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iv 








Getting 



the most from this book 








Mathematics 



is 



not only 



a 



beautiful and exciting subject 



in its 



own right but also one 








that underpins many other branches 



of 



learning. 



It is 



consequently fundamental 



to 



our 








national wellbeing. 












This textbook covers the content 



ofY413/Y433 



Modelling with Algorithms, one 



of 



the 












options 



in 



the MEI 



AS 



and 



A 



Level Further Mathematics specification. Some students will 












begin this course 



in 



year 



12 



alongside the 



A 



level course, whereas others only begin Further 












Mathematics when they have completed the full 



A 



Level Mathematics and 



so 



have already 












met some 



of 



the topics, 



or 



background 



to 



topics, covered 



in 



MEI 



A 



Level Mathematics (Year 



2). 












This book 



has 



been written with 



all 



these users 



in 



mind. 










The journey through the content 



of 



this book 



is 



described 



in 



diagrammatic form 



at 



the 








beginning 



of 



chapter one. 








Between 2014 and 2016 



A 



Level Mathematics and Further Mathematics were very 








substantially revised, 



for 



first teaching 



in 



2017. Changes include increased emphasis 



on 










● 



Problem solving 








● 



Mathematical rigour 








● 



Use 



of 



ICT 








● 



Modelling 













This book embraces these 



ideas. A 



large number 



of 



exercise questions involve elements 



of 












problem solving and require rigorous logical argument. Questions that invite the use 



of 












spreadsheets, graphical calculators 



or LP 



solvers 



are 



indicated with 



a 



computer screen icon. 










The use 



of 



software 



to 



solve LPs 



is 



crucial 



in 



the latter stages 



of 



the book, and there 








are 



many other opportunities 



for 



the use 



of 



technology 



to aid 



understanding 



of 



the 








concepts and methods. 








Modelling pervades the whole 



of 



this book. Every aspect 



of 



the modelling cycle 



is 








used. Real world problems 



are 



modelled 



as 



graph 



or 



network problems, 



as 



algorithms 








or as LPs. The 



solution has 



to be 



interpreted carefully 



in 



context and then the 








reasonableness 



of 



the answer checked. 










Throughout the book the emphasis 



is on 



understanding and interpretation rather than 












mere routine calculations, but the various exercises 



do 



nonetheless provide plenty 



of 



scope 












for 



practising basic techniques. 



In 



addition, extensive online support, including further 












questions, 



is 



available 



by 



subscription 



to 



MEI’s Integral website, http://integralmaths.org. 










There 



are 



places where the work depends 



on 



knowledge from earlier 



in 



the book 



or 








elsewhere and this 



is 



flagged 



up in 



the Prior knowledge 



boxes. This 



should 



be 



seen 



as 








an invitation to those who have problems with the particular topic to revisit it. At the 








end 



of 



each chapter there 



is a list of 



key points covered 



as 



well 



as a 



summary 



of 



the 








new knowledge (learning outcomes) that readers should have gained. 








Two common features 



of 



the book 



are 



Activities and Discussion 



points. These 



serve 








rather different 



purposes. The 



Activities 



are 



designed 



to 



help readers get into the 








thought processes 



of 



the new work that they 



are 



about 



to 



meet. The Discussion points 








invite readers 



to 



talk about particular points with their fellow students and their teacher 








and 



so 



enhance their understanding. 








Answers 



to all 



exercise questions 



are 



provided 



at 



the back 



of 



the book, and also online 








at 



www.hoddereducation.co.uk/MEIFurtherMathsModellingwithAlgorithms 








This 



is a 



4th edition MEI textbook so much of the material 



is 



well tried and tested. 








However, 



as a 



consequence 



of 



the changes 



to A 



Level requirements 



in 



Further Mathematics, 








large parts 



of 



the book 



are 



either new material 



or 



have been very substantially rewritten. 








Catherine Berry 








Roger Porkess 

















1 








1 








An 



algorithm must 



be 








seen 



to be 



believed. 








Donald Knuth (1938– ) 








Algorithms 








The journey through Modelling with Algorithms is shown in this flowchart. 










What problems can be 








modelled as a network? 








Model a problem 








with a network 








Different problems can be 








modelled with the same network 








Algorithms for sorting and 








packing 








Finding the shortest path 








or the maximum flow 








through a network 








Investigate LP 








problems graphically 








Integer variables 








Use an algorithm to 








solve the problem and 








interpret the solution 








For larger, authentic 








problems, reformulate 








as a linear programming 








(LP) problem 








Use simplex method 








or simplex software 








Interpret output 








How does simplex work? 








What is an algorithm? 








Does the algorithm give an 








optimal solution? How do you 








know? 








What happens if the problem is 








bigger? How much longer will 








the algorithm take to solve it? 










Figure 1.1 










Discussion point 








A friend asks you how to work out the perimeter of a triangle. 








What information would you need to know about the triangle before you can give  








an answer? 








1 What is an 



algorithm? 








An 



algorithm 



is a 



finite sequence 



of 



operations 



for 



carrying out 



a 



procedure 



or 








solving 



a 



problem. Cooking recipes, knitting patterns and instructions for making 








flat pack furniture are algorithms, but obviously these are not mathematical 








algorithms. 

















What is an algorithm? 








2 








ACTIVITY 1.1 








Do you know on which day of the week you were born? Zeller’s algorithm can be  








used to work it out. Try the algorithm using your date of birth.  










Zeller’s algorithm 








Example: 








29th Feb 2000 








Let day number 



= D 








Let month number 



= 



M 








Let year number 



= Y 








D = 



29 








M 



= 2 








Y = 



2000 








If 



M 



= 1 



or 



2, 



add 12 



to 



M and subtract 



1 



from 



Y 








M 



= 



14 








Y = 



1999 








Let 



C 



be the first two digits 



of Y 



and 



X 



be the last two digits 



of Y C = 



19 








X = 



99 








Calculate INT(2.6M 



– 5.4) + 



INT(X 



÷ 4) + 



INT(C 



÷ 4) + D + X – 2C 



31+24+4+29+99-38 








= 



149 








Find the remainder when this is divided by 7 








2 








If 



the remainder 



is 0 



the day was Sunday, 



if it is 1 



the day was 








Monday, and 



so 



on 








Tuesday 










This uses the current  








(new) value of Y. 








The remainder when N is  








divided by 7 is the same  








as N – 7 × INT(N ÷ 7) 








In mathematics an algorithm has an initial state and involves inputs, outputs and 








variables. The 



initial state 



is 



the ‘factory setting’ values of any variables that are not 








defined within the algorithm. Usually this means that all variables have the value 



0 








until they are updated. 








For Zeller’s algorithm 



as 



given above, the inputs are the initial values of D, M and Y; 








the output 



is 



the day and the variables are C, D, M, 



X 



and Y. 








The output may be printed or displayed. 








Communicating 



an 



algorithm 








How do you communicate an algorithm? The form of communication depends on 








who (for example 



a 



seven-year-old) or what (for example 



a 



computer) will be using 








the algorithm. 








Whatever method 



is 



used to communicate the steps of an algorithm 



it 



must be: 










●  



unambiguous, 



so the person or machine running the algorithm does not have 











to make any choices 










●  



deterministic, 



so there 



is 



no chance or randomness involved 








●  



finite, 



so the algorithm stops. 











This means that each time the algorithm 



is 



used with 



a 



certain input, 



it 



gives the 








same output, and that 



it 



does this in 



a 



finite number of steps. 








An algorithm may be communicated in ordinary language, in 



a 



flowchart 



or in 








pseudocode. 



A 



flowchart was used to show the journey through Modelling with 








Algorithms 



at 



the start of this chapter. 








INT(N) is the integer part  








of N. This is the largest  








integer that is less than or  








equal to N. For example,  








INT(2.3) = 2, INT(6.7) = 6,  








INT(4) = 4 and INT(0) = 0.   








The integer part of a  








negative number N is the  








negative of INT(−N), for  








example, INT(−1.7) = −1. 

















1 








3 








Zeller’s algorithm could be written in pseudocode as: 








Step 



1 



Let 



D 



be day number 








Let M be month number 








Let 



Y be 



year number 










Step 



2 If 



M 



< 3 



then M 



= 



M 



+ 



12 and 



Y = Y – 1 








Step 



3 



Let 



C = 



INT(Y 



÷ 



100) 








Let 



X = Y – 



(100 



× 



C) 








Step 



4 



Let 



S = 



INT(2.6M 



– 



5.4) 



+ 



INT(X 



÷ 



4) 



+ 



INT(C 



÷ 



4) 



+ D + X – 



2C 








Step 



5 



Let 



A = S – 



(7 



× 



INT(S 



÷ 



7)) and display the value of 



A 










Note that the output 



is 



the day number and not the name of the day. 








Algorithms for mathematical processes can usually be broken up into 



a 



number of 








sequential steps. Sometimes an algorithm will involve decisions (‘if … then …’) 








and may loop back to an earlier step (‘go to step …’). 








Algorithms may involve iterative 



processes. This 



means that after completing one 








pass 



through the instructions 



a 



solution has been obtained that may only be part 








way to the answer to the problem. By going back and carrying out further passes 








the solution can be improved. 








For example, an algorithm for finding square roots 



is 



given below: 








Step 



1 



Input 



a 



positive number N 










Step 



2 



Let 



A = 








A + 








N 








A 








1 








2 








 








 








 








 








N 








Step 



3 



Let 



B = 








A + 








N 








A 








1 








2 








 








 








 








 








Step 



4 If 



(A 



– 



B) 








2 








< 



0.001 then go to step 



6 










Step 



5 



Let 



A = B 



and then go to step 



3 








Step 



6 



Display the value 



of B 



and STOP 










M = M + 12 means  








that the value of (old)  








M + 12 becomes the  








value of (new) M. 








Completing a pass means  








that you have worked  








through the instructions  








once, as far as either  








terminating or looping  








back to an earlier step. 








Example 1.1 








The real roots of 



a 



quadratic equation 










ax 








2 








+ 



bx 



+ 



c 



= 0 (a 



≠ 



0) 








can be found using the quadratic formula 










x 








b 








b 








ac 








a 








= 








− ± 








− 








2 








4 








2 








. 








(i) Use 



a 



flowchart to represent an algorithm for solving 



a 



quadratic equation. 








(ii) Write the algorithm in pseudocode. 








➜ 








ACTIVITY 1.2 








Work through this algorithm with N = 2. The algorithm loops back to step 3,  








a pass occurs each time that step 3 is used. How many passes are carried out? 

















What is an algorithm? 








4 








Solution 










Input 



a, b, 



c 








d 



= 



b 








2 








− 4ac 








No 








Yes 








Stop 








Is 



d 



³ 



0? 








Print 



x 



1, 



x 



2 








x 



1 



= (−b + 



Öd 



) ÷ (2a) 








x 



2 



= (−b − 



Öd 



) ÷ (2a) 








Print ‘No real 








solutions’ 










Figure 1.2 










(i) 








(ii) Step 



1 



Let 



d 



= 



b 








2 








– 



4ac 








Step 



2 If 



d 



< 0 



print 








‘no real solutions’ 








and go to step 



5 








Step 



3 



Let 



x 



1 



= 








− + − 








b b ac 








a 








2 








4 








2 








Let 



x 



2 



= 








− − − 








b b ac 








a 








2 








4 








2 








Step 



4 



Print 



x 



1 



and 



x 



2 








Step 



5 



STOP 










This is one possible solution. 








An algorithm gives the logical structure that underlies 



a 



computer program for 








solving 



a 



problem. Modelling with algorithms has obvious connections with 








computer science but does not require programming skills or knowledge of any 








specific computing language. 








ACTIVITY 1.3 








Below are two algorithms, one expressed in pseudocode and the other as a flowchart. 








Russian algorithm for multiplying two  








integers 








Step 



1  





      Write	the	two	numbers	side	 








by side 








Step 



2  





      Beneath	the	left	number	 








write double that number  








Beneath the right number  








write the integer part of half  








that number 








Step 



3  





      Repeat	step	2	until	the	right	 








number is 1 








Step 



4  





      Delete	those	rows	where	the	 








number in the right column  








is even  








Step 



5  





      Add	up	the	remaining	 








numbers in the left column.  








This is the result of multiplying  








the original numbers 








Euclid’s method for finding the highest  








common factor of two positive integers x  








and y 










Input 



x, y 








Output 



x 








Yes 








Subtract 



y 



from 








x 



to get a new 








value of 



x 








Subtract 



x 



from 








y 



to get a new 








value of 



y 








Yes 








Yes 








No 








No 








No 








Is 



x 



> 



y 



? 








Is 



x 



< 



y 



? 








Does 



x 



= 



y 



? 










Figure 1.3 








Work through the Russian algorithm with left number 13 and right number 37. 








Work through the Euclidean algorithm with x = 6 and y = 15. 








How could you represent these algorithms differently?  








What different type of user might each representation be suitable for? 








Note 








The word ‘algorithm’  








has become more  








commonplace since  








the development of the  








computer. A computer  








program is simply an  








algorithm written in such  








a way that a machine can  








carry it out.  

















1 








5 








Proving that an algorithm does achieve what 



it is 



supposed to do 



is 



often quite tricky. 








For example even 



if 



you believe that Zeller’s algorithm does what 



it is 



supposed to do, 








it is 



quite 



a 



task to ‘unpick’ 



it 



and show that 



it 



does the right 



thing. You 



can probably 








see that step 



2 



of Zeller’s algorithm deals with leap years by making the year run from 








the beginning of March (M 



= 



3) to the end of February (M 



= 



14), and that the 








algorithm 



is 



about counting days from some starting point and then dealing with 








things like leap 



years. What 



may be less obvious 



is 



the calculation of INT(2.6M 



− 



5.4). 








Discussion 



point 








If you work out what this does for each month (from M = 3 to M = 14) you might start  








to understand how Zeller’s algorithm works.  








You need to be able to trace through an algorithm to find out what output 



it 



gives 








for certain inputs. Sometimes an algorithm 



is 



not ‘fit for task’ which means that 



it 








does not always do what 



it is 



supposed to do. 



If 



you can find an input for which 








the algorithm does not work then this immediately gives 



a 



counter-example and 








disproves the algorithm. Sometimes 



a 



faulty algorithm can be 



repaired. 








For example: 










●  



you might need to build in 



a 



restriction on the inputs so that they cannot be 



0, 











or must be positive, or must be integers 










●  



you might need to correct an error such 



as 



choosing the wrong variable, an 











arithmetic slip or 



a 



‘go to’ that loops back to the wrong step 










●  



you might need to add 



a 



condition to deal with special cases. 











In Example 1.1 the values of the inputs 



a, b 



and 



c 



should be real 



numbers. The 








algorithm will not work when 



a 



has the value 



0 



so 



it 



has been disproved, unless the 








value of 



a 



is 



restricted to be non-zero. 








In Chapter 



3 



you will learn that algorithms can also be developed and adapted to 








deal with variations on 



a 



standard problem. 








Note 








Proving an algorithm  








means showing that  








the correct output is  








always achieved for any  








permitted input. 








If there are only a small  








number of possible  








inputs, or if they can  








be put into sets that all  








behave similarly (such as  








odd numbers and even  








numbers) then it may  








be possible to prove an  








algorithm using proof by  








exhaustion. 










① 



Construct 



a 



flowchart that can be used to check 











if a 



number 



N 



is 



prime, where 



N 



is a 



positive 








integer and 



N 



> 2. 










② 



The following six steps define an algorithm: 











Step 



1 



Think of 



a 



positive whole number 








and call 



it 



X 








Step 



2 



Write 



X 



in words (using letters) 








Step 



3 



Let 



Y 



be the number of letters used 








Step 



4 If 



Y 



= 



X 



then stop 








Step 



5 



Replace 



X 



by 



Y 








Step 



6 



Go to step 



2 










(i)  



Apply the algorithm with 



X 



= 



62. 








(ii)  



Show that for all values of 



X 



between 



1 



and 











99 the algorithm produces the same answer. 








You may use the fact that, when written out, 








numbers between 



1 



and 99 all have twelve or 








fewer letters. 










       








[MEI] 










③  



The following algorithm 



is 



to be applied to the 











positive integers from 



2 



to 99: 








Step 



1 



Put 



a 



circle around 



2 



and then cross 








out all remaining multiples of 



2 








Exercise 1.1 

















Algorithmic complexity 








6 








Step 



2 



Put 



a 



circle around the next uncrossed 








number and then cross out all 








remaining multiples of that number. 








Step 



3 



Repeat step 



2 



until all are either 








circled or crossed out. 










(i)  



Draw 



a 



ten-by-ten grid. Shade out the first 











two squares and let the remaining squares 








represent the integers from 



2 



to 99. 










(ii)  



Say what the algorithm finds. 
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④  



Table 1.1 can be used to convert 



a 



number from 











Roman numerals into ordinary base 10 numbers. 










Row 








M 








D 








C 








L 








X 








V 








I 








1 








1000 



2 



500 



3 



100 



9 



50 



5 



10 10 



5 7 1 



11 








2 








1000 



2 



500 



3 



100 



9 



50 



5 



10 10 



5 7 1 



11 








3 








100 



9 



50 



5 



10 10 



5 7 1 



11 








4 








100 4 50 5 10 10 5 7 1 11 








5 








50 



6 



10 10 



5 7 1 



11 








6 








10 



6 5 7 1 



11 








7 








5 8 1 



11 








8 








1 8 








9 








800 



5 



300 



5 



100 



4 



50 



6 



10 10 



5 8 1 



11 








10 








80 



7 



30 



7 



10 



6 5 8 1 



11 








11 








8 0 3 0 1 8 










Table 1.1 










       








To illustrate how this works, take the Roman 








numeral CIX 



as 



an example. 










       








Always start by looking 



at 



row 



1. 



Look 



at 



the row 








1 



entry in the column headed 



C 



(the first symbol 










in the Roman numeral) to find 100 



9. 



Add 100 








to the running total (which was 



0 



originally) and 








move to row 



9. 










       








Now look 



at 



row 



9 



in the column headed 



I 








(the second symbol in the Roman numeral) to 








find 



1 



11. Add 



1 



to the running total and move 








to row 11. 










       








Finally look 



at 



row 11 in the column headed 








X 



(the third symbol in the Roman numeral) to 








find 



8 0. 



Add 



8 



to the running total. Since this 








was the last symbol in the Roman numeral the 








algorithm now stops. 










       








CIX 



= 



100 



+ 1 + 8 = 



109 










(i)  



Write this algorithm 



as a 



set of steps. 








(ii)  



What are the limitations of the algorithm? 








(iii)  



Write pseudocode instructions for 











converting ordinary base 10 numbers into 








Roman numerals. 








[MEI adapted] 








2 



Algorithmic complexity 








Most problems can be solved using 



a 



variety of algorithms, some of which might 








be more efficient than others. By ‘efficient’ we usually mean using fewer operations 








(which in turn means running more quickly and so taking less 



time). There 



might 








be other considerations too, such 



as 



the amount of storage capacity needed 



if 



the 








algorithm 



is 



to be run on 



a 



computer. 










As 



a 



simple example of improving efficiency, look back to Example 1.1, where you 








saw an algorithm to find the real roots of 



a 



quadratic equation. 



It is a 



good idea to 








calculate the value of 



b 








2 








− 



4ac 



as a 



first step, because the sign of that value has to be 








checked to see whether 



it is 



worth continuing with the calculation. 










If 



an algorithm requires the evaluation of 



a 



quadratic expression, the way in which 








the expression 



is 



written can make 



a 



difference to the efficiency. 










For example, 3x 








2 








+ 



2x 



+ 9 



can be written 



as 



(3x 



+ 



2)x 



+ 9. This 



bracketed form 



is 








called 



a 



nested form. 

















1 








7 








When 



x 



= 5, 



the evaluation with 



a 



calculator requires the following key presses: 








3x 








2 








+ 



2x 



+ 9: 








3 



multiplications 








and 



2 



additions 








(3x 



+ 



2)x 



+ 9: 








2 



multiplications 








and 



2 



additions 








The nested form uses fewer operations (multiplications and additions) so 



it 



should 








be quicker (albeit by the tiniest amount of time). 








Comparing the number of operations for 



a 



general polynomial of degree 



n 



gives: 








a x a x 








a x 








a x a 








n 








n 








n 








n 








+ 








+… + 








+ 








+ 








− 








− 








1 








1 








2 








2 








1 








0 








  








1 








1 








2 








( ) 








+ 








n n 








× 



and 



n 



+ 








… 








+ 








( 








) 



+ 








( 








) 



+ 








( 








) 



+ … 








( 








) 



+ 








( 








) 



+ 








− 








− 








− 








a x a 








x a 








x a x 








a x a 








n 








n 








n 








n 








1 








2 








3 








1 








0 



  








n 



× 



and 



n 



+ 








The nested method has 



linear order complexity 



(or order 



n 



or O(n)) because 








the time taken to run the calculation involves 



n 








1 








as 



the highest power of 



n. The 








expanded form has 



quadratic order complexity 



(or order 



n 








2 








or O(n 








2 








)) 



because 








the time taken 



to 



run the calculation will involve 



n 








2 








as 



the highest power 



of 



n. 








Note 








If any of the coefficients happened to be 0 then some work would be saved. It  








is usual to focus on the worst case situation (rather than the best case or an  








average case). This is partly because then any predictions about run-times  








will be ‘worst case scenarios’ but mainly because the worst case is usually the  








easiest to consider. 








The nested method 



is 



more efficient than the expanded form because O(n) 



is 








a 



lower order complexity than O(n 








2 








). 



Irrespective of what the actual linear and 








quadratic functions are that represent the run-time for the two methods for 



a 








polynomial of degree 



n, 



a 



linear function will give lower values (smaller run-times) 








than 



a 



quadratic function for realistic sized (huge) problems. 








For example, 



if it 



takes 



M 



microseconds for 



a 



computer to multiply two numbers 








and 



A 



microseconds for 



it 



to add two numbers then (once the programs have been 








written) inputting the coefficients 



is 



the same for both methods and the run-time 



is 








1 








2 








n(n+1)M 



+ 



nA 



for the expanded form and 



nM 



+ 



nA 



for the nested form. 








Now, in this case, 



1 








2 








n(n+1)M 



+ 



nA 



is 



always bigger than 



nM 



+ 



nA, 



but the details, 








such 



as 



the 



1 








2 








and the (n+1) are irrelevant, 



if 



n 



is 



huge all that matters 



is 



that 



n 
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