

[image: Cover Image]

[image:]

[image:]

Endorsement indicates that a resource has passed Cambridge International’s rigorous quality-assurance process and is suitable to support the delivery of a Cambridge International curriculum framework. However, endorsed resources are not the only suitable materials available to support teaching and learning, and are not essential to be used to achieve the qualification. Resource lists found on the Cambridge International website will include this resource and other endorsed resources.

Any example answers to questions taken from past question papers, practice questions, accompanying marks and mark schemes included in this resource have been written by the authors and are for guidance only. They do not replicate examination papers. In examinations the way marks are awarded may be different. Any references to assessment and/or assessment preparation are the publisher’s interpretation of the curriculum framework requirements. Examiners will not use endorsed resources as a source of material for any assessment set by Cambridge International.

While the publishers have made every attempt to ensure that advice on the qualification and its assessment is accurate, the official curriculum framework, specimen assessment materials and any associated assessment guidance materials produced by the awarding body are the only authoritative source of information and should always be referred to for definitive guidance. Cambridge International recommends that teachers consider using a range of teaching and learning resources based on their own professional judgement of their students’ needs.

Cambridge International has not paid for the production of this resource, nor does Cambridge International receive any royalties from its sale. For more information about the endorsement process, please visit www.cambridgeinternational.org/endorsed-resources

Cambridge International copyright material in this publication is reproduced under licence and remains the intellectual property of Cambridge Assessment International Education.

Third-party websites and resources referred to in this publication have not been endorsed by Cambridge Assessment International Education.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests and other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Hachette UK Distribution, Hely Hutchinson Centre, Milton Road, Didcot, Oxfordshire, OX11 7HH. Telephone: +44 (0)1235 827827. Email education@hachette.co.uk Lines are open from 9 a.m. to 5 p.m., Monday to Friday. You can also order through our website: www.hoddereducation.com

ISBN: 978 1 3983 6982 5
eISBN: 978 1 3983 7119 4

© Margaret Debbadi and Pam Jones 2023

First published in 2023 by
Hodder Education,
An Hachette UK Company
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ

www.hoddereducation.com

Impression number 10 9 8 7 6 5 4 3 2 1

Year 2027 2026 2025 2024 2023

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo © ZinetroN - stock.adobe.com

Illustrations by Aptara, Inc.

Typeset in India by Aptara, Inc.

Printed in Bosnia and Herzegovina

A catalogue record for this title is available from the British Library.

[image:]

Contents

Introduction

9.1 Presenting choices: Combining constructs

9.2 Design your own network: Shape and size

9.3 Coding and testing: Game development for the micro:bit

9.4 Drilling down: How the processor handles instructions

9.5 Big Data modelling and analysis: Databases and spreadsheets

9.6 An array of skills

Glossary

Index

Introduction

About this book

Computer science is the study of computers, computing hardware and software, computer networks and the design of computer programs. It also includes the study of the way humans interact with computers and computing technology.

Computer science is linked to all areas of the world you live in today. It helps you to make positive changes to the world you live in, and provides important tools and applications to help you solve a wide range of problems. Computer science is continually evolving to provide new and valuable ways of improving your life and your interactions with the world around you.

This Student’s Book will help you to understand some of the key areas of computer science, such as:

	
• network design

	
• algorithms and sub-routines

	
• machine learning and Industry 4.0

	
• one-dimensional arrays and string manipulation

	
• databases, spreadsheets and Big Data

	
• software prototype development.

This book also supports the learning objectives within the five strands of the Cambridge Lower Secondary Computing framework:

[image:]

	
• Computational thinking is built into the tasks in this book. It looks at how computing can be used to explore and analyse data collected from the world around you. It is also about the development of skills to support problem-solving, for example how to describe a problem, and the data needed to solve that problem, in a way that a computer can understand.

	
• Programming explores the steps involved in designing and creating a computer program that can be used to carry out a particular task. In this book, you will study text-based programming languages such as Python and explore how to program a physical computing device to solve a problem.

	
• Managing data looks at how computers and computer programs can be used to store, organise and manage different types of data. It also explores how that data can be used to support problem-solving. In this book, you will learn how to use, edit and create databases and spreadsheets to help with managing different types of data.

	
• Networks and digital communication focuses on the methods used to transfer digital data between different computing devices and on how these devices are used to support communication. In this book, you will explore how different computing devices can be linked together to support data transfer and find out about the methods used to ensure that data is transferred securely and accurately.

	
• Computer systems is about how computer hardware devices and computer programs work together to support users in solving problems. It involves considering how the hardware and software and the data input is processed, stored and then output, to help a user solve a problem. In this book, you will explore the network and communications devices used to transmit data and information around a computer, and around the world, in the process of solving a problem.

[image:]

[image:]

KEYWORDS

sub-routine: standalone section of code that can be called from the main program

machine learning: ability of a computer system to learn over time

Industry 4.0: refers to how industry is combining electronics with new technologies, e.g. machine learning, artificial intelligence, robotics and green energy

one-dimensional array: series of items grouped together under one identifier

string manipulation: process of changing the format of a variable/string to allow it to be analysed

Big Data: datasets that are too large or complex for traditional data-processing applications, e.g. databases or spreadsheets, to process

prototype: initial product created for testing and reviewing, before a final product is released

data type: classification applied to a data item specifying which type of data that item represents, e.g. in a spreadsheet some of the data types available include currency, text and number

[image:]

This Student’s Book has six units:

[image:]

9.1 Presenting choices: Combining constructs develops knowledge and skills using Python to understand how to use a count-controlled loop and an array. You will plan an algorithm and program with Python to act as a chatbot and ask a sequence of questions to help a student make a decision on which options or areas of study to focus on.

[image:]

[image:]

9.2 Design your own network: Shape and size investigates how networks can be structured in a variety of environments, providing scope to scale. It also covers ways in which networks can be protected through design: how error-checking can work to improve transmission, how machine learning is continuously improving the efficiency of utilities software and how networks can be kept secure.

[image:]

[image:]

9.3 Coding and testing: Game development for the micro:bit develops your knowledge and skills with the BBC micro:bit and MicroPython using count-controlled iteration and arrays. You will create a MicroPython program to utilise the micro:bit as an element of a ‘What am I?’ game, developing your knowledge of using physical devices as part of game development.

[image:]

[image:]

9.4 Drilling down: How the processor handles instructions looks at the steps a processor carries out during the execution of a computer program. You will learn about the fetch–decode–execute cycle and how program instructions are stored in lists that are run one at a time. You will also learn why a range of language translators are needed to ensure that the processor can understand and carry out program instructions users write. You will explore logic circuits and learn about the benefits of machine learning and computerisation in a range of industry and manufacturing areas.

[image:]

[image:]

9.5 Big Data modelling and analysis: Databases and spreadsheets explores the concept and applications of ‘Big Data’. You will develop your data-modelling skills to create relational databases of real-life models. You will learn how to use functions such as MAX, MIN, COUNT and IF in spreadsheet models. You will investigate how to manipulate relational-database models and spreadsheet models using complex queries and formulae, respectively.

[image:]

[image:]

9.6 An array of skills focuses on iterative development and developing a program over time to meet a set of requirements. You will make use of all three programming constructs (sequence, selection and iteration) and use arrays in the development of your program. You will develop a game to improve knowledge of times tables and systematically debug and test the solution using trace tables.

[image:]

How to use this book

In each unit, you will learn new skills by completing a series of tasks.

These features appear in each unit:

[image:]

Get started!

This box introduces the unit and gives you some questions to discuss in pairs or small groups.

[image:]

[image:]

Learning outcomes

This box lists the learning outcomes that you will achieve in the unit.

[image:]

[image:]

Warm up

This box provides a task to do in pairs or small groups to get the learning started.

[image:]

[image:]

SCENARIO

This box contains a scenario that puts the tasks in the unit into a real-world context.

[image:]

[image:]

DID YOU KNOW?

This box provides an interesting or important fact about the task or section.

[image:]

[image:]

Do you remember?

This box lists the skills you should already be able to do before starting the unit.

[image:]

[image:]

Learn

This box introduces new concepts and skills.

[image:]

[image:]

Practise

This box contains tasks to apply and practise the new skills and knowledge from the ‘Learn’ box.

[image:]

[image:]

Go further

This box contains tasks to enhance and develop the skills you have previously learned in the unit.

[image:]

[image:]

Challenge yourself

This box provides challenging tasks with additional instructions to support new skills.

[image:]

[image:]

Final project

This box contains a final project that encompasses all the skills you have developed over the unit, in the context of the Scenario. The tasks in this box can be used to support teacher assessment of the learning objectives from the ‘Learning outcomes’ box.

[image:]

[image:]

Evaluation

This box provides guidance on how to evaluate and, if necessary, test the Final project tasks.

[image:]

[image:]

KEYWORDS

Important words are shown in emboldened orange font and are defined in this box. They also appear in the Glossary at the back of the book.

[image:]

[image:]

What can you do?

This box provides a summary of the skills you have learned in the unit and can be used to support self/peer assessment of the learning objectives.

[image:]

[image:]

Computational thinking

Most computational thinking skills are embedded into the Practise tasks. However, where you see this box, an individual computational thinking skill is highlighted for your attention.

[image:]

[image:]

Student resource files, used in some of the ‘Practise’ boxes, are available at www.hoddereducation.co.uk/cambridgeextras

Unit 9.1 Presenting choices: Combining constructs

[image:]

Get started!

Have you ever wondered how a computer program can help you to make a decision? How does a sequence of questions help you work out what to do?

Questioning allows you to ask specific questions and gain insight through the answers. If structured correctly, these questions can help you to find a solution to a problem or make a decision.

[image:]

Try this game in pairs: One student should think of an object and the other student must ask up to 20 questions to try to guess what the object is. The questions can have a response of only ‘Yes’ or ‘No’.

Discuss with your partner:

	
• How did the questions help to narrow down what the object was?

	
• What questions did you start with and why?

	
• Did you plan the questions you would ask before you started?

	
• What would you do differently if you were to do this activity again?

Questioning is an effective tool and, when used correctly, can help you find out about something or help to narrow down a selection.

In this unit, you will develop a Python program to act as a chatbot. A chatbot is a program that asks the user a series of questions, stores the answers and then uses the information to help the user to make a decision.

[image:]

KEYWORD

chatbot: software application that uses text to ask questions to help a user

[image:]

[image:]

[image:]

DID YOU KNOW?

A chatbot is a software application that carries out an online conversation with a human user and, through questioning, helps to identify a suitable solution to a problem.

You may have interacted with a chatbot on a website that enables you to have a conversation without human involvement. For example, if you do not want to wait on a phone for someone to answer a query about a product, a chatbot allows you to type in specific questions and guides you to a solution.

A chatbot is also used by the music application Spotify to allow users to search for, listen to and share music.

[image:]

[image:]

[image:]

Learning outcomes

In this unit, you will learn to:

	
• follow, understand, edit and correct algorithms that are presented as pseudocode

	
• follow flowchart or pseudocode algorithms that use loops

	
• create algorithms using flowcharts and pseudocode

	
• use and explain iteration statements with count-controlled loops in either pseudocode or flowcharts

	
• predict the outcome of algorithms that use iteration

	
• compare and contrast two algorithms for the same solution and decide which is better suited to a task

	
• create an algorithm as a flowchart or pseudocode using more than one of these constructs: sequence, selection and count-controlled iteration

	
• identify and explain the purpose of a one-dimensional array

	
• identify and describe data types in Python programs, including integer, real, character, string and Boolean

	
• develop a Python program with count-controlled loops

	
• access data from an array using Python

	
• develop Python programs using string manipulation, including length, uppercase and lowercase

	
• use iterative development on Python prototypes to create solutions to problems

	
• develop and apply test plans that include normal, extreme and invalid data

	
• identify test data that covers normal, extreme and invalid data

	
• identify and describe a range of errors, including syntax, logic and runtime errors

	
• use a trace table to debug errors in a Python program.

[image:]

[image:]

Warm up

You make decisions every day, such as what clothes to wear, what to have for breakfast, what to take to school, and many more. Some decisions can be difficult to make and you may need to answer some questions to help you to choose. For example, the flowchart on the next page could help you to decide what to have for breakfast.

Each question helps to narrow down your options. The questions lead on from one another in a sequence, and every question has a ‘Yes’ or ‘No’ path to follow. These paths lead either to another question or to the final output – the decision.

In pairs, create a flowchart to help you to make a decision, such as choosing a topping for a pizza.

[image:]

KEYWORD

flowchart: visual representation of an algorithm

[image:]

[image:]

[image:]

[image:]

SCENARIO

You use technology in a wide range of ways, and when you need help it is not always possible to speak to a person. A chatbot allows a company to support their customers to find a solution to their problem through questioning.

Your school has asked you to create a chatbot program to interact with students during the selection of options or subject areas to continue to study. The chatbot will ask the user a series of questions, store their answers and use this to help make a final decision. The solution will:

	
• be presented as pseudocode to show the algorithm for your chatbot program

	
• use variables and/or an array to store the answers to the questions asked of the user

	
• use a count-controlled loop

	
• follow an iterative process to design, develop, test and review to create a final prototype.

[image:]

[image:]

Do you remember?

Before starting this unit, you should be able to:

	
[image:] develop a Python program using an iterative process

	
[image:] follow and understand an algorithm presented as pseudocode

	
[image:] explain and use the rules AND, OR and NOT to create logic within an algorithm

	
[image:] follow flowcharts and pseudocode algorithms that use conditional statements

	
[image:] predict the outcome of algorithms that use pseudocode

	
[image:] create a Python program that uses conditional statements

	
[image:] create a program in Python that uses a range of different data types

	
[image:] develop a Python program that uses rules involving AND, OR and NOT

	
[image:] decompose a problem into smaller sub-problems to make it easier to solve

	
[image:] identify and describe the data types in a Python program

	
[image:] develop and apply a test plan to ensure a Python program or algorithm works correctly.

[image:]

[image:]

In this unit, you will use the Python programming language.

Python’s Integrated Development and Learning Environment (IDLE) provides features for creating, editing and running programs. Before using Python, you will need to install IDLE on your own personal device:

	
1 Go to www.python.org/downloads

	
2 Select Download Python.

	
3 Once downloaded, double-click on the file to open it and then choose Install Now.

	
4 Once IDLE has installed, it should appear in your Start Menu.

[image:]

Chatbots

[image:]

Learn

Chatbots have become increasingly useful to growing businesses as they strive to meet customer demands. Instead of a customer sitting in a queue to speak to someone about the questions they have, they can use a chatbot to answer their questions and receive possible solutions. This is a developing technology that has limitations, so if the chatbot is unable to help it will direct the customer to speak to a person. In this way, chatbots filter the calls that need to be answered by a person by offering quick answers to the problems they can solve.

[image:]

For example, an IT helpline may be able to support a selection of customers by asking some key questions about the issues they have and using this to offer possible ways for the customers to solve the problem themselves.

There are two main types of chatbot:

	
• Rule-based chatbots

	
• Chatbots with artificial intelligence.

Rule-based chatbots have predefined questions built in, so they are structured and less conversational. The questions do not evolve with the user’s answers and are limited to the set questions that have been programmed to be asked. Examples include IT first-line support to gain an understanding of a system error or a health chatbot asking questions to determine the level of a health issue or how to advise on the next steps.

Chatbots with artificial intelligence (AI) offer intelligent conversations as the AI learns from your selections and answers to guide the next question or offer advice. It is called machine learning when a device learns over time. This type of chatbot is a developing technology, but more of the basics of AI are being integrated into chatbots where they learn from the user’s choices, for example song selections or programme selections guide suggestions for future choices.

[image:]

[image:]

Practise

	
1 Discuss with your partner the difference between a rule-based chatbot and an artificial-intelligence chatbot.

	
2 Chatbots are integrated into websites to help the customer. In pairs, investigate how chatbots are used in retail and support, and consider the following questions.

	
a What is the chatbot’s main function?

	
b Who is the chatbot for (what type of user, for example, a teenager)?

	
c How does it use questions to offer a solution?

	
d What is good about this type of chatbot?

	
3 Discuss as a class the range of chatbots you have found and any similarities or differences between them.

[image:]

[image:]

KEYWORDS

rule-based chatbot: chatbot with a set of questions built in that it asks and the user answers

evolving: changing and improving

artificial intelligence: ability of a computer system to learn and develop its own programming from the experiences it encounters

machine learning: ability of a computer system to learn over time

[image:]

Data types and collecting variable data

[image:]

Learn

You have previously used different data types, such as string and integer, when developing programs. Remember: you need to consider the data type of any variable when planning an algorithm.

The data types are:

	
• string: a series of characters surrounded by quotation marks

	
• character: a single letter, digit or symbol

	
• integer: a whole number

	
• real: also known as a float; this is a decimal number

	
• Boolean – True or False.

[image:]

KEYWORDS

data type: classification applied to a data item specifying which type of data that item represents, e.g. in a spreadsheet some of the data types available include currency, text and number

program: instructions that tell a computer system how to complete a task

[image:]

A string is a series of characters, and the characters are placed inside quotation marks, for example: "string". Some programming languages, such as Java, include a character data type that is used to store a single letter, digit or symbol. However, Python does not use this data type. Here is an example showing a character data type being set up in the C programming language: char variableName = 'A'. The content of the variable is a single character defined by the code char, and the content following the = is the single letter A.

If you want to use a number in an equation or comparison, you must set it as either an integer or a real data type. The integer data type stores whole numbers, and the real data type stores numbers that contain decimal places, for example 15.75. You should also be familiar with the Boolean data type that stores either True or False; for example, if age > 20: would generate a True or False outcome.

It is important to set the data type when creating a variable. The following program should store two numbers the user enters, add them together and display the total.

[image:]

However, when this program is run and the user enters 5 and 3, the output is shown as 53.

[image:]

Python assumes that an input is a string unless it is told otherwise. Therefore, in this program it has linked the numbers together to form a longer string, rather than adding them. This is called concatenation. To add the values together, the computer needs to be told to store each input as an integer. Remember: this is done by adding int to the input statement. When you convert the value from one data type to another, it is called casting because you cast it.

[image:]

[image:]

KEYWORDS

algorithm: step-by-step instructions to solve a particular problem

string: sequence of characters that can be text, numbers or symbols; quotation marks around the characters define it as a string

character: single letter, digit or symbol

integer: whole number

real: also known as a float; a decimal number

float: decimal number

concatenation: joining two strings together

cast: change the data type of a variable

[image:]

Now when the program is run it gives the result expected:

[image:]

Consider a chatbot that is going to ask you how many hours you have free, what your favourite activity is and how long the activity will take, and then output as a sentence how much time you will have left when you have completed the activity. A table can be created to plan the variables required and their data types. Here is an example.

	
Variable name

	Data type

	hours

	Integer

	activity

	String

	activityTime

	Real

	timeLeft

	Real

These values can be used to plan the algorithm as pseudocode:

[image:]

The data type is not shown in the pseudocode, so having a table with the variable names and data types planned out clearly can help the programmer when they are creating the code.

[image:]

You have already used int to set the data type to an integer in Python. To set the data type as a real number, you use float instead of int. In the program below, you can see that the variable ‘hours’ has been set as an integer and the variable ‘activityTime’ has been set as a float (real). The variable ‘activity’ does not have a data type set as it will be stored as a string by default.

[image:]

Notice that the output uses both text and the contents of variables. The text is encased in quotation marks and a comma is placed between this and the name of the variable to be used. A comma is added whenever the output changes between text and a variable.

[image:]

[image:]

KEYWORDS

pseudocode: textual representation of an algorithm

naming convention: the way a variable or array is named in programming

camelCase: all lowercase, and from the second word the first letter is capitalised

snake_case: all lowercase, and spaces are replaced with underscores (_)

[image:]

[image:]

Practise

	
1 Discuss with your partner what this flowchart algorithm will do.

	
2 Copy the table below and add the variables and data types that will be required when creating the program.

	Variable name

	Data type

	

	

	
3 Create the pseudocode to match the flowchart algorithm.

	
4 Write the program code for the algorithm in Python and save it as activityChatbotV1.py.

	
5 Test, using a test plan, that your program works as expected.

	
6 Discuss with your partner how planning the variables and data types can help when creating the program code.

	
7 Discuss with your partner the different data types, with examples, and identify which data type is not used in Python.

[image:]

KEYWORD

test plan: document that details the tests to be carried out when a program is complete and whether or not they are successful

[image:]

[image:]

[image:]

Developing in iterations

[image:]

Learn

You have seen that a program is developed from an algorithm to program code. The initial idea for the program can evolve throughout this process. When the programmer receives the initial requirements, they have a starting vision. This vision, through development into a prototype, may change or be adjusted. That is where the programmer needs to work iteratively to take in any adjustments and apply them to the development. Iterative means ‘to repeat’, and the development steps are repeated until the prototype is ready to be released.

[image:]

The program code itself can also be developed iteratively. The code can be broken down into smaller sections, and these can be developed, tested and reviewed before the next section of code is added.

As a programmer starts to write the code, developments can be considered. The initial idea may grow or change as the program develops, and a new development iteration may be required.

To develop the opening of a chatbot program for selecting the type of support a user requires, you would start with the pseudocode.

Step 1: Investigate the pseudocode

The pseudocode shows the algorithm for a program to select from a range of options, and the user’s answer is used to give a response.

[image:]

Step 2: Identify the variable and data type required in the program

	Variable name

	Data type

	Selection

	Integer

Step 3: Use the pseudocode to write the Python program

[image:]

Step 4: Identify areas for improvement

When this program is run, the text is output and the cursor stays on the next line waiting for the user to input their selection. It would help the user to have a prompt, for example, stating the possible inputs: 1, 2 or 3.

[image:]

The program is developed iteratively through testing and reviewing.

[image:]

[image:]

KEYWORDS

evolving: changing and improving

user requirements: tasks a user expects of an application

prototype: initial product created for testing and reviewing, before a final product is released

iterate/iterative/iteration: repeat/repeated/repetition

trace table: technique for predicting step by step what will happen as each line of an algorithm or program is run, and to identify errors

[image:]

[image:]

Practise

	
1 A pizza shop wants to develop a chatbot to allow customers to select their pizza. Customers may choose between chicken and sweetcorn, spicy lamb, and margherita.

	
a Discuss with your partner how you can use iterative development to create a prototype chatbot for the pizza shop.

	
b Make a list of the requirements for the finished chatbot.

	
c Plan the algorithm for the chatbot using pseudocode.

	
2 a Use your pseudocode algorithm to write the program code for the chatbot and save it as pizzaChatbotV1.py.

	
b Test your code to make sure that it works as you expect.

	
c Review your chatbot prototype to make sure that it meets your list of requirements.

	
3 a The pizza shop have decided that they would also like to offer a veggie pizza. Develop your program code to include this option and save it as pizzaChatbotV2.py.

	
b Review your chatbot protype to make sure it meets this new requirement.

[image:]

Code tracers

[image:]

Learn

When developing a solution from algorithm to program, it is important to test both the algorithm and the program code. When testing the finished program, it can be easier to see errors when you use a structured test plan to document the output based on a range of inputs.

An algorithm is the plan for a program that needs to be created and can be developed visually using a flowchart or textually as pseudocode. The algorithm needs to be checked and tested before it is handed over to the programmer to develop the program code.

A variable is a temporary storage location in memory whose contents can be called and edited at any time in the program. The contents of each variable can be mapped out in a trace table to show where they change as a program runs. A trace table is a structured approach like a test plan that can be used to look at the algorithm, or program code, and follow the variables and conditions.

Look at the structure of a trace table.

[image:]

	Line

	Variable

	Condition

	Output

	

	

	

	

	
• Line: The line in the pseudocode algorithm or the step in the flowchart.

	
• Variable: You can put the name of the variable in the heading and make a note of the value of the variable in the column each time it changes.

	
• Condition: The conditional statement that completes a check to see whether the variable meets the set criteria; the output will be either True or False.

	
• Output: Where the program outputs the value stored in a variable.

[image:]

Follow these steps to test this pseudocode using a trace table.

[image:]

Step 1: You can see that there is one variable in this pseudocode example: ‘number’. This can be added to the second column in the trace table, under the heading ‘Variable’.

There is also a condition being tested (‘Is the number less than 10?’). This can be added to the third column in the trace table, under the heading ‘Condition’.

	
Line

	Variable

	Condition

	Output

	

	number

	number < 10

	

[image:]

Step 2: Look at the first line of the pseudocode. This just defines the ‘START’ and is not added to the trace table.

Line 2: Here, the value 5 is set against the variable ‘number’. This is added to the first row of the table. The line number is added to column 1 and the value stored in the variable is added to column 2.

	Line

	Variable

	Condition

	Output

	

	number

	number < 10

	

	2

	5

	

	

Step 3: Line 3 has the condition IF number < 10 THEN. The value that is stored in the variable ‘number’ at this time is 5, and this is less than 10, so the output is True. This is added to the next row of the table.

	Line

	Variable

	Condition

	Output

	

	number

	number < 10

	

	2

	5

	

	

	3

	

	True

	

Step 4: Line 4 has an output. It will output the value that is stored in the variable ‘number’ plus 5. This is added to the next row of the trace table.

	Line

	Variable

	Condition

	Output

	

	number

	number < 10

	

	2

	5

	

	

	3

	

	True

	

	4

	

	

	10

Steps 5–6: Lines 5 and 6 would not be used in this instance as they would run only if the condition on line 3 was False. This is not added to the trace table.

Steps 7–8: Lines 7 and 8 do not use the variable as they define the end of the selection section and the end of the algorithm, so they are not added to the trace table.

The trace table is complete, and the algorithm has been tested. You can see the flow of the variable ‘number’ and how it is used throughout the program when it is run.

The lines are easily seen in pseudocode. Now look at an example with a flowchart. In the previous example, the value stored in the variable ‘number’ was an integer (a whole number). In this next example, the value stored is a string (a series of characters).

[image:]

Step 1: Create the table with the headings for the variables, condition and output.

	Line

	Variable

	Variable

	Condition

	Output

	

	password

	userInput

	password == userInput

	

	

	

	

	

	

Step 2: Look at instruction 1, which would be line 1 of the code. This is the ‘start’ shape on the flowchart and is not added to the trace table.

Line 2: The variable ‘password’ is created and the string ‘enter123’ is assigned to it.

	Line

	Variable

	Variable

	Condition

	Output

	

	password

	userInput

	password == userInput

	

	2

	enter123

	

	

	

Step 3: Line 3: The user enters their password, and the string they input is stored in the variable ‘userInput’. For this test, the user is inputting the string ‘enter123’.

	Line

	Variable

	Variable

	Condition

	Output

	

	password

	userInput

	password == userInput

	

	2

	enter123

	

	

	

	3

	

	enter123

	

	

Step 4: Line 4: The condition is if password == userInput. This is checking whether the string stored in the ‘password’ variable matches the string stored in the ‘userInput’ variable. This will generate a Boolean outcome of True or False. The two variables do match so the outcome is True. This is added to the next line of the truth table.

	Line

	Variable

	Variable

	Condition

	Output

	

	password

	userInput

	password == userInput

	

	2

	enter123

	

	

	

	3

	

	enter123

	

	

	4

	

	

	True

	

Step 5: Line 5: As the outcome to the condition is True, the output is ‘Access Granted’, and this is added to the next line of the truth table.

	Line

	Variable

	Variable

	Condition

	Output

	

	password

	userInput

	password == userInput

	

	2

	enter123

	

	

	

	3

	

	enter123

	

	

	4

	

	

	True

	

	5

	

	

	

	Access Granted

The trace table is complete.

A trace table can also be created to check what will happen if the user enters a different string for their input; for example, the trace table below shows the output if the user enters the string ‘enter321’.

	Line

	Variable

	Variable

	Condition

	Output

	

	password

	userInput

	password == userInput

	

	2

	enter123

	

	

	

	3

	

	enter321

	

	

	4

	

	

	False

	

	5

	

	

	

	Access Denied

Trace tables are a useful tool for anyone planning a program. They help the programmer to carry out a dry-run test on an algorithm, to check the values of variables through a run of a program, and to find and fix any errors.

[image:]

[image:]

KEYWORDS

flowchart: visual representation of an algorithm

pseudocode: textual representation of an algorithm

variable: named memory location that can store a value

trace table: technique for predicting step by step what will happen as each line of an algorithm or program is run, and to identify errors

criteria: set of rules that must be met

selection: choice to be added to a program using if… elif… else and the next instruction executed in the program is decided by the outcome of a condition

integer: whole number

string: sequence of characters that can be text, numbers or symbols; quotation marks around the characters define it as a string

truth table: breakdown of a logic circuit, listing all possible operations the logic circuit can carry out

dry run: process of working through an algorithm manually to trace the values of variables

[image:]

[image:]

Practise

You have seen that a trace table can be used to trace the flow of a variable through an algorithm displayed as pseudocode or as a flowchart. A trace table can also be used with a Python prototype program to find and fix errors.

	
1 Open the file FoodSelectionChatbot.py provided by your teacher. The program is a prototype for a chatbot to help you to select a food to eat. Using the file:

	
a Copy and complete the trace table below when the input is 1.

	
b Complete the trace table when the input is 2.

	
c Complete the trace table when the input is 3.

	
d Complete the trace table when the input is 4.

	Line

	Variable

	Condition

	Condition

	Condition

	Condition

	Output

	

	food

	food == 1

	food == 2

	food == 3

	else

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
2 Discuss with your partner the error that the trace table has helped to identify.

	
3 Edit the Python program to correct the error, and save it as FoodSelectionChatbotV2.py.

	
4 Repeat the trace table to check that the program now works correctly.

	
5 Annotate your trace table to identify where the integer and Boolean data types are used.

	
6 Discuss with your partner how you can use trace tables as you use iterative development to create your software prototype.

[image:]

Error processing

[image:]

Learn

In the previous section, you learned about trace tables and how they can be used to check algorithms and Python program prototypes. This is a useful process to follow to identify errors and fix them.

The main focus of iterative development is to produce a fully working prototype and then a finished solution that is free from error. If a chatbot is released that has not been thoroughly tested, it may not work properly and this would mean that it is not able to ask the necessary questions to help the user to find a solution. As a program is developed, a series of processes are followed to find and fix errors, for example, using trace tables.

Errors that are introduced at the design stage can filter through to the development stage if they are not identified early on. This could result in the product needing to be redeveloped, which could be very costly and would take extra time. Therefore, it is important to find and fix any errors as early as possible in the process.

Errors can be categorised in three ways:

	
• Logic errors: The program will run but does not output what is expected; an example of a logic error is the inclusion of an incorrect conditional operator.

	
• Syntax errors: Errors in the program code that stop the program from running; an example of a syntax error is where the code has been typed incorrectly, for instance, missing brackets, colons or indentation or incorrect spelling, to name a few.

	
• Runtime errors: Errors that occur while the program is running as the instructions cannot be completed; an example of a runtime error is where the variable name has not been added correctly in one aspect of the program – it would not generate an error until it is used.

Testing an algorithm before it is developed into the program code can help to find and fix any errors early on.

In the previous section, you looked at trace tables. Trace tables can also be used to find any logic errors in an algorithm. A logic error does not stop the program from running, but the program doesn’t do what you expect it to.

One area that can cause a logic error is the use of conditional operators in conditional statements.

[image:]

	Conditional operator

	Description

	==

	equal to

	!=

	not equal to

	>

	greater than

	>=

	greater than or equal to

	<

	less than

	<=

	less than or equal to

[image:]

KEYWORDS

logic error: error that allows a program to run but not output what is expected

syntax error: error in program code that stops the program from running

runtime error: error that occurs while a program is running; the instructions cannot be completed

conditional operator: symbol, e.g. >, < and =, used to carry out comparisons between two values

conditional statement: completes a check to see whether set criteria is either True or False

[image:]

If these operators are used incorrectly, the outcome of comparisons could be wrong, and this would result in the wrong output from the program. For example, if a chatbot asks for a value to be added, then the correct value needs to be detected in the comparison if food == 1.

Look at the example below of an algorithm (presented as pseudocode) and a trace table to find and fix the logic error. The pseudocode has been developed as a plan for a chatbot program to allow a student to enter their score and output the level they are working at, along with a message of encouragement.

[image:]

In the same way as you would test program code with a test plan and a range of data inputs, you need to use a range of inputs to test the algorithm. Each input will require a new trace table.

Test 1: Trace table for input of score 10

	Line

	Variable

	Condition

	Condition

	Condition

	Condition

	Output

	

	Score

	score > 90

	score >= 51 and <= 89

	score >= 20 and <= 50

	else

	

	 3

	10

	

	

	

	

	

	 4

	

	False

	

	

	

	

	 7

	

	

	False

	

	

	

	10

	

	

	

	False

	

	

	13

	

	

	

	

	True

	

	14

	

	

	

	

	

	You have not passed this assessment.

	15

	

	

	

	

	

	Some one-to-one time would help with looking at content.

The trace table shows that when a score of 10 is entered, the conditions on lines 4, 7 and 10 are all False. The program moves to the else section and generates an output of ‘You have not passed this assessment.’ and ‘Some one-to-one time would help with looking at content.’ The trace table shows that the algorithm works correctly for this value.

Test 2: Trace table for input of score 20

	Line

	Variable

	Condition

	Condition

	Condition

	Condition

	Output

	

	score

	score > 90

	score >= 51 and <= 89

	score >= 20 and <= 50

	else

	

	 3

	20

	

	

	

	

	

	 4

	

	False

	

	

	

	

	 7

	

	

	False

	

	

	

	10

	

	

	

	True

	

	

	11

	

	

	

	

	

	You are working at a Pass level.

	12

	

	

	

	

	

	Some extra sessions may help improve your understanding.

The trace table shows that when a score of 20 is entered, the conditions on lines 4 and 7 are both False. The condition on line 10 is True and generates an output of ‘You are working at a Pass level.’ and ‘Some extra sessions may help improve your understanding.’ The trace table shows that the algorithm also works correctly for this value.

Test 3: Trace table for input of score 89

	Line

	Variable

	Condition

	Condition

	Condition

	Condition

	Output

	

	score

	score > 90

	score >= 51 and <= 89

	score >= 20 and <= 50

	else

	

	3

	89

	

	

	

	

	

	4

	

	False

	

	

	

	

	7

	

	

	True

	

	

	

	8

	

	

	

	

	

	You are working at a Merit level.

	9

	

	

	

	

	

	You are doing well. Focus on revision techniques.

The trace table shows that when a score of 89 is entered, the condition on line 4 is False. The condition on line 7 is True and generates an output of ‘You are working at a Merit level.’ and ‘You are doing well. Focus on revision techniques.’ The trace table shows that the algorithm also works correctly for this value.

Test 4: Trace table for input of score 90

	Line

	Variable

	Condition

	Condition

	Condition

	Condition

	Output

	

	score

	score > 90

	score >= 51 and <= 89

	score >= 20 and <= 50

	else

	

	3

	90

	

	

	

	

	

	4

	

	False

	

	

	

	

	7

	

	

	False

	

	

	

	10

	

	

	

	False

	

	

	13

	

	

	

	

	True

	

	14

	

	

	

	

	

	You have not passed this assessment.

	15

	

	

	

	

	

	Some one-to-one time would help with looking at content.

When a score of 90 is input, the expected output would be for the student to receive the level of Distinction. However, from tracking the variable in the trace table, you can see that the condition is not producing the correct outcome. This is a logic error. The conditional operator has been set as greater than (>) when it should be set as greater than or equal to (>=).

[image:]

If this error had not be found at this stage, the wrong operator would have been used in the program code and the error would not have been spotted until much further through the process. If you are using conditions that involve comparisons, it is important to test the algorithm using a wide range of data inputs. In this example, some specific numbers were used in the dry-run testing, but it would be better to test each value that is used in a conditional statement and a selection of other values in between.

[image:]

[image:]

Practise

	
1 Open the file StudentScoreChatbot.py provided by your teacher.

	
a Run the program to find the syntax error.

	
b Correct the program and save it as StudentScoreChatbotV2.py.

	
2 Create trace tables for the following inputs:

	
a 95

	
b 15

	
c 25

	
d 80

	
3 a Annotate the trace table to identify where the logic error is.

	
b Correct the program and save it as StudentScoreChatbotV3.py.

	
4 a Discuss with your partner how trace tables helped to identify the logic compared with how you identified the syntax error.

	
b Evaluate how effective a trace table can be to identify errors and help development.

[image:]

Iteration introduction

[image:]

Learn

So far, you have created Python programs using two programming constructs: sequence and selection.

[image:]

Another programming construct is iteration. You have seen that iteration in program development is about repeating a series of steps to develop the program continuously until the final solution is reached. In programming, iteration is a set of instructions that are repeated, and it is also referred to as a loop.

A count-controlled loop is where a series of program instructions is repeated a set number of times. This type of loop is also called a for loop.

Here’s an example of a for loop:

[image:]

[image:]

The structure of a for loop is important:

	
• for tells the computer that it will be running a for loop.

	
• i is a variable that is used to count how many times the code in the loop has been repeated; it starts at 0 and increases by 1 each time the loop has finished running – the variable ‘i’ is often used as it is short for ‘iteration’, but you can use any variable name of your choice here.

	
• in is used to separate the variable from the number of times the loop will run.

	
• range(5) defines the number of times the loop will run.

	
• : is used to signal the beginning of the code that will be repeated.

All the lines of code that need to be repeated when the loop runs are indented underneath, in the same way that code is indented after if, elif and else.

	
• print("This is loop," i) outputs the text ‘This is loop’ followed by the value stored in the variable ‘i’ to show the iteration that the program is on.

Program output

When the program above is run, the output displayed would be:

[image:]

The loop variable always starts at 0 and the loop is executed until the value of the loop variable is the same as the number in the brackets after range(). In the example above, to output the number 5 the range would need to be increased to 6.

[image:]

A chatbot may need to ask the same set of questions more than once. You can use a for loop to set the number of times a question is asked and test the input using selection. It is important that the conditional statements are indented inside the for loop.

In the pseudocode below, the program outputting the iteration number is developed to check the value stored in the variable ‘i’. If the value of i is greater than 3, then the output is ‘This is loop’, the value of i and ‘Iterations complete’. If the value of i is 0, 1, 2 or 3, then the output is ‘This is loop’ and the value of i. In pseudocode, the actual values of the count variable are stated.

[image:]

It is important that the selection statements are indented inside the for loop. The output if the conditional statement is True or False is indented under the IF and ELSE sections.

This pseudocode can be developed into a Python program, ensuring that the same indentation is used.

[image:]

[image:]

[image:]

KEYWORDS

sequence: order that program code needs to be in to work correctly

selection: choice to be added to a program using if… elif… else and the next instruction executed in the program is decided by the outcome of a condition

execute: carry out the instructions described in a computer program

iterate/iterative/iteration: repeat/repeated/repetition

count-controlled loop: set of instructions repeated a set number of times

for loop: the Python or MicroPython loop for a count-controlled loop

loop variable: variable that counts the number of times code has been repeated in a count-controlled loop

[image:]

[image:]

Practise

Open your file FoodSelectionChatbotV2.py from the earlier section ‘Code tracers’.

	
1 Discuss with your partner how a count-controlled loop could be added to allow the question and selection program code to be run twice.

	
2 Edit the program code to include a for loop. Save your new program development as FoodSelectionChatbotV3.py.

[image:]

Iteration in algorithms

[image:]

Learn

Using a loop can avoid the need to rewrite lines of program code multiple times. Look at the two flowcharts below. Compare them to identify their similarities and contrast them to identify the differences between them.

	Flowchart 1

	Flowchart 2

	

[image:]

	

[image:]

	Flowchart 1 will:

	
• ask the user to enter one of their favourite subjects and then output the subject

	
• ask the user to enter one of their favourite subjects and then output the subject

	
• ask the user to enter one of their favourite subjects and then output the subject

	
• stop.

	Flowchart 2 will:

	
• set a variable ‘i’ to 0

	
• check whether ‘i’ is less than 3

	
• if it is less than 3, ask the user to enter one of their favourite subjects and then output the subject

	
• increase ‘i’ by 1

	
• loop round to check whether ‘i’ is less than 3

	
• continue the loop until the value stored in ‘i’ is not less than 3; the program will stop.

OEBPS/OEBPS/images/17-1.png
START

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

"Welcome to this support chatbot"

"Please select from one of the following options"
"1 for products"

"2 for store locations"

"3 for special offers"

selection = INPUT

IF selection

1 THEN

OUTPUT "Welcome to store products"
ELSEIF selection == 2 THEN
OUTPUT "The store locations are UK and USA"

ELSE

OUTPUT "Welcome to the special offers"

ENDIF
STOP

OEBPS/OEBPS/images/17-2.png
print ("Welcome to this support chatbot™)
print ("Please select from one of the following options™)
print ("1 for products")

print ("2 for store locations")
print ("3 for special offers")
selection = int (input())

if selection ==

print ("Welcome to store products")
elif selection ==

print ("The store locations are UK and USA")
else:

print ("Welcome to the special offers")

OEBPS/OEBPS/images/18-1.png
print ("Welcome to this support chatbot™)

print ("Please select from one of the following options™)
print ("1 for products")

print ("2 for store locations")

print ("3 for special offers")

selection = int(input ("1, 2 or 3: "))

if selection ==

print ("Welcome to store products")
elif selection ==

print ("The store locations are UK and USA")
else:

print ("Welcome to the special offers")

OEBPS/OEBPS/images/19-1.png
P

START
number = 5
IF number < 10 THEN
OUTPUT number + 5
ELSE
OUTPUT number - §
ENDIF
STOP

OEBPS/OEBPS/images/check.png

OEBPS/OEBPS/images/cover.jpg
Cambridge

Bt

Lower Secondary ===

/en Barnes ’
Margaret Debbadi
Pamjones

Tristan Kirkpatrick
SERIES EDITOR:

Lorne Pearcey

OEBPS/OEBPS/images/30-1.png
START
FOR i = 0 TO 4
IF i > 3 THEN
OUTPUT "This is loop'
ELSE
OUTPUT "This is loop",i
ENDIF
ENDFOR
STOP

,i,"Iterations complete"

OEBPS/OEBPS/images/c1.png
Cambridge Lower Secondary Computing Stage 9
Student’s Book Boost eBook

Boost eBooks are interactive, accessible and flexible. They use the latest
research and technology to provide the very best experience for students
and teachers.

© Personalise. Easily navigate the eBook with search, zoom and an image
gallery. Make it your own with notes, bookmarks and highlights.

® Revise. Select key facts and definitions in the text and save them as flash
cards for revision.

Listen. Use text-to-speech to make the content more accessible to students
and to improve comprehension and pronunciation.

Switch. Seamlessly move between the printed view for front-of-class
teaching and the interactive view for independent study.

Download. Access the eBook offline on any device — in school, at home or on
the move — with the Boost eBooks app (available on Android and iOS).

To subscribe or register for a free trial, visit
www.hoddereducation.com/cambridge-lowersec-computing

Cambridge Lower Secondary Computing
Teacher’s Guide with Boost subscription

Created with teachers and students in schools across the globe, Boost is the
next generation in digital learning for schools, bringing quality content and
new technology together in one interactive website.

The Cambridge Lower Secondary Computing Teacher’s Guides include a print
handbook and a subscription to Boost, where you will find a range of online
resources to support your teaching.

© Confidently deliver the new curriculum framework: Expert author guidance
on the learning models and approaches plus an interactive Course Plan.

® Develop key concepts and skills: Suggested activities, quizzes and guidance
on assessment, as well as ideas for supporting and extending students
working at different levels.

@ Enrich learning: Audio versions of the glossary terms to help aid
understanding and improve pronunciation.

To purchase Cambridge Checkpoint Lower Secondary
Computing Teacher’s Guides with Boost subscription, visit
www.hoddereducation.com/cambridge-lowersec-computing

OEBPS/OEBPS/images/copy.png
MIX
Paper | Supporting

responsible forestry
E»«%Sn FSC™ C104740

OEBPS/OEBPS/images/13-1.png
numl = input("Enter a number: ")
num2 = input("Enter a number: ")
total = numl + num2

print (total)

OEBPS/OEBPS/images/8-2.png

OEBPS/OEBPS/images/13-2.png
Enter a number: 5
Enter a number: 3
53

OEBPS/OEBPS/images/14-1.png
START
hours = INPUT "How many hours do you have free?"

activity = INPUT "What is your favourite activity?"

activityTime = INPUT "How long will the activity take?"

timeLeft = hours - activityTime

OUTPUT "When you have completed" ,activity, "you will have" ,timeLeft,
STOP

"hours left"

OEBPS/OEBPS/images/8-1.png

OEBPS/OEBPS/images/13-3.png
numl = int (input("Enter a number: "))
num2 = int(input("Enter a number: "))
total = numl + num2

print (total)

OEBPS/OEBPS/images/14-2.png
Remember: the name of a

variable is important to ensure that

it tells you what it is storing. There are
two main naming conventions:

camelCase: all lowercase; from the
second word, the first letter is capitalised

snake_case: all lowercase; spaces are
replaced with an underscore (_)

OEBPS/OEBPS/images/15-1.png
Start

Yes

Yes

No

No

OEBPS/OEBPS/images/7-1.png
These speech
bubbles provide
hints and tips as

you complete the

tasks.

OEBPS/OEBPS/images/13-4.png
Enter a number: 5
Enter a number: 3
8

OEBPS/OEBPS/images/14-3.png
hours = int(input ("How many hours do you have free? "))
activity = input("What is your favourite activity? ")

activityTime = float (input ("How long will the activity take? "))

timeLeft = hours - activityTime
print ("When you have completed",activity,"you will have",timeLeft, "hours left")

OEBPS/OEBPS/images/16-1.png
A project can follow this iterative process.
Requirements: What does the finished product need to do?

Design: The algorithm is developed using flowcharts or pseudocode;
a trace table is used to help check the algorithm.

Develop: The program code is written.

Test: A structured test plan is used to check the program’s
functionality.

Review: The test plan outcomes are looked at and anything that is
notworking as expected is fixed; any potential improvements that are
identified are added to the requirements for the next iteration; there

is a general review of whether the final program meets the initial
requirements, or whether another development cycle is needed.

Launch: The final program is released.

OEBPS/OEBPS/images/31-2.png
Yes

OEBPS/OEBPS/images/10-1.png
Start

o
B

No

o
B

Yes

Yes

OEBPS/OEBPS/images/30-2.png
for i in range (5):
if 1> 3:
print ("This is loop",i,"Iterations complete™)
else:
print ("This is loop",i)

OEBPS/OEBPS/images/31-1.png
Start

favSubject! = INPUT
"What is one of your
favourite subjects?”

OUTPUT favSubject!

favSubject2 = INPUT
"What is one of your
favourite subjects?”

OUTPUT favSubject2

favSubject3 = INPUT
"What is one of your
favourite subjects?”

OUTPUT favSubject

OEBPS/OEBPS/images/11-1.jpg

OEBPS/nav.xhtml

Contents

		Cover

		Title Page

		Copyright

		Contents

		Introduction

		9.1 Presenting choices: Combining constructs

		9.2 Design your own network: Shape and size

		9.3 Coding and testing: Game development for the micro:bit

		9.4 Drilling down: How the processor handles instructions

		9.5 Big Data modelling and analysis: Databases and spreadsheets

		9.6 An array of skills

		Glossary

		Index

		Cover

		Title Page

		Copyright

		Contents

		Cover

		C1

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		220

		221

		222

		223

		224

		225

		226

		227

		228

		229

		230

		231

		232

		233

		234

		235

		236

		237

		238

		239

		240

		241

		242

		243

		244

		245

		246

		C2

		C3

OEBPS/OEBPS/images/tp.png
Cambridge
Lower Secondary

S

| Computing

Ben Barnes
Margaret Debbadi
Pam Jones

Tristan Kirkpatrick

SERIES EDITOR:

Lorne Pearcey / ‘7 HODDER

AN HACHETTE UK COMPANY

OEBPS/OEBPS/images/28-1.png
Remember: sequence is the order
in which the program code needs to be
to work correctly; selection allows a choice
to be added to the program using if...
elif.. else so thatthe next instruction
executed in the program is decided by
the outcome of a condition.

OEBPS/OEBPS/images/28-2.png
for i in range(5):
print ("Loop", 1)

OEBPS/OEBPS/images/29-1.png
Loop
Loop
Loop
Loop
Loop

B WN R o

OEBPS/OEBPS/images/rules.jpg

OEBPS/OEBPS/images/24-1.png
Here’s a reminder
of the conditional
operators.

OEBPS/OEBPS/images/25-1.png
e ua e W R

10
11
12
13
14
15
16
17

START
OUTPUT "Student score chatbot"
score = INPUT "Enter your recent score."
IF score > 90 THEN
OUTPUT "You are working at a Distinction level."
OUTPUT "Keep the focus on new subject areas."
ELSEIF score >= 51 AND <= 89 THEN
OUTPUT "You are working at a Merit level."
OUTPUT "You are doing well. Focus on revision techniques."
ELSEIF score >= 20 AND <= 50 THEN

OUTPUT "You are working at a Pass level."

OUTPUT "Some extra sessions may help improve your understanding
ELSE

OUTPUT "You have not passed this assessment

OUTPUT "Some one-to-one time would help with looking at content."
ENDIF

STOP

OEBPS/OEBPS/images/27-1.png
1
12
13
14
15
16
17

START

OUTPUT "Student score chatbot"

score = INPUT "Enter your recent score."

IF score >= 90 THEN

OUTPUT "You are working at a Distinction level."

OUTPUT "Keep the focus on new subject areas.

ELSEIF score >= 51 AND <= 89 THEN

OUTPUT "You are working at a Merit level."

OUTPUT "You are doing well. Focus on revision techniques."

ELSEIF score >= 20 AND <= 50 THEN

OUTPUT "You are working at a Pass level."

OUTPUT "Some extra sessions may help improve your understanding."
ELSE

OUTPUT "You have not passed this assessment."

OUTPUT "Some one-to-one time would help with looking at content."
ENDIF

STOP

OEBPS/OEBPS/images/20-1.png
Remember that a conditional
statement such as number
< 10 is generating a
Boolean output, as the
outcome can be only True or
False.

OEBPS/OEBPS/images/21-1.png
Start

userlnput = INPUT

OUTPUT
"Access Denied"

Yes

