higher is demanding and that you may require a different approach (or approaches) to ensure your success. Read on carefully: you might just find the perfect study tip that makes the difference between one grade and the next.

Course outline

The Higher Computing Science course is split into four ‘areas’ of study, each of which makes up the following percentage of the course:

• Software Design and Development (SDD) – 40%

• Computer Systems (CS) – 10%

• Database Design and Development (DDD) – 25%

• Web Design and Development (WDD) – 25%.

While all four areas include theory knowledge, only SDD, DDD and WDD also contain practical work.

The three practical areas are further organised into the same development order:

• analysis

• design

• implementation

• testing

• evaluation.

Course assessment

Your final grade is calculated from your success in two components which together total 160 marks. These two components are the exam paper and the assignment.

The exam paper

Length: 2 hours 30 minutes

Marks: 110

• Section 1: short stand-alone questions (25 marks). The majority of questions will range between 1 and 3 marks.

• Section 2: longer questions based around a scenario (85 marks). Each question will have multiple parts (a, bi, bii, c, etc.).

Note that Computer Systems will be assessed entirely by the exam paper as there is no practical element that could be assessed. This means that approximately 16 marks (10% of the total 160 marks) of the exam paper will be questions on Computer Systems.

The assignment

Length: 8 hours

Marks: 50

The assignment is split into three tasks: one task each for the three practical areas of SDD, DDD and WDD.

While each task can potentially cover any part of the development process from analysis to design, in reality the marks will be spread across the three tasks. The specimen task published by SQA has the following breakdown of marks.

[image:]

Each year the marks will be split differently across the tasks but the totals shown for each step of the development process will always remain the same (5, 5, 30, 5 and 5).

Note that most of the marks in the assignment are allocated to Implementation. This means that writing code will be mainly assessed in the assignment rather than in the exam paper.

The basics of revising

How many of the ideas below have you incorporated in your studying?

• Consider the grade you want to achieve. It’s important to have a target.

• Devise a study plan and stick to it. Don’t let yourself get distracted. Half an hour of focused, uninterrupted work is much more effective than two hours spent revising while texting and checking social media.

• Consider what you can do without. Effective study is time consuming. Is finding out who has died in your favourite soap as important as getting the grades for the college or university place you want?

• Look after yourself. Sleep well, eat well and avoid other stressful situations. Studying and exams can be stressful enough.

• Find out as much as you can about the exam and practise for it. This book will help you with this.

• Know your course. The SQA publishes course outlines for teachers; these can be accessed by anyone. You can use the outline as a checklist of what you have to learn. The list can be found on pages 4–12 of the Course Specification document at www.sqa.org.uk.

Why use practice exam questions?

The famous Chinese philosopher Confucius said, ‘The essence of knowledge is, having it, to apply it; not having it, to confess your ignorance.’

Too many students spend an inordinate amount of time while preparing for an exam applying the knowledge they already have. They sit and read notes they understand, answer questions that they already know the answers to and fail to acknowledge their ignorance of large parts of their course. Take this approach and you will do very well in a small part of your exam only.

The focus of any revision should be to discover what you don’t know and to use that as your starting point. Take note of the practice exam and past paper questions that you can’t answer quickly; these will show you what you don’t know and therefore what you should research as part of your study.

Understanding the course

Don’t leave it too late! To understand a course at Higher level often requires you to understand one fact fully before you move on to the next. If you leave a lesson confused, do something about it. Read over your notes again in the evening, ask your teacher for further explanation, attend study groups, use the internet for research or even ask your friends for help. Whichever route you take, make sure that you get into this habit early on in the year.

Memorise, memorise, memorise!

Exams require that you retain knowledge throughout the year, meaning that an ability to memorise facts is vital. Don’t simply read your notes when you study. Research has shown that very few people can read text and remember all of it.

It is difficult to advise students on memory techniques. Everyone has different ways of remembering facts so you’ll have to find something that works for you. Different memory techniques work for different types of learners.

• Reading/writing preference learners: Take your own notes, summarising the work you have learned in class. Personalising the work often makes it easier to remember.

• Visual learners: Draw diagrams or create concept maps to link facts together in your head.

• Auditory learners: Dictate notes into a recording device and listen to the recordings regularly. Many smartphones have apps to record voice notes.

• Kinaesthetic learners: Practise practical work. For example, writing programs rather than reading code may greatly improve your ability to understand a coding question in an exam.

There are many websites with hundreds of techniques to try. You’ll know you’ve found techniques that work for you when the standard of your work improves.

Focus on problem solving

A Computing Science exam comprises two question types:

1 Knowledge and Understanding (KU) – These are questions that ask you simply to write down or explain a fact or skill you have learned. The current course has only a few of these types of questions in the exam paper.

2 Problem Solving (PS) – These are questions where you are required to apply your knowledge to an unfamiliar scenario. The current course places a great deal of emphasis on you being able to interpret and solve problems in both the assignment and exam paper.

KU questions can be prepared for easily by simply memorising lots of facts.

PS questions require practice. Work through as many unseen exam questions as you can. Design and implement programs, databases and websites as this is a problem-solving exercise in itself.

Questions

Note that the questions in this book have been written in a style that may not always resemble those in the Higher exam. The questions have been created to encourage good study, develop problem solving and practise researching. It is recommended that students apply their revision to past paper or sample paper questions as part of their overall revision plan.

And finally …

Commit!

The most pleasing results for teachers are not necessarily the students who get the A-grade passes. It’s often the students who simply achieve their potential through hard work, even if that is just scraping a pass. Every year teachers see a few students who ‘could have done better’. Don’t let that be you!

Good luck!

Area 1 Software Design and Development

Chapter 1

Development methodologies

A methodology refers to a specific technique adopted by developers to design and develop new programs. In the National 5 course you learned about the traditional ‘iterative software development cycle’ also known as the waterfall method. In this methodology the developer works through the following development phases from start to finish:

• analysis

• design

• implementation

• testing

• evaluation.

At times during the software development cycle, it may be necessary to return to a previous step in the cycle. For example, when testing finds an error, part of a program may have to be redesigned and then implemented again. This is known as an iteration. The waterfall method is now rarely used in industry. A methodology that takes an entire project, as a whole, from start to finish simply lacks flexibility.

Waterfall has been replaced by a variety of methodologies known collectively as ‘agile’. Agile development aims to follow the same phases as before but breaks a project down into smaller sub-projects. Each sub-project will be independently designed, implemented and tested over a much shorter time-scale. These sub-projects are worked on by small teams, often simultaneously.

Comparing agile and the iterative software development cycle (waterfall)

Agile may be compared to the waterfall method using the criteria given in Table 1.1.

[image:]

[image:]

[image:]

What you should know

In your revision of this chapter, ensure that you are able to:

• describe and compare the waterfall method of software development with agile development

• explain the general principles of agile software development

• describe the advantages of agile software development over the traditional waterfall method of developing software

• explain the different relationships between the developer and the client in both types of methodology.

[image:]

[image:]

Questions

1 Describe one advantage for the client if a software company uses agile methodologies to develop their product. (1)

2 In any development it is important to plan ahead. Describe the differences in forward planning between the waterfall method and agile methodologies. (2)

3 Explain why only the waterfall development method has a distinct testing phase. (1)

4 Explain why agile methodologies create substantially less documentation when developing software. (1)

5 During software development, changes are sometimes made to designs. State who decides which changes should be implemented for both waterfall and agile development. (2)

[image:]

Chapter 2

Software analysis

The first phase of any software development project involves clearly defining the software that will be produced.

Software is either produced by a developer for a client (for example, a factory requiring software to control a new device they have manufactured) or produced by a developer for their own financial gain (such as a new leisure game for a phone). Either way, analysis will include outlining the following:

• Purpose – This describes the reason for creating new software and may include an identified need of a client and their users. If the developer is creating the software for their own use, or to sell, the needs of the end-user or target audience will become the purpose of creating the software. Understanding and clearly describing what any new software will do is important as it helps inform further analysis and design.

• Scope – The scope of the project will include a list of what will be delivered to the client or end-user at the conclusion of the project. This includes the time-scale in which the project will be carried out. In addition to the software itself, a client may expect to receive a report on the test plan, the results of the testing and an evaluation report.

[image:]

• Boundaries – This provides a list of what will and won’t be included in the project. Without boundaries, the developer and client may disagree about the extent of the project during development. If the client asks for additional functionality during the project, the developer will be able to state that this was not part of the initial contract and may request additional payment to implement the new software features.

• Functional requirements – This outlines the project in terms of inputs, processes and outputs. The processes may be listed as the different functions performed by the software.

[image:]

Worked example

The Music Venue app

A music venue would like to develop a phone application. The app will be used to provide audience members with a set list (including song times) for concerts taking place at the venue. The app will also display when the concert will start and finish.

[image:]

Table 2.1 Worked example of a project specification

	Analysis

	Purpose

	The purpose of the program (mobile phone application) is to provide audience members at concerts with an easy way to access a list of all the songs being played at a selected concert. The program will also use the information entered for each song to calculate an estimated time for when the concert will finish.

A title, song information and start time for each concert may be entered by either the organisers of the concert or the band that is performing. To enter this information, a password will be required.

Any user of the program will be able to search for a concert title and view the information for that concert.

	Scope

	At the end of this project the client will be supplied with:

• a program design showing the program’s structure

• a comprehensive test plan for the program

• a report detailing the results of testing

• the completed mobile app

• an evaluation report showing that the agreed project specification has been met.

The program will be written and tested using modular code and will be designed, written and tested within 20 hours.

	
Boundaries

	The program will store the information for each concert within a .csv file.

The information for each concert will be:

• a title for the concert (e.g. ‘The Novemberists’)

• the number of songs on the set list (e.g. 14)

• each song name and a length of time in minutes and seconds (e.g. ‘“Going Up”, 03:57’)

• a starting time for the concert (e.g. ‘21:10:00’).

A concert will have no more than 25 songs.

It will be assumed that no two concerts will have the same title.

The concert information may not be changed once it has been entered.

The concert information will never be deleted once entered.

The password required to enter the details for a new concert will be ‘GR6168’.

When the user searches for a concert, the information displayed will be limited to the names of each song, the start time of the concert and the estimated finishing time for the concert.

The program will run once, first asking if a new concert is to be stored and then asking the user for the name of a concert to display.

	Functional requirements

	Information for previous concerts will be input from a .csv file.

Information for a new concert will be entered using the touchscreen keyboard.

A selected concert will be displayed on the touchscreen.

The program will run automatically when started.

Each process identified will be written as a procedure or function.

Inputs:

• concert title

• number of songs in the concert

• name and duration of each song

• start time.

Processes:

• write new concert’s data to the end of a .csv file

• read previous concert data from the .csv file

• find a user-selected concert in the file data

• calculate the finishing time for the selected concert

• display the information for the selected concert.

Outputs:

• concert title, song names, song times and start time for new concert written to file

• song names, start time and finish time displayed on screen.

OEBPS/OEBPS/images/tp.gif
dwio>

g ' How to Pass

Computing
Science

Greg Reid

a1

(Y]
m
(@)
O
Z
O
m
O
|
O
P4

‘ HODDER
7 GIBSON
AN HACHETTE UK COI NY

OEBPS/OEBPS/images/ii-1.gif
SCOTLAND &
EXCEL
We are an approved supplier on
the Scotland Excel framework.

Schools can find us on their
procurement system as:
Hodder & Stoughton Limited
t/a Hodder Gibson.

OEBPS/OEBPS/images/v-1.gif
Task 1: DDD | Task 2: SDD | Task 3: WDD | Totals
Analysis 2 3 5
Design 3 2 5
Implementation 7 15 8 30
Testing 2 3 5
Evaluation 5 5

(50)

OEBPS/OEBPS/images/cover.jpg
uaps.
Sunduioy
B

How to Pass

Scotland’s
Most
Popular

Revision Guides

%
m
Q
o
4
S
=

N

Computing
Science

+ Fully updated for the new
2018 course arrangements

/ Top tips and hints
for exam success

/ Refresh and test your
learning in all topic areas

Greg Reid

HODDER
& tonoer

LEARN MORE

OEBPS/OEBPS/images/rules.jpg

OEBPS/OEBPS/images/6-1.jpg
Daycream Ciy 00,0345
Rk Warir:

Can't Remember You, 00:04:10
Rk Wariors

‘Garden Colous, 000750
Rk Warirs

Head Banging B>, 000226
ok Warirs

The LongestSclo, 00:10:03
ok Warers

Nahts Ahoy, 0005:16
ok Warirs

Trp to Japan, 00.05:18
ok Waror:

Funny Haha, 00,0140
Rk Warir!

Diay Moments, 00,0255
ok Warirs

Home Time, 007:00
Rk Warirs

Closaa Door Boogle, 000520
ok Wariors

OEBPS/OEBPS/images/5-1.jpg
=

Figure 2.1 Clients can expect to receive reports about their project

OEBPS/OEBPS/images/3-1.gif
Measuring the progress of
a project

As part of the initial project
specification documentation, the
waterfall method will include a
detailed timeline for each phase of the
project. The development team will
be measured against their ability to
meet these deadline dates.

Agile development works to deadlines for each
sub-project during which teams of multi-skilled
personnel will complete:

o analysis

® design

© implementation
© unit testing

© acceptance testing.

Progress is measured against an overarching
deadline for the whole project and whether
or not the prototypes developed by the sub-
project teams are completed on time.

Agile aims to produce sub-projects and the
complete program as quickly as possible.

Adaptive or predictive?

A predictive methodology like the
waterfall method focuses on spending
more time and effort on the initial
phases of the project. The thinking
behind this is that problems can be
predicted and therefore avoided if due
diligence is given to detailed analysis
and design.

A predictive methodology finds it
difficult to react to change when it

is required. In some cases a ‘change
control board; made up of staff
involved with the project, will meet to
make decisions on whether a change
is necessary. This ensures that only
essential changes to the original plan
are ever implemented.

A predictive methodology will have
clear deadlines mapped out for each
phase of development from the
beginning of a project.

An adaptive methodology, like agile, can
respond to change quickly because the sub-
teams contain all the required skills to carry
out any new design and implementation. Agile
teams are used to working to short time-scales
and have no fear of change as it is regarded as
an expected part of development.

Communication within a sub-team, who are
often in the same room, is faster than having
to communicare with other staff. Decisions are
therefore made quickly, further enhancing the
ability of the team to adapt to change.

With adaptive methodologies, staff have

a good idea of what they are working on
tomorrow. The further away a date is, however,
the more unlikely it is that sub-team members
will be able to supply any detail regarding their
tasks for that day. Managers will maintain an
overview of sub-projects and ensure deadlines
for the project as a whole are met.

Project testing phase

In the waterfall method, carefully
planned testing takes place after the
program has been implemented. A
fault discovered during testing will
result in an iteration back to the
design or implementation phases.

There is no recognised testing phase in agile
development as this is carried out throughout
program development while each individual
prototype is developed and as prototypes
come together to make the finished product.
In agile development, constant small iterations
take place as program components are built,
tested and adapted following feedback from
the client.

OEBPS/OEBPS/images/2-1.gif
Table 1.1 Comparing agile and waterfall

Waterfall

Agile

Interaction between the
client and the developer

During the analysis stage of the
waterfall method, the client has a
lot of contact with the developer.
The developer will gather extensive
information from the client through
interviews and documentation with
the purpose of agreeing an accurate
project specification.

After their initial contact, there s little
clientinvolvement until the finished
software is evaluated by both client
and developer to agree that the
project specification has been met.

During agile development the client may be
involved constantly in the development cycle.
Each sub-project will create prototypes of the
software which the client will be invited to give
feedback on. Any required changes are quickly
builtinto the sub-project goals.

By involving the client throughout the process,
itis far more likely that the client will be happy
with the finished software.

Teamwork of different
project personnel

As the iterative software development
cycle progresses, the project is passed
from group to group: systems analysts
to programmers then to testers.

Each group will work in isolation, only
communicating when the project
progresses or iteration is required.

Each agile sub-project team will include a range
of personnel with expertise in different areas.

Constant communication is required if a sub-
project team is to meet its short development
deadlines and adapt its task according to client
feedback.

To aid communication, agile teams often work
in very close proximity.

Documentation produced

The waterfall method seeks to
reduce the need for iteration
through increased paperwork and
planning. The more detailed the
project specification, program
design and test plans, the less likely
that these phases will need to be
revisited. As a consequence, a great
deal of documentation is generated.
Advocates of this methodology will
argue that increased planning will save
time later.

Agile views documentation very differently.
Many of the documents that the waterfall
method focuses on are never subsequently
used or updated once the project is finished.

Agile reduces the emphasis on documentation.
Initial planning is reduced as well as planning
and design during the short cycles of sub-
projects. Agile regards constant adaptation and
change as part of the development process and
not something to be feared or reduced through
over planning. To create a detailed design

that must then be stringently adhered to goes
against the very ethos of agile.

The documentation produced in agile focuses
purely on what is required to keep the project
moving towards completion.

