

www.hoddereducation.com/dynamiclearning

www.integralmaths.org

Hachette UK’s policy

is to

use papers that

are

natural, renewable and recyclable products and made from wood grown

in

sustainable

forests. The

logging and manufacturing processes

are

expected

to

conform

to

the environmental regulations

of

the country

of

origin.

Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton

Park,Abingdon,

Oxon OX14

4SE. Telephone:

(44) 01235 827720.

Fax: (44) 01235 400401. Email education@bookpoint.co.uk Lines are open from

9

a.m. to

5

p.m., Monday to Saturday, with

a

24-hour message answering

service. You

can also order through our website: www.hoddereducation.co.uk

ISBN: 978

1

5104 0313

0
eISBN: 978 1 5104 5141 4



Jan Dangerfield and MEI 2018

First published in 2018 by

Hodder Education,

An Hachette UK Company

Carmelite House

50 Victoria

Embankment

London EC4Y 0DZ

www.hoddereducation.co.uk

Impression number 10

9 8 7 6 5 4 3 2 1

Year 2022 2021 2020 2019 2018

All

rights

reserved. Apart

from any use permitted under UK copyright law,

no

part

of

this publication may

be

reproduced

or

transmitted

in

any form

or by

any means, electronic

or

mechanical, including photocopying and recording,

or

held within any information storage

and retrieval system, without permission

in

writing from the publisher

or

under licence from the Copyright Licensing Agency Limited.

Further details

of

such licences (for reprographic reproduction) may

be

obtained from the Copyright Licensing Agency Limited,

www.cla.co.uk

Cover photo © sakkmesterke

-

123RF.com

Illustrations

by

Integra Software Services Pvt. Ltd., Pondicherry, India

Typeset

in

Bembo Std, 11/13

by

Integra Software Services Pvt. Ltd., Pondicherry, India

Printed in U.K.

A

catalogue record

for

this title

is

available from the British Library.

iii

Contents

Getting the most from this book

iv

1

Algorithms

1

1.1 What is an algorithm?

1

1.2 Algorithmic complexity

6

1.3

Packing

10

1.4

Sorting

12

2 Modelling with graphs and

networks

17

2.1 The language of graphs and

networks

17

2.2 Modelling with graphs

23

2.3 Modelling with networks

27

3 Network algorithms

32

3.1 Algorithms for minimum connector

problems

32

3.2 Finding the shortest path

39

3.3 Calculating algorithmic

complexities

42

4 Further network problems

44

4.1 Critical path analysis

44

4.2 Network flows

52

5 Linear programming

59

5.1 Formulating linear programming

problems

59

5.2 Graphical solutions

63

6 Simplex method

71

6.1 Using a simplex tableau

71

6.2 Non-standard forms

77

6.3 Use of technology

82

7 Reformulating network problems

as linear programming problems 86

7.1 Modelling paths and flows

86

7.2 Modelling allocation problems 93

Answers

100

iv

Getting

the most from this book

Mathematics

is

not only

a

beautiful and exciting subject

in its

own right but also one

that underpins many other branches

of

learning.

It is

consequently fundamental

to

our

national wellbeing.

This textbook covers the content

ofY413/Y433

Modelling with Algorithms, one

of

the

options

in

the MEI

AS

and

A

Level Further Mathematics specification. Some students will

begin this course

in

year

12

alongside the

A

level course, whereas others only begin Further

Mathematics when they have completed the full

A

Level Mathematics and

so

have already

met some

of

the topics,

or

background

to

topics, covered

in

MEI

A

Level Mathematics (Year

2).

This book

has

been written with

all

these users

in

mind.

The journey through the content

of

this book

is

described

in

diagrammatic form

at

the

beginning

of

chapter one.

Between 2014 and 2016

A

Level Mathematics and Further Mathematics were very

substantially revised,

for

first teaching

in

2017. Changes include increased emphasis

on

●

Problem solving

●

Mathematical rigour

●

Use

of

ICT

●

Modelling

This book embraces these

ideas. A

large number

of

exercise questions involve elements

of

problem solving and require rigorous logical argument. Questions that invite the use

of

spreadsheets, graphical calculators

or LP

solvers

are

indicated with

a

computer screen icon.

The use

of

software

to

solve LPs

is

crucial

in

the latter stages

of

the book, and there

are

many other opportunities

for

the use

of

technology

to aid

understanding

of

the

concepts and methods.

Modelling pervades the whole

of

this book. Every aspect

of

the modelling cycle

is

used. Real world problems

are

modelled

as

graph

or

network problems,

as

algorithms

or as LPs. The

solution has

to be

interpreted carefully

in

context and then the

reasonableness

of

the answer checked.

Throughout the book the emphasis

is on

understanding and interpretation rather than

mere routine calculations, but the various exercises

do

nonetheless provide plenty

of

scope

for

practising basic techniques.

In

addition, extensive online support, including further

questions,

is

available

by

subscription

to

MEI’s Integral website, http://integralmaths.org.

There

are

places where the work depends

on

knowledge from earlier

in

the book

or

elsewhere and this

is

flagged

up in

the Prior knowledge

boxes. This

should

be

seen

as

an invitation to those who have problems with the particular topic to revisit it. At the

end

of

each chapter there

is a list of

key points covered

as

well

as a

summary

of

the

new knowledge (learning outcomes) that readers should have gained.

Two common features

of

the book

are

Activities and Discussion

points. These

serve

rather different

purposes. The

Activities

are

designed

to

help readers get into the

thought processes

of

the new work that they

are

about

to

meet. The Discussion points

invite readers

to

talk about particular points with their fellow students and their teacher

and

so

enhance their understanding.

Answers

to all

exercise questions

are

provided

at

the back

of

the book, and also online

at

www.hoddereducation.co.uk/MEIFurtherMathsModellingwithAlgorithms

This

is a

4th edition MEI textbook so much of the material

is

well tried and tested.

However,

as a

consequence

of

the changes

to A

Level requirements

in

Further Mathematics,

large parts

of

the book

are

either new material

or

have been very substantially rewritten.

Catherine Berry

Roger Porkess

1

1

An

algorithm must

be

seen

to be

believed.

Donald Knuth (1938–)

Algorithms

The journey through Modelling with Algorithms is shown in this flowchart.

What problems can be

modelled as a network?

Model a problem

with a network

Different problems can be

modelled with the same network

Algorithms for sorting and

packing

Finding the shortest path

or the maximum flow

through a network

Investigate LP

problems graphically

Integer variables

Use an algorithm to

solve the problem and

interpret the solution

For larger, authentic

problems, reformulate

as a linear programming

(LP) problem

Use simplex method

or simplex software

Interpret output

How does simplex work?

What is an algorithm?

Does the algorithm give an

optimal solution? How do you

know?

What happens if the problem is

bigger? How much longer will

the algorithm take to solve it?

Figure 1.1

Discussion point

A friend asks you how to work out the perimeter of a triangle.

What information would you need to know about the triangle before you can give

an answer?

1 What is an

algorithm?

An

algorithm

is a

finite sequence

of

operations

for

carrying out

a

procedure

or

solving

a

problem. Cooking recipes, knitting patterns and instructions for making

flat pack furniture are algorithms, but obviously these are not mathematical

algorithms.

What is an algorithm?

2

ACTIVITY 1.1

Do you know on which day of the week you were born? Zeller’s algorithm can be

used to work it out. Try the algorithm using your date of birth.

Zeller’s algorithm

Example:

29th Feb 2000

Let day number

= D

Let month number

=

M

Let year number

= Y

D =

29

M

= 2

Y =

2000

If

M

= 1

or

2,

add 12

to

M and subtract

1

from

Y

M

=

14

Y =

1999

Let

C

be the first two digits

of Y

and

X

be the last two digits

of Y C =

19

X =

99

Calculate INT(2.6M

– 5.4) +

INT(X

÷ 4) +

INT(C

÷ 4) + D + X – 2C

31+24+4+29+99-38

=

149

Find the remainder when this is divided by 7

2

If

the remainder

is 0

the day was Sunday,

if it is 1

the day was

Monday, and

so

on

Tuesday

This uses the current

(new) value of Y.

The remainder when N is

divided by 7 is the same

as N – 7 × INT(N ÷ 7)

In mathematics an algorithm has an initial state and involves inputs, outputs and

variables. The

initial state

is

the ‘factory setting’ values of any variables that are not

defined within the algorithm. Usually this means that all variables have the value

0

until they are updated.

For Zeller’s algorithm

as

given above, the inputs are the initial values of D, M and Y;

the output

is

the day and the variables are C, D, M,

X

and Y.

The output may be printed or displayed.

Communicating

an

algorithm

How do you communicate an algorithm? The form of communication depends on

who (for example

a

seven-year-old) or what (for example

a

computer) will be using

the algorithm.

Whatever method

is

used to communicate the steps of an algorithm

it

must be:

●

unambiguous,

so the person or machine running the algorithm does not have

to make any choices

●

deterministic,

so there

is

no chance or randomness involved

●

finite,

so the algorithm stops.

This means that each time the algorithm

is

used with

a

certain input,

it

gives the

same output, and that

it

does this in

a

finite number of steps.

An algorithm may be communicated in ordinary language, in

a

flowchart

or in

pseudocode.

A

flowchart was used to show the journey through Modelling with

Algorithms

at

the start of this chapter.

INT(N) is the integer part

of N. This is the largest

integer that is less than or

equal to N. For example,

INT(2.3) = 2, INT(6.7) = 6,

INT(4) = 4 and INT(0) = 0.

The integer part of a

negative number N is the

negative of INT(−N), for

example, INT(−1.7) = −1.

1

3

Zeller’s algorithm could be written in pseudocode as:

Step

1

Let

D

be day number

Let M be month number

Let

Y be

year number

Step

2 If

M

< 3

then M

=

M

+

12 and

Y = Y – 1

Step

3

Let

C =

INT(Y

÷

100)

Let

X = Y –

(100

×

C)

Step

4

Let

S =

INT(2.6M

–

5.4)

+

INT(X

÷

4)

+

INT(C

÷

4)

+ D + X –

2C

Step

5

Let

A = S –

(7

×

INT(S

÷

7)) and display the value of

A

Note that the output

is

the day number and not the name of the day.

Algorithms for mathematical processes can usually be broken up into

a

number of

sequential steps. Sometimes an algorithm will involve decisions (‘if … then …’)

and may loop back to an earlier step (‘go to step …’).

Algorithms may involve iterative

processes. This

means that after completing one

pass

through the instructions

a

solution has been obtained that may only be part

way to the answer to the problem. By going back and carrying out further passes

the solution can be improved.

For example, an algorithm for finding square roots

is

given below:

Step

1

Input

a

positive number N

Step

2

Let

A =

A +

N

A

1

2









N

Step

3

Let

B =

A +

N

A

1

2









Step

4 If

(A

–

B)

2

<

0.001 then go to step

6

Step

5

Let

A = B

and then go to step

3

Step

6

Display the value

of B

and STOP

M = M + 12 means

that the value of (old)

M + 12 becomes the

value of (new) M.

Completing a pass means

that you have worked

through the instructions

once, as far as either

terminating or looping

back to an earlier step.

Example 1.1

The real roots of

a

quadratic equation

ax

2

+

bx

+

c

= 0 (a

≠

0)

can be found using the quadratic formula

x

b

b

ac

a

=

− ±

−

2

4

2

.

(i) Use

a

flowchart to represent an algorithm for solving

a

quadratic equation.

(ii) Write the algorithm in pseudocode.

➜

ACTIVITY 1.2

Work through this algorithm with N = 2. The algorithm loops back to step 3,

a pass occurs each time that step 3 is used. How many passes are carried out?

What is an algorithm?

4

Solution

Input

a, b,

c

d

=

b

2

− 4ac

No

Yes

Stop

Is

d

³

0?

Print

x

1,

x

2

x

1

= (−b +

Öd

) ÷ (2a)

x

2

= (−b −

Öd

) ÷ (2a)

Print ‘No real

solutions’

Figure 1.2

(i)

(ii) Step

1

Let

d

=

b

2

–

4ac

Step

2 If

d

< 0

print

‘no real solutions’

and go to step

5

Step

3

Let

x

1

=

− + −

b b ac

a

2

4

2

Let

x

2

=

− − −

b b ac

a

2

4

2

Step

4

Print

x

1

and

x

2

Step

5

STOP

This is one possible solution.

An algorithm gives the logical structure that underlies

a

computer program for

solving

a

problem. Modelling with algorithms has obvious connections with

computer science but does not require programming skills or knowledge of any

specific computing language.

ACTIVITY 1.3

Below are two algorithms, one expressed in pseudocode and the other as a flowchart.

Russian algorithm for multiplying two

integers

Step

1

 Write	the	two	numbers	side	

by side

Step

2

 Beneath	the	left	number	

write double that number

Beneath the right number

write the integer part of half

that number

Step

3

 Repeat	step	2	until	the	right	

number is 1

Step

4

 Delete	those	rows	where	the	

number in the right column

is even

Step

5

 Add	up	the	remaining	

numbers in the left column.

This is the result of multiplying

the original numbers

Euclid’s method for finding the highest

common factor of two positive integers x

and y

Input

x, y

Output

x

Yes

Subtract

y

from

x

to get a new

value of

x

Subtract

x

from

y

to get a new

value of

y

Yes

Yes

No

No

No

Is

x

>

y

?

Is

x

<

y

?

Does

x

=

y

?

Figure 1.3

Work through the Russian algorithm with left number 13 and right number 37.

Work through the Euclidean algorithm with x = 6 and y = 15.

How could you represent these algorithms differently?

What different type of user might each representation be suitable for?

Note

The word ‘algorithm’

has become more

commonplace since

the development of the

computer. A computer

program is simply an

algorithm written in such

a way that a machine can

carry it out.

1

5

Proving that an algorithm does achieve what

it is

supposed to do

is

often quite tricky.

For example even

if

you believe that Zeller’s algorithm does what

it is

supposed to do,

it is

quite

a

task to ‘unpick’

it

and show that

it

does the right

thing. You

can probably

see that step

2

of Zeller’s algorithm deals with leap years by making the year run from

the beginning of March (M

=

3) to the end of February (M

=

14), and that the

algorithm

is

about counting days from some starting point and then dealing with

things like leap

years. What

may be less obvious

is

the calculation of INT(2.6M

−

5.4).

Discussion

point

If you work out what this does for each month (from M = 3 to M = 14) you might start

to understand how Zeller’s algorithm works.

You need to be able to trace through an algorithm to find out what output

it

gives

for certain inputs. Sometimes an algorithm

is

not ‘fit for task’ which means that

it

does not always do what

it is

supposed to do.

If

you can find an input for which

the algorithm does not work then this immediately gives

a

counter-example and

disproves the algorithm. Sometimes

a

faulty algorithm can be

repaired.

For example:

●

you might need to build in

a

restriction on the inputs so that they cannot be

0,

or must be positive, or must be integers

●

you might need to correct an error such

as

choosing the wrong variable, an

arithmetic slip or

a

‘go to’ that loops back to the wrong step

●

you might need to add

a

condition to deal with special cases.

In Example 1.1 the values of the inputs

a, b

and

c

should be real

numbers. The

algorithm will not work when

a

has the value

0

so

it

has been disproved, unless the

value of

a

is

restricted to be non-zero.

In Chapter

3

you will learn that algorithms can also be developed and adapted to

deal with variations on

a

standard problem.

Note

Proving an algorithm

means showing that

the correct output is

always achieved for any

permitted input.

If there are only a small

number of possible

inputs, or if they can

be put into sets that all

behave similarly (such as

odd numbers and even

numbers) then it may

be possible to prove an

algorithm using proof by

exhaustion.

①

Construct

a

flowchart that can be used to check

if a

number

N

is

prime, where

N

is a

positive

integer and

N

> 2.

②

The following six steps define an algorithm:

Step

1

Think of

a

positive whole number

and call

it

X

Step

2

Write

X

in words (using letters)

Step

3

Let

Y

be the number of letters used

Step

4 If

Y

=

X

then stop

Step

5

Replace

X

by

Y

Step

6

Go to step

2

(i)

Apply the algorithm with

X

=

62.

(ii)

Show that for all values of

X

between

1

and

99 the algorithm produces the same answer.

You may use the fact that, when written out,

numbers between

1

and 99 all have twelve or

fewer letters.

[MEI]

③

The following algorithm

is

to be applied to the

positive integers from

2

to 99:

Step

1

Put

a

circle around

2

and then cross

out all remaining multiples of

2

Exercise 1.1

Algorithmic complexity

6

Step

2

Put

a

circle around the next uncrossed

number and then cross out all

remaining multiples of that number.

Step

3

Repeat step

2

until all are either

circled or crossed out.

(i)

Draw

a

ten-by-ten grid. Shade out the first

two squares and let the remaining squares

represent the integers from

2

to 99.

(ii)

Say what the algorithm finds.

[MEI]

④

Table 1.1 can be used to convert

a

number from

Roman numerals into ordinary base 10 numbers.

Row

M

D

C

L

X

V

I

1

1000

2

500

3

100

9

50

5

10 10

5 7 1

11

2

1000

2

500

3

100

9

50

5

10 10

5 7 1

11

3

100

9

50

5

10 10

5 7 1

11

4

100 4 50 5 10 10 5 7 1 11

5

50

6

10 10

5 7 1

11

6

10

6 5 7 1

11

7

5 8 1

11

8

1 8

9

800

5

300

5

100

4

50

6

10 10

5 8 1

11

10

80

7

30

7

10

6 5 8 1

11

11

8 0 3 0 1 8

Table 1.1

To illustrate how this works, take the Roman

numeral CIX

as

an example.

Always start by looking

at

row

1.

Look

at

the row

1

entry in the column headed

C

(the first symbol

in the Roman numeral) to find 100

9.

Add 100

to the running total (which was

0

originally) and

move to row

9.

Now look

at

row

9

in the column headed

I

(the second symbol in the Roman numeral) to

find

1

11. Add

1

to the running total and move

to row 11.

Finally look

at

row 11 in the column headed

X

(the third symbol in the Roman numeral) to

find

8 0.

Add

8

to the running total. Since this

was the last symbol in the Roman numeral the

algorithm now stops.

CIX

=

100

+ 1 + 8 =

109

(i)

Write this algorithm

as a

set of steps.

(ii)

What are the limitations of the algorithm?

(iii)

Write pseudocode instructions for

converting ordinary base 10 numbers into

Roman numerals.

[MEI adapted]

2

Algorithmic complexity

Most problems can be solved using

a

variety of algorithms, some of which might

be more efficient than others. By ‘efficient’ we usually mean using fewer operations

(which in turn means running more quickly and so taking less

time). There

might

be other considerations too, such

as

the amount of storage capacity needed

if

the

algorithm

is

to be run on

a

computer.

As

a

simple example of improving efficiency, look back to Example 1.1, where you

saw an algorithm to find the real roots of

a

quadratic equation.

It is a

good idea to

calculate the value of

b

2

−

4ac

as a

first step, because the sign of that value has to be

checked to see whether

it is

worth continuing with the calculation.

If

an algorithm requires the evaluation of

a

quadratic expression, the way in which

the expression

is

written can make

a

difference to the efficiency.

For example, 3x

2

+

2x

+ 9

can be written

as

(3x

+

2)x

+ 9. This

bracketed form

is

called

a

nested form.

1

7

When

x

= 5,

the evaluation with

a

calculator requires the following key presses:

3x

2

+

2x

+ 9:

3

multiplications

and

2

additions

(3x

+

2)x

+ 9:

2

multiplications

and

2

additions

The nested form uses fewer operations (multiplications and additions) so

it

should

be quicker (albeit by the tiniest amount of time).

Comparing the number of operations for

a

general polynomial of degree

n

gives:

a x a x

a x

a x a

n

n

n

n

+

+… +

+

+

−

−

1

1

2

2

1

0

1

1

2

()

+

n n

×

and

n

+

…

+

(

)

+

(

)

+

(

)

+ …

(

)

+

(

)

+

−

−

−

a x a

x a

x a x

a x a

n

n

n

n

1

2

3

1

0

n

×

and

n

+

The nested method has

linear order complexity

(or order

n

or O(n)) because

the time taken to run the calculation involves

n

1

as

the highest power of

n. The

expanded form has

quadratic order complexity

(or order

n

2

or O(n

2

))

because

the time taken

to

run the calculation will involve

n

2

as

the highest power

of

n.

Note

If any of the coefficients happened to be 0 then some work would be saved. It

is usual to focus on the worst case situation (rather than the best case or an

average case). This is partly because then any predictions about run-times

will be ‘worst case scenarios’ but mainly because the worst case is usually the

easiest to consider.

The nested method

is

more efficient than the expanded form because O(n)

is

a

lower order complexity than O(n

2

).

Irrespective of what the actual linear and

quadratic functions are that represent the run-time for the two methods for

a

polynomial of degree

n,

a

linear function will give lower values (smaller run-times)

than

a

quadratic function for realistic sized (huge) problems.

For example,

if it

takes

M

microseconds for

a

computer to multiply two numbers

and

A

microseconds for

it

to add two numbers then (once the programs have been

written) inputting the coefficients

is

the same for both methods and the run-time

is

1

2

n(n+1)M

+

nA

for the expanded form and

nM

+

nA

for the nested form.

Now, in this case,

1

2

n(n+1)M

+

nA

is

always bigger than

nM

+

nA,

but the details,

such

as

the

1

2

and the (n+1) are irrelevant,

if

n

is

huge all that matters

is

that

n

OEBPS/nav.xhtml

		Cover

		Title Page

		Copyright

		Contents

		Getting the most from this book

		1 Algorithms

		1.1 What is an algorithm?

		1.2 Algorithmic complexity

		1.3 Packing

		1.4 Sorting

		2 Modelling with graphs and networks

		2.1 The language of graphs and networks

		2.2 Modelling with graphs

		2.3 Modelling with networks

		3 Network algorithms

		3.1 Algorithms for minimum connector problems

		3.2 Finding the shortest path

		3.3 Calculating algorithmic complexities

		4 Further network problems

		4.1 Critical path analysis

		4.2 Network flows

		5 Linear programming

		5.1 Formulating linear programming problems

		5.2 Graphical solutions

		6 Simplex method

		6.1 Using a simplex tableau

		6.2 Non-standard forms

		6.3 Use of technology

		7 Reformulating network problems as linear programming problems

		7.1 Modelling paths and flows

		7.2 Modelling allocation problems

		Answers

			

						

					Cover

				

						

					C1

				

						

					i

				

						

					ii

				

						

					iii

				

						

					iv

				

						

					1

				

						

					2

				

						

					3

				

						

					4

				

						

					5

				

						

					6

				

						

					7

				

						

					8

				

						

					9

				

						

					10

				

						

					11

				

						

					12

				

						

					13

				

						

					14

				

						

					15

				

						

					16

				

						

					17

				

						

					18

				

						

					19

				

						

					20

				

						

					21

				

						

					22

				

						

					23

				

						

					24

				

						

					25

				

						

					26

				

						

					27

				

						

					28

				

						

					29

				

						

					30

				

						

					31

				

						

					32

				

						

					33

				

						

					34

				

						

					35

				

						

					36

				

						

					37

				

						

					38

				

						

					39

				

						

					40

				

						

					41

				

						

					42

				

						

					43

				

						

					44

				

						

					45

				

						

					46

				

						

					47

				

						

					48

				

						

					49

				

						

					50

				

						

					51

				

						

					52

				

						

					53

				

						

					54

				

						

					55

				

						

					56

				

						

					57

				

						

					58

				

						

					59

				

						

					60

				

						

					61

				

						

					62

				

						

					63

				

						

					64

				

						

					65

				

						

					66

				

						

					67

				

						

					68

				

						

					69

				

						

					70

				

						

					71

				

						

					72

				

						

					73

				

						

					74

				

						

					75

				

						

					76

				

						

					77

				

						

					78

				

						

					79

				

						

					80

				

						

					81

				

						

					82

				

						

					83

				

						

					84

				

						

					85

				

						

					86

				

						

					87

				

						

					88

				

						

					89

				

						

					90

				

						

					91

				

						

					92

				

						

					93

				

						

					94

				

						

					95

				

						

					96

				

						

					97

				

						

					98

				

						

					99

				

						

					100

				

						

					101

				

						

					102

				

						

					103

				

						

					104

				

						

					105

				

						

					106

				

						

					107

				

						

					108

				

						

					109

				

						

					110

				

						

					111

				

						

					112

				

						

					C2

				

						

					C3

				

			

		

Guide

		Cover

		Title Page

		Contents

		1 Algorithms

