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Locating Model Land


I would like to know if anyone has ever seen a natural work of art. Nature and art, being two different things, cannot be the same thing. Through art we express our conception of what nature is not.


 Pablo Picasso, Picasso Speaks (1923)


 


Our world is awash with data. Satellites continuously watch the Earth below, sending back data about rainforest destruction in the Amazon, cyclones in the Indian Ocean and the extent of the polar ice sheets. Tracking algorithms continuously watch human behaviour online, monitoring our time spent on different websites, measuring our propensity to click on different adverts and noting our purchases with an eagle eye. Athletes from Olympians to casual joggers track their daily performance and physical condition. Financial markets create vast quantities of high-frequency price data.


These are all observed directly from the real world, but without a framework to interpret that data it would be only a meaningless stream of numbers. The frameworks we use to interpret data take many different forms, and I am going to refer to all of them as models. Models can be purely conceptual: an informal model of the casual jogger might be ‘when my heart rate goes up I am exercising more intensely’. But with data, we can go further and make quantitative models that seek to describe the relationships between one variable and another: ‘10% of people who clicked on this product listing for a bicycle pump in the last week went on to buy it.’ The contribution of the model is to add relationships between data. These are observed relationships, and they may have some uncertainty. We do not yet know which 10% of customers would buy the pump. They are also influenced by our own expectations. We did not test how many of the people who clicked on the bicycle pump went on to buy an ironing board or a tin of tomatoes, but we might want to test how many of the people who clicked on this bicycle pump went on to buy a competing brand of pump, or whether those people also bought other sports equipment.


And what is the point of doing that? Well, very few people are interested in these kinds of numbers for their own sake. What the vendor really wants to know is whether the purchase of the bicycle pump can be made more likely, and whether other items could be advertised as ‘related’ in order to interest the customer in spending more money on the same site. What the funding agencies who send up satellites want to know is how we can understand and predict weather and climate more effectively in order to avoid negative impacts. What the athlete wants to know is how they can improve their performance. What the financial trader wants to know is how they can get an edge.


As the first wave of the Covid-19 pandemic swept across the world in early 2020, governments desperately sought advice from epidemiologists and mathematical modellers about what might happen next and how to respond effectively. Information was scarce, but decisions were urgent. There was uncertainty about the characteristics of the novel virus, uncertainty about how people and communities would respond to major government interventions, and huge uncertainty about the longer-term epidemiological and economic outcomes.


Into that context, mathematical modellers brought quantitative scenarios – possible futures that might come to pass depending on certain assumptions. In particular, these models showed that if the proportion of serious cases were in the plausible range and no interventions were made, then a large number of people could be expected to require hospitalisation simultaneously. The very simplest model of infection transmission from one person to more than one other person is a framework with which you can make both large-scale conclusions about exponential growth in a population and small-scale conclusions about reduction of personal risk by reducing contacts. More complex models can represent semi-realistic differences in contact patterns over time for different sectors of society, and account for the effects of new information, better treatments, or vaccination programmes. Even the sad human toll can only be estimated through modelling. Doing so offers the possibility of predicting the effect of different kinds of interventions, obviously of interest to large-scale policy-making. And so in the years since their introduction, epidemiological models have held a place at the top table of national policy-making and on the front pages of the public media.


In short, the purpose of modelling relationships between data is to try to predict how we can take more effective actions in future in support of some overall goal. These are real-world questions informed by real-world data; and when they have answers at all, they have real-world answers. To find those answers, we have to go to Model Land.


Entering Model Land


There are no border controls between the real world and Model Land. You are free to enter any time you like, and you can do so from the comfort of your armchair simply by creating a model. It could be an ethereal, abstract conceptual model, a down-to-earth spreadsheet or a lumbering giant of a complex numerical model. Within Model Land, the assumptions that you make in your model are literally true. The model is the Model Land reality.


Of course, there are many different regions of Model Land, corresponding to the many different models we can make, even of the same situations. In one part of Model Land, the Earth is flat: a model to calculate the trajectory of a cricket ball does not need to include the radius of the Earth. In another part of Model Land, the Earth is a perfect sphere: a globe shows the relative positions of countries and continents with sufficient accuracy for most geographical purposes. To other modellers, the Earth is an oblate spheroid, 43km wider at the equator than through the poles. For the most detailed applications like constructing a GPS system or measuring the gravitational field, we also need to know about mountains and valleys, high plateaus and ocean trenches. All of these are models of the same Earth, but with different applications in mind.


Model Land is a wonderful place. In Model Land, because all of our assumptions are true, we can really make progress on understanding our models and how they work. We can make predictions. We can investigate many different configurations of a model, and run it with different inputs to see what would happen in different circumstances. We can check whether varying some characteristics of the model would make a large or a small difference to the outcomes. The assumptions that underlie our statistical methods are also true in Model Land, and so our statistical analyses can be unencumbered by caveats.


That’s not to say that life is easy in Model Land. We still have to make the model and ‘do the math’. Whole careers can be spent in Model Land doing difficult and exciting things.


Model Land is not necessarily a deterministic place where everything is known. In Model Land, there can still be uncertainty about model outcomes. The uncertainty might arise from our limited ability to measure quantities or initial conditions, or from difficulties in defining model parameters, from randomly determined elements in the model itself, or from the chaotic divergence of model trajectories, also known as the Butterfly Effect.


In Model Land, these uncertainties are quantifiable. Or at least they are quantifiable in principle, if one had a sufficiently large computer. With a smaller computer we can estimate the uncertainties and, given further information, the estimates we make will converge on the right answer.


In the gap between Model Land and the real world lie unquantifiable uncertainties: is this model structurally correct? Have I taken account of all relevant variables? Am I influencing the system by measuring and predicting it?


Most fields distinguish between these two kinds of uncertainty. In economics, the quantifiable uncertainties are often referred to as Risk and the unquantifiable as Uncertainty; in physics, confusingly, the exact opposite terminology is sometimes used and uncertainty generally refers to something that can be quantified. Unquantifiable uncertainties are variously known as deep uncertainty, radical uncertainty and epistemic uncertainty.


Let’s stay in Model Land for now. Think of a billiards table and the uncertainty involved in predicting where a ball will end up when you hit it. In principle, this is a simple calculation involving energy, friction and deceleration along a straight line. In practice, though, even in Model Land we can recognise the limitations of a single calculation. There is a measurement uncertainty because you cannot define exactly where the ball is to start with. There is an initial condition uncertainty because you cannot define exactly how much energy you will impart to the ball when you hit it. There is a boundary condition uncertainty because you cannot define exactly how much energy the ball will lose when bouncing off the edges. And these, taken together, result in a random uncertainty about the exact position of the ball when it comes to rest. In principle, you could define a range of plausible conditions for each of these quantifiable unknowns and use them to calculate a range of plausible resting points for the ball after the shot. With luck, when the experiment is tried, the ball would be somewhere near the middle of that range. Physicists would refer to the plausible range as the ‘error bars’ of the calculation; statisticians might call it a ‘confidence interval’.


Deep or radical uncertainty enters the scene in the form of the unquantifiable unknowns: things we left out of the calculation that we simply could not have anticipated. Maybe it turns out that the billiards table was actually not a level surface, your opponent was blowing the ball off course or the ball fell into a pocket rather than bouncing off the edge. In that case, your carefully defined statistical range of projected outcomes could turn out to be completely inadequate. These are also called epistemic uncertainties, from the Greek episteme (‘knowledge’), because they reflect the limits of our knowledge and the limits of our ability to predict. And yet they are not completely inaccessible: we can list these uncertainties, study them, quantitatively or qualitatively evaluate the likelihood of their occurrence, even take real-world steps to prevent them. Yes, there could be truly unexpected events – Black Swans – by which we might be blindsided. But the majority of surprising events are not really Black Swans. Some people saw the 2008 financial crisis coming. Pandemics have been at the top of national risk registers for decades. Climate tipping points are absolutely on the radar of mainstream scientific research. It’s not that we think these kinds of events can’t happen, it’s that we haven’t developed an effective way of dealing with or formalising our understanding that they could happen. One premise of this book is that unquantifiable uncertainties are important, are ubiquitous, are potentially accessible to us and should figure in our decision-making – but that to make use of them we must understand the limitations of our models, acknowledge their political context, escape from Model Land and construct predictive statements that are about the real world.


The problems of risk and uncertainty are not the only things that bedevil life in Model Land. Although scientists prefer to think of models as being confined to a scientific arena of facts, data and possibility, the degree to which models are unavoidably entangled with ethics, politics and social values has become very clear. Narratives about risk and responsibility are attached to them. Ethical judgements are inherent in the things that are represented and in the things that are not. Models are tools of social persuasion and vehicles for political debate.


We see this in the models for the Covid-19 pandemic when we considered who should stay home, who should wear masks and who should have a vaccine, or how we should answer a hundred other questions. We also see this in an area I am more familiar with from my own previous research: climate change. Again, the science itself is only a small part of the story. As our climate continues to move gradually but measurably away from the weather patterns of the twentieth century, the greenhouse effect – an unfortunate fact of life, like person-to-person viral transmission – is no longer in debate. But the incredibly complex political question of what exactly should be done about it remains, and is again mediated by complex mathematical models. Both models of the physical climate and models of the economic system inform opinions about what kind of target to aim for and the trade-offs between the costs of climate action and the costs of climate inaction. As with Covid, politics enters into the models through value judgements about what kinds of losses and damages are acceptable, the distribution of risk across different geographical communities and the question of who should take on the costs of doing something about it. For either climate or Covid, the precautionary principle is not much help: we can be precautionary about the emerging risk, or precautionary about taking upfront economic hits before the harm is truly known. There are many analogies between responses to fast-emerging Covid risks and slow-emerging climate risks from which one could draw many conclusions. But a priority has to be getting a better grip on the way that mathematical and scientific models interact with society and inform our decision-making structures.


You cannot avoid Model Land by working ‘only with data’. Data, that is, measured quantities, do not speak for themselves: they are given meaning only through the context and framing provided by models. Nor can you avoid Model Land by working with purely conceptual models, theorising about dice rolls or string theories without reference to real data. Good data and good conceptual understanding can, though, help us to escape from Model Land and make our results relevant once more in the real world.


Escaping from Model Land


Though Model Land is easy to enter, it is not so easy to leave. Having constructed a beautiful, internally consistent model and a set of analysis methods that describe the model in detail, it can be emotionally difficult to acknowledge that the initial assumptions on which the whole thing is built are not literally true. This is why so many reports and academic papers about models either make and forget their assumptions, or test them only in a perfunctory way. Placing a chart of model output next to a picture of real observations and stating that they look very similar in all important respects is a statement of faith, not an evaluation of model performance, and any inferences based on that model are still in Model Land.


One aim of this book is to encourage modellers – and we are all modellers – to think more critically about model evaluation: how is it, really, that we can know that our models are good enough predictive tools to tell us what might happen in the real world? The defeatist answer to this question is that we can never know. Although that might be technically correct, there are plentiful examples of wildly successful mathematical modelling in the history of science and engineering upon which we justifiably depend and by which we have not been failed. In my view, the continued success of modelling depends on creating a programme of understanding that uses models as a tool and as a guide for thinking and communication, and that recognises and is clear about its own limits.


As such, one priority is to understand the exits from Model Land and signpost them more clearly; this is something I will do in subsequent chapters. Briefly, there are two exits from Model Land: one quantitative and one qualitative. The quantitative exit is by comparison of the model against out-of-sample data – data that were not used in the construction of the model. This is more difficult to arrange than you might imagine: out-of-sample data can be hard to come by or take a long time to be collected. But short-timescale predictive engines like weather forecasts can take the quantitative exit very effectively, repeatedly forecasting and comparing forecasts with observations to build up a statistical picture of when and where the model is accurate, and when and where it struggles. This is best-practice evaluation, but simply not possible for many important classes of models, such as financial models and longer-term climate models. For financial models, although we may have a stream of out-of-sample data, the problem is that the underlying conditions may be changing. The standard disclaimer on investment opportunities also applies to models: past performance is no guarantee of future success.


The qualitative exit from Model Land is much more commonly attempted, but it is also much more difficult to make a successful exit this way. It consists of a simple assertion, based on expert judgement about the quality of the representation, that the model bears a certain relationship with the real world. An example of failure to escape using this route is the above characterisation of reports that put a picture of model output next to a picture of the real world and assert that they look sufficiently similar that the model must therefore be useful for the purpose of whatever prediction or action the reporters are discussing. This is essentially an implicit expert judgement that the model is perfect; Model Land is reality; our assumptions are either literally true or close enough that any differences are negligible. As we will see, this kind of naive Model Land realism can have catastrophic effects because it invariably results in an underestimation of uncertainties and exposure to greater-than-expected risk. The financial crisis of 2008 resulted in part from this kind of failure to escape from Model Land. A more successful escape attempt is embodied in the language used by the Intergovernmental Panel on Climate Change (IPCC). When discussing results from physical climate models, they systematically reduce the confidence levels implied by their models, based on the best expert knowledge of both the models and the physical processes and observations those models claim to represent. This results in a clear distinction between Model Land and the real world. Better still, the statement attaches an approximate numerical magnitude to this distinction, which is relevant for real-world decision-makers using this information and for other modellers.


The acknowledgement of such uncertainty should give us, as information consumers, greater confidence in the ability of these authors to incorporate some judgements from outside Model Land into their projections, and therefore greater confidence that those projections will prove trustworthy.


The subjectivity of that second escape route may still worry you. It should. There are many ways in which our judgement, however expert, could turn out to be inadequate or simply wrong. As Donald Rumsfeld, former US secretary of defense, put it: there are ‘known unknowns’ and there are ‘unknown unknowns’. If the known knowns are things that we can model, and the known unknowns are things that we can subjectively anticipate, there will always be unknown unknowns lurking in the darkness beyond the sphere of our knowledge and experience.


But how else can we account for them? By definition, we cannot infer them from the data we have, and yet we must still make decisions. It would not make sense for the unknown magnitude of unknowns to be the main driver of all our decisions: in that case, we would all be living in constant fear of a nuclear war, economic collapse or (another) viral pandemic. On the other hand, discounting these possibilities completely is a recipe for another kind of disaster.


Models and machines are not good at living with these kinds of unquantifiable uncertainties. Either they require that we quantify the unquantifiable or they ignore it. When there are infinities or undefinables, they cannot work at all. Yet our human brains are supremely good at this task. Without calculation, we can integrate many opposing sources of information and multiple conflicting goals, and come out with not just a single decision, but a narrative about why that decision has been reached and what it aims to achieve; a narrative that can then be put to use in communicating with others. Models struggle to emulate this kind of decision-making fluency.


But my argument is not that we should throw away the models. Models are an inseparable and vital part of modern decision-making systems. What I want to argue here is that the human brain is also an inseparable and vital part of modern decision-making systems. Going further, this is a partnership: the human brain is responsible for constructing models; models provide quantitative and qualitative insights; the brain can integrate these with other, non-modelled insights; and the upshot is a system that can be better than either brain or model acting alone.


Or it can be worse. Both model thinking and human thinking are notably subject to standpoint biases. If I am constructing models from a Western, Educated, Industrial, Rich, Developed (‘WEIRD’) standpoint, then both my brain and my model will contain WEIRD assumptions that I may not even notice. As such, it is a key argu-ment of this book that diversity in models, and (real) diversity in modellers, can provide greater insight, improved decision-making capacities and better outcomes. Mathematical modelling in particular is a very WEIRD pursuit, so it deserves greater scrutiny for the overall effectiveness and the outcomes that are served by prioritising modelling approaches over alternative forms of decision support.


As I will show, reliance on models for information tends to lead to a kind of accountability gap. Who is responsible if a model makes harmful predictions? The notion of ‘following the science’ becomes a screen behind which both decision-makers and scientists can hide, saying ‘the science says we must do X’ in some situations and ‘it’s only a model’ in others. The public are right to be suspicious of the political and social motives behind this kind of dissimulation. Scientists and other authorities must do better at developing and being worthy of trust by making the role of expert judgement much clearer, being transparent about their own backgrounds and interests, and encouraging wider representation of different backgrounds and interests.


Using models responsibly


I started thinking about these questions as a PhD student in Physics ten years ago, when I conducted a literature review on mathematical models of North Atlantic storms. I found that there were many models, predicting different overall effects and producing contradictory results, all peer-reviewed and published, and with conflicting rather than overlapping uncertainty ranges. I realised that I hadn’t learned very much about North Atlantic storms, but I had learned a lot about how we make inferences from models, and I was worried about what that meant for confidence in other modelling studies. Since then, I have tried to find a balanced way to proceed, in between what I think are two unacceptable alternatives. Taking models literally and failing to account for the gap between Model Land and the real world is a recipe for underestimating risk and suffering the consequences of hubris. Yet throwing models away completely would lose us a lot of clearly valuable information. So how do we navigate the space between these extremes more effectively?


I have a feeling there are a lot of people asking similar fundamental questions. Not just in science, but those who are doing any kind of quantitative analytics: actuaries, financial traders, energy forecasters, start-up founders, humanitarian responders, public health analysts, environmental consultants, social-media marketers, bookies, sports teams – you name it! Models are ubiquitous now in everyday life, analysing and interpreting rivers of data gathered in many different ways from personal devices to satellites. If ‘data is the new oil’, then models are the new pipelines – and they are also refineries. How are models constructed? To whom do they deliver power? How should we regulate them? How can we use them responsibly?


I do not have final answers to these questions, but I hope that this book can help to address them: first, by reframing generic worries about models into more specific and tractable questions; second, by emphasising that the social and political content of models is at least as important as their mathematical and statistical content; and third, by offering a guide to some of the routes by which we can escape from Model Land.
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Thinking Inside the Box


There are more things in heaven and earth, Horatio,


Than are dreamt of in your philosophy.


 William Shakespeare, Hamlet (1602)


 


If we are going to fit our complex world into a box in order to be able to model it and think about it, we must first simplify it. This is impossible to avoid, since we have no replica Earth on which to experiment. Inside the box, a certain set of rules apply and certain types of analysis can be performed. The box itself may have particular characteristics, and be able to hold some items and not others. There are many different ways to simplify, and hence many different models. But because of the simplification, each model can only be used to ask certain types of questions, and each model is only capable of offering certain kinds of answers.


Consider a spherical cow


A physicist is called in by a dairy farmer to see if the milk yields on the farm can be improved with the application of science. The physicist takes a look around the farm, asks lots of questions, makes notes and promises the farmer that indeed much progress can be made. Two weeks later the farmer eagerly opens a long report and begins to read: ‘Consider a spherical cow of radius 1, in a vacuum . . .’


This old joke trades on the well-known tendency of scientists to simplify situations in order to make them tractable. Although the example here is certainly apocryphal, there are probably many real-life situations where a scientific consultant has been called in for some such task, done immense calculations on a simplified version of the question in hand and presented a detailed answer that is perfectly correct in Model Land – but totally useless to the client because it ignores some practical reality.


On the flip side, of course, we can imagine another report that the physicist might have presented. Perhaps they decided to model not a spherical cow but a highly realistic cow, taking many years and multiple supercomputers to simulate the workings of the digestive system, with teams of researchers in different disciplines looking at hoof and hair growth, lactation and food consumption. The model would be calibrated using a detailed observational study of lab animal Daisy and forward-project the impacts of changing Daisy’s dietary routine. Results from this research programme, accompanied by multiple caveats about uncertainty and its inapplicability to other breeds of cow or non-laboratory situations, may again be of very limited use to the bemused (and probably now-retired) farmer.


The advantage of a mathematical model is the ability to neglect any aspects of the situation that are not immediately relevant, tractable or important. By removing these aspects, we can reduce the problem to its essence, highlighting only the causal links and developing insight into the behaviour of the subject. That is a best-case scenario. The disadvantage of a mathematical model is the necessity of neglecting any aspects of the situation that are not immediately relevant, tractable or important. By removing these aspects, we remove the problem from its context, potentially losing the information that could help us to understand the behaviour or even making the model totally wrong. That is a worst-case scenario.


The art of model-making is to draw the boundaries sufficiently wide that we include the important contributing factors, and at the same time sufficiently narrow that the resulting model can be implemented in a useful way. The exact location of each of those boundaries varies, and in some cases it may be that they do not even overlap. The important factors will change depending on what kind of question you are asking and on how much tolerance you have for uncertainty in the answer.


The parameters of a model are essentially the control knobs that can be turned one way or the other to give a different output. If we model some data points as a straight line, there are two parameters: the slope of the line and its starting point. In order to fit the model to the observed data, we adjust the slope and the starting point until the line is as close as possible to the data points. This is what is termed linear regression, and there are simple statistical methods for automating the process. More complicated models may have many thousands of parameters with much more complicated effects, but the process of fitting or calibrating the model to the observed data remains the same: change the parameters until you get a model output that is closest (in some way) to the observations.


The more parameters a model has, in general, the more control we have over its behaviour and the more opportunity the model has to fit the data. Hungarian-American polymath John von Neumann is reputed to have said, ‘With four parameters I can fit an elephant. With five I can make him wiggle his trunk.’ The implication is that if we can fit anything, then the model has no explanatory power. If we can fit nothing, of course, it equally has no explanatory power. We gain confidence in a model by being able to fit the observations without going through great contortions to do so, because this shows that the variation in the observations is in some sense contained within the simple principles expressed by the model. This principle of simplicity is also termed ‘Ockham’s Razor’, after a thirteenth-century English monk, William of Ockham, who wrote extensively on theological and philosophical matters. One of his arguments was essentially that God is the simplest explanation possible for the existence of things, and therefore it is more reasonable to believe in divinely revealed truths than in a multiplicity of other causes.


Ockham’s Razor has inspired many other maxims and methodologies, from ‘Keep It Simple, Stupid’ to advanced statistical concepts like the Akaike Information Criterion. As computing power has become larger and larger over the last century, there has been greater opportunity to construct large and complicated models with lots of parameters. Because of this proliferation of parameters, there is a great need for careful thought about how to measure the quality of models and the informativeness of the ‘answers’ that they help to generate. In practice, the complexity of a model is usually determined less by abstract principles and more by the limit of the modelling materials you have to hand, be that a piece of paper, a supercomputer or a sack of assorted plumbing.
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Figure 1: In fact, although several people have tried to fit an elephant with four parameters, this turns out to be somewhat difficult. The closest attempt uses four complex parameters (effectively eight parameters) to fit something that is vaguely recognisable as an elephant, and a fifth complex parameter (effectively ten parameters) to ‘wiggle the trunk’. Reproduced using TinyElephant.R code kindly provided by Hans van Beek (2018), based on the equations of Mayer, Khairy and Howard (2010).


A hydraulic economy


Bill Phillips scraped a pass in his Sociology and Economics degree from the London School of Economics (LSE) in 1949, having spent much of his free time in the previous year engineering a physical model of the British economy using water moved between tanks with a system of pipes, pumps, floats and levers. The Newlyn-Phillips machine, also called the MONIAC (Monetary National Income Analogue Calculator), conceptualises and physically represents money as liquid, created by credit (or export sales) and circulated around the economy at rates depending on key model parameters like the household savings rate and levels of taxation.


The key idea here is that there are ‘stocks’ of money in certain nominal locations (banks, government, etc), modelled as tanks that can be filled or emptied, and ‘flows’ of money into and out of those tanks at varying rates. The rate of flow along pipes is controlled by valves which in turn are controlled by the level of water in the tanks. Pumps labelled ‘taxation’ return water into the tank representing the national treasury. The aim is to set the pumps and valves in a way that allows for a steady-state solution, i.e., a closed loop that prevents all of the water ending up in one place and other tanks running dry. In this way a complex system of equations is represented and solved in physical form.


Economic historian Mary Morgan describes how the model helped to resolve a debate when the model was first demonstrated to an academic audience in November 1949:


 


When the red water flowed around the Newlyn-Phillips machine on that day, it resolved for the audience a strongly fought controversy in macroeconomics. In simplified form, Keynesians argued that the interest rate is determined by liquidity preference: people’s preferences for holding stocks of money versus bonds. Robertson argued that the interest rate is determined by the supply and demand for loanable funds: primarily the flow of savings versus that of investment. When stocks and flows really work together – as they did that day in the machine demonstration – it became clear that the theories of Robertson and Keynes were neither inconsistent nor alternative theories but rather were complementary, but more important – they had been integrated in the machine’s economic world.


Interestingly, this machine does not seem to have been much used directly for predictive purposes, but performed a more pedagogical role in illustrating and making visible the relationship between different aspects of the economy. The physical, visible representation of the abstract equations used by macroeconomists gave a structure for thinking about those equations in a new way, making new links and drawing new conclusions about the relationships. It showed, for example, the time lag required for a new balance to be achieved upon making some intervention (such as a change to taxation), since the water levels needed to propagate all the way around the system to find a new steady state. By contrast, the equations solved on paper directly for the equilibrium state could not show these short-term effects. And yet if Phillips had had access to a supercomputer, it is unlikely that he would have come up with this innovatively different perspective at all.


The scope of any model is constrained by the nature of the model itself. The Phillips-Newlyn machine provided a new and valuable perspective, but it also inherited biases, assumptions and blind spots from the pre-existing equation set it was designed to represent. Only certain kinds of questions can be asked of this model, and only certain types of answers can be given. You can vary the parameter called ‘household savings rate’ and observe the ‘healthcare expenditure’, but you cannot vary a parameter called ‘tax evasion’ or observe ‘trust in government’. The kinds of question that are inside and outside the scope of a model are part of the nature of a model, determined by the priorities and interests of whoever made the model initially and probably also partly determined by mathematical (or, in this case, hydraulic) tractability. It may seem obvious, but there is no point in trying to ask a model about something that is outside its scope. Just as you cannot ask the Newlyn-Phillips machine about tax evasion, you also cannot ask a physical climate model about the most appropriate price of carbon, nor can you ask an epidemiological model whether young people would benefit more from reduced transmission of a virus or from access to in-person education. But when you do ask about something within scope, you need to bear in mind that the answer can only come in certain forms. The only way that the Newlyn-Phillips machine can represent economic failure, for example, is by the running-dry of the taxation pumps; there is no concept of political failure by imposing too-high taxation or failing to provide adequate public services. And the only success is a continued flow of money.


With the tools at hand limiting the kinds of representations that we make, it is important to understand that there is no rigid hierarchy by which a supercomputer must necessarily be a ‘better’ tool than a sack of plumbing. Each choice of representation lends itself to certain kinds of imaginative extension – which we will look at in the next chapter – and also inevitably limits the range of things we can use it for.
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Figure 2: Bill Phillips in the 1960s, demonstrating the use of his hydraulic model of the economy.


The ad hoc standard


Models become a standard for ad hoc reasons: perhaps by being the first to be used or developed or to be made publicly available, or as a result of having led to particularly good or quick results. In climate science, which typically uses very complex models run on supercomputers, the HadCM3 model developed by the UK’s Hadley Centre for Climate Research has been a workhorse of the global climate community for some years. It has been described by eminent climate scientist Isaac Held as the ‘E. coli of climate models’. (This was definitely intended as a compliment, as when Garry Kasparov referred to chess as a ‘drosophila [fruit fly] of reasoning’.) It was one of the first climate models not to require a so-called ‘flux correction’ or boundary adjustment to fit observed data, and one of the first to be made available more widely to download and run. As computing power has advanced, it is now able to be run on small personal computers rather than the supercomputers that today’s state-of-the-art models require.


Models of this type provide opportunities for experimentation with climate modelling by researchers who do not have access to state-of-the-art models. Given that the latter almost by definition push up against the boundaries of currently available computing power, it is usually impossible to do full model runs (around a hundred simulated years) even thousands of times within a couple of (real) years of their development. By contrast, HadCM3 must by now have been run at least millions of times. This collective experience with the model gives us both the numbers on which to perform robust statistical analyses of model behaviour, and the variation of studies through which to get a picture of its strengths, weaknesses and quirks. One of the greatest benefits is that the shorter run times of simpler models like HadCM3 allow for much greater exploration of the sensitivity of the model to altered inputs (or parameters, or assumptions) than is possible with the latest models.


Nevertheless, projects typically only use HadCM3 because more sophisticated models are unavailable or impractical. And research funding to continue to develop the understanding of HadCM3 for its own sake would be a very difficult ask. In biology, researchers are interested in other organisms for their own sake and not solely as stand-ins, of course, whereas in climate science we are only interested in the models to the extent that they can tell us something meaningful about the real Earth system. Because it is widely believed that models with more detailed physical representations will be more realistic in their outputs (and because the continued increase in computing power allows it), there is a general progression towards more detailed models superseding all but a few of the older, less detailed versions.


Still, the continual process of supersedure leaves us with some difficult questions about superseded models: if they ever told us something, what was it? If they had great value when they could only be done on a supercomputer, why do they have lesser value and interest now that they can be run many more times, much more easily? What will happen to the current model when it is necessarily superseded by the next? If the scope of the model determines the kinds of questions that can be asked and answered, does further development result in a more useful model?


If the model is not being used to inform a decision, we can avoid talking about these questions. We can simply say that the most advanced models are able to help us explore our most complex musings, regardless of their absolute quality. Or we can hope that the continual evolution of models is moving towards some perfect-model endpoint, a true Theory of Everything that will be able to answer all our questions about the future with some known degree of accuracy. This hope will be in vain, though: it’s not generally the case that the most complex models are the best, except where they are used naively to ‘fit an elephant’, and we have already seen that just fitting the past-elephant will not necessarily help us to understand more about a future-elephant.


Adequacy-for-purpose


The key distinction here is not whether a model is the ‘best available’ at the present time, but, as philosopher Wendy Parker has emphasised, whether it is ‘adequate for purpose’. If we define what we mean by ‘best’, there will be exactly one best model, but there could be many that are adequate for a given purpose, or just one, or perhaps none at all.


For example, if I want to make a decision about whether to take an umbrella when I go out later, then a look at any weather forecast is an adequate decision-making tool – by which I mean that I can make a confident decision based on that information. It doesn’t mean absolute certainty: the forecast might, for instance, say that there is a 30% chance of rain. In that case, if I were going to a garden party I would probably take an umbrella, but if I were just popping to a local shop I might choose to risk the possibility of wet clothes for the benefit of not having to carry the umbrella. There are multiple forecast-providers that could give me this information. They generally give me very similar forecasts, and I would be able to make an informed decision that reflects my own risk attitude. Occasionally, unless I choose the precautionary approach of always taking an umbrella regardless of forecast, I will get caught in the rain.


By contrast, if I wanted to decide now whether to take an umbrella to ‘Auntie’s garden party three Sundays from now’, the detailed weather forecast would be no use at all: it is not adequate for this purpose. But I am not left completely in the dark. First, I might fall back on my expectations of the typical weather in June, or in December, which are generated by personal experience rather than by the forecast model. Second, I might prioritise my risk attitude as a decision input and choose to take an umbrella to the garden party as a precaution even though I expect the weather in June to be fine.


Where we are making important decisions that affect the lives of many people, it makes sense to have some idea of what we mean by a model that is adequate for the purpose of informing those decisions. Understanding and quantifying that adequacy-for-purpose is what I mean by escaping from Model Land, and the rest of this book looks at the mathematical, philosophical and social challenges of doing so. If the same model has been used successfully to inform constructive decision-making many times in the past, then that is a good indication (though not a guarantee) that it may be successful in future. Conversely, if it has been used in the past unsuccessfully, we can evaluate its lack of adequacy-for-purpose and steer clear of it – also a useful outcome. The difficult question that Parker and other philosophers have struggled with is what to do when you don’t have a comprehensive and directly relevant archive of either past success or past failure, such as for climate models, economic models or epidemiological models. Then, in addition to the limited available data, adequacy-for-purpose has to be evaluated with respect to indirect criteria such as whether the model describes the relevant real-world phenomena sufficiently, whether it represents well-confirmed theory (such as the laws of physics) reasonably well or whether it otherwise ‘looks plausible’ to a panel of experts. This has benefits and challenges, both of which we will explore.


Of mice and models


Biological model organisms are used for their comparative simplicity, tractability and ethical acceptability. When one animal is used as a model for another, some questions become in-scope and others move out-of-scope. Genetic studies of inheritance prefer an organism with relatively short generation times so that many experiments can be performed in the time it takes to do a PhD: so we might choose fruit flies. We cannot perform a controlled trial of the effect on humans of new and relatively unknown substances, but it is (currently) somewhat more acceptable to do so on mice.


The use of model organisms in biology has a long history, from Arabidopsis (a mustard plant) to zebrafish by way of the fruit fly, the E. coli bacterium and the classic laboratory mouse. One advantage of the model-organism concept is that it provides a way to standardise studies across different laboratory settings. A lab in California and a lab in Beijing can conduct essentially the same experiment on the ‘same’ model mouse and – hopefully – replicate their results. Working with a common model, the global research effort can build upon each result to paint a fuller picture of the workings of that particular species, with some confidence that the statements made by one lab are directly comparable with statements made by another.


It is also quite clear that mice are not humans. Most people understand that effects on mice, while useful and suggestive of plausible results in humans, do not offer any guarantee of the same – although, to read the news, you might sometimes think otherwise. Dramatic media headlines accompany research results showing progress on high-profile health challenges like cancer, diabetes, AIDS, heart disease and so on. Often the headline does not include the key information that the study was performed ‘in mice’, implying by omission that the results are directly applicable to the human health context. Scientist Ben Heathers set up a Twitter account, @justsaysinmice, to highlight this tactic and encourage more responsible headlines that acknowledge where research results apply to mice rather than to humans.
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