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Introduction


Commutative algebra is essentially the study of commutative rings. Roughly speaking, it has developed from two sources: (1) algebraic geometry and (2) algebraic number theory. In (1) the prototype of the rings studied is the ring k[x1, …, xn] of polynomials in several variables over a field k; in (2) it is the ring Z of rational integers. Of these two the algebro-geometric case is the more far-reaching and, in its modern development by Grothendieck, it embraces much of algebraic number theory. Commutative algebra is now one of the foundation stones of this new algebraic geometry. It provides the complete local tools for the subject in much the same way as differential analysis provides the tools for differential geometry.

This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of providing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts on commutative algebra such as Zariski-Samuel [4] or Bourbaki [1]. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott [3] and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.

The central notion in commutative algebra is that of a prime ideal. This provides a common generalization of the primes of arithmetic and the points of geometry. The geometric notion of concentrating attention “near a point” has as its algebraic analogue the important process of localizing a ring at a prime ideal. It is not surprising, therefore, that results about localization can usefully be thought of in geometric terms. This is done methodically in Grothendieck’s theory of schemes and, partly as an introduction to Grothendieck’s work [2], and partly because of the geometric insight it provides, we have added schematic versions of many results in the form of exercises and remarks.

The lecture-note origin of this book accounts for the rather terse style, with little general padding, and for the condensed account of many proofs. We have resisted the temptation to expand it in the hope that the brevity of our presentation will make clearer the mathematical structure of what is by now an elegant and attractive theory. Our philosophy has been to build up to the main theorems in a succession of simple steps and to omit routine verifications.

Anyone writing now on commutative algebra faces a dilemma in connection with homological algebra, which plays such an important part in modem developments. A proper treatment of homological algebra is impossible within the confines of a small book: on the other hand, it is hardly sensible to ignore it completely. The compromise we have adopted is to use elementary homological methods—exact sequences, diagrams, etc.—but to stop short of any results requiring a deep study of homology. In this way we hope to prepare the ground for a systematic course on homological algebra which the reader should undertake if he wishes to pursue algebraic geometry in any depth.

We have provided a substantial number of exercises at the end of each chapter. Some of them are easy and some of them are hard. Usually we have provided hints, and sometimes complete solutions, to the hard ones. We are indebted to Mr. R. Y. Sharp, who worked through them all and saved us from error more than once.

We have made no attempt to describe the contributions of the many mathematicians who have helped to develop the theory as expounded in this book. We would, however, like to put on record our indebtedness to J.-P. Serre and J. Tate from whom we learnt the subject, and whose influence was the determining factor in our choice of material and mode of presentation.
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Notation and Terminology


Rings and modules are denoted by capital italic letters, elements of them by small italic letters. A field is often denoted by k. Ideals are denoted by small German characters. Z, Q, R, C denote respectively the ring of rational integers, the field of rational numbers, the field of real numbers and the field of complex numbers.

Mappings are consistently written on the left, thus the image of an element x under a mapping f is written f(x) and not (x)f. The composition of mappings f: X → Y, g: Y → Z is therefore g [image: image] f, not f [image: image] g.

A mapping f: X → Y is injective if f(x1) = f(x2) implies x1 = x2; surjective if f(X) = Y; bijective if both injective and surjective.

The end of a proof (or absence of proof) is marked thus [image: image].

Inclusion of sets is denoted by the sign ⊆. We reserve the sign ⊂ for strict inclusion. Thus A ⊂ B means that A is contained in B and is not equal to B.
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Rings and Ideals

We shall begin by reviewing rapidly the definition and elementary properties of rings. This will indicate how much we are going to assume of the reader and it will also serve to fix notation and conventions. After this review we pass on to a discussion of prime and maximal ideals. The remainder of the chapter is devoted to explaining the various elementary operations which can be performed on ideals. The Grothendieck language of schemes is dealt with in the exercises at the end.

RINGS AND RING HOMOMORPHISMS

A ring A is a set with two binary operations(addition and multiplication) such that

1)  A is an abelian group with respect to addition (so that A has a zero element, denoted by 0, and every x ∈ A has an (additive) inverse, –x).

2)  Multiplication is associative ((xy)z = x(yz)) and distributive over addition (x(y + z) = xy + xz, (y + z)x = yx + zx).

We shall consider only rings which are commutative:

3)  xy = yx for all x, y ∈ A,

and have an identity element (denoted by 1):

4)  31 ∈ A such that x1 = 1x = x for all x ∈ A.

The identity element is then unique.

Throughout this book the word “ring” shall mean a commutative ring with an identity element, that is, a ring satisfying axioms (1) to (4) above.

Remark. We do not exclude the possibility in (4) that 1 might be equal to 0. If so, then for any x ∈ A we have

x = x1 = x0 = 0

and so A has only one element, 0. In this case A is the zero ring, denoted by 0 (by abuse of notation).

A ring homomorphism is a mapping f of a ring A into a ring B such that

 i)  f(x + y) = f(x) + f(y)(so that f is a homomorphism of abelian groups, and therefore also f(x – y) = f(x) – f(y), f(–x) = –f(x), f(0) = 0),

 ii)  f(xy) = f(x)f(y),

iii)  f(1)= 1.

In other words, f respects addition, multiplication and the identity element.

A subset S of a ring A is a subring of A if S is closed under addition and multiplication and contains the identity element of A. The identity mapping of S into A is then a ring homomorphism.

If f: A → B, g: B → C are ring homomorphisms then so is their composition g ° f: A → C.

IDEALS. QUOTIENT RINGS

An ideal a of a ring A is a subset of A which is an additive subgroup and is such that Aa ⊆ a (i.e., x ∈ A and y ∈ a imply xy ∈ a). The quotient group A/a inherits a uniquely defined multiplication from A which makes it into a ring, called the quotient ring (or residue-class ring) A/a. The elements of A/a are the cosets of a in A, and the mapping ϕ: A → A/a which maps each x ∈ A to its coset x + a is a surjective ring homomorphism.

We shall frequently use the following fact:

Proposition 1.1. There is a one-to-one order-preserving correspondence between the ideals b of A which contain a, and the ideals [image: image] of A/a, given by b = ϕ–1([image: image]). [image: image]

If f: A → B is any ring homomorphism, the kernel of f(=f–1(0)) is an ideal a of A, and the image of f(=f(A)) is a subring C of B; and f induces a ring isomorphism A/a ≅ C.

We shall sometimes use the notation x ≡ y (mod a); this means that x – y ∈ a.

ZERO-DIVISORS. MLPOTENT ELEMENTS. UNITS

A zero-divisor in a ring A is an element x which “divides 0”, i.e., for which there exists y ≠ 0 in A such that xy = 0. A ring with no zero-divisors ≠0 (and in which 1 ≠ 0) is called an integral domain. For example, Z and k[x1, . . . , xn] (k a field, x1 indeterminates) are integral domains.

An element x ∈ A is nilpotent if xn = 0 for some n > 0. A nilpotent element is a zero-divisor (unless A = 0), but not conversely (in general).

A unit in A is an element x which “divides 1”, i.e., an element x such that xy = 1 for some y ∈ A. The element y is then uniquely determined by x, and is written x–1. The units in A form a (multiplicative) abelian group.

The multiples ax of an element x ∈ A form a principal ideal, denoted by (x) or Ax. x is a unit ⇔ (x) = A = (1). The zero ideal (0) is usually denoted by 0.

A field is a ring A in which 1 ≠ 0 and every non-zero element is a unit. Every field is an integral domain (but not conversely: Z is not a field).

Proposition 1.2. Let A be a ring ≠ 0. Then the following are equivalent:

  i)  A is a field;

 ii)  the only ideals in A are 0 and (1);

iii)  every homomorphism of A into a non-zero ring B is infective.

Proof. i) ⇒ ii). Let a ≠ 0 be an ideal in A. Then a contains a non-zero element x; x is a unit, hence a ⊇ (x) = (1), hence a = (1).

ii) ⇒ iii). Let ϕ: A → B be a ring homomorphism. Then Ker (ϕ) is an ideal ≠ (1) in A, hence Ker (ϕ) = 0, hence (ϕ) is injective.

iii) ⇒ i). Let x be an element of A which is not a unit. Then (x) ≠ (1), hence B = A/(x) is not the zero ring. Let ϕ: A → B be the natural homomorphism of A onto B, with kernel (x). By hypothesis, ϕ is injective, hence (x) = 0, hence x = 0. [image: image]

PRIME IDEALS AND MAXIMAL IDEALS

An ideal þ in A is prime if þ ≠ (1) and if xy ∈ þ ⇒ x ∈ þ or y ∈ þ.

An ideal m in A is maximal if m ≠ (1) and if there is no ideal a such that m ⊂ a ⊂ (1) (strict inclusions). Equivalently:

þ is prime ⇔ A/þ is an integral domain;

m is maximal ⇔ A/m is a field (by (1.1) and (1.2)).

Hence a maximal ideal is prime (but not conversely, in general). The zero ideal is prime ⇔ A is an integral domain.

If f: A → B is a ring homomorphism and q is a prime ideal in B, then f–1(q) is a prime ideal in A, for A/f–1(q) is isomorphic to a subring of B/q and hence has no zero-divisor ≠ 0. But if n is a maximal ideal of B it is not necessarily true that f–1(n) is maximal in A; all we can say for sure is that it is prime. (Example: A = Z, B = Q, n = 0.)

Prime ideals are fundamental to the whole of commutative algebra. The following theorem and its corollaries ensure that there is always a sufficient supply of them.

Theorem 1.3. Every ring A ≠ 0 has at least one maximal ideal. (Remember that “ring” means commutative ring with 1.)

Proof. This is a standard application of Zorn’s lemma.* Let Σ be the set of all ideals ≠ (1) in A. Order Σ by inclusion. Σ is not empty, since 0 ∈ Σ. To apply Zorn’s lemma we must show that every chain in Σ has an upper bound in Σ; let then (aα) be a chain of ideals in Σ, so that for each pair of indices α, β we have either aα ⊆ aβ or aβ ⊆ aα. Let a = ∪α aα. Then a is an ideal (verify this) and 1 ∉ a because 1 ∉ aα for all α. Hence a ∈ Σ, and a is an upper bound of the chain. Hence by Zorn’s lemma Σ has a maximal element. [image: image]

Corollary 1.4. if a ≠ (1) is an ideal of A, there exists a maximal ideal of A containing a.

Proof. Apply (1.3) to A/a bearing in mind (1.1). Alternatively, modify the proof of (1.3). [image: image]

Corollary 1.5. Every non-unit of A is contained in a maximal ideal. [image: image]

Remarks. 1) If A is Noetherian (Chapter 7) we can avoid the use of Zorn’s lemma: the set of all ideals ≠ (1) has a maximal element.

2) There exist rings with exactly one maximal ideal, for example fields. A ring A with exactly one maximal ideal m is called a local ring. The field k = A/m is called the residue field of A.

Proposition 1.6. i) Let A be a ring and m ≠ (1) an ideal of A such that every x ∈ A – m is a unit in A. Then A is a local ring and m its maximal ideal.

ii) Let A be a ring and m a maximal ideal of A, such that every element of 1 + m (i.e., every 1 + x, where ∈ m) is a unit in A. Then A is a local ring.

Proof. i) Every ideal ≠ (1) consists of non-units, hence is contained in m. Hence m is the only maximal ideal of A.

ii) Let x ∈ A – m. Since m is maximal, the ideal generated by x and m is (1), hence there exist y ∈ A and t ∈ m such that xy + t = 1; hence xy = 1 – t belongs to 1 + m and therefore is a unit. Now use i). [image: image]

A ring with only a finite number of maximal ideals is called semi-local.

Examples. 1) A = k[x1,···, xn], k a field. Let f ∈ A be an irreducible polynomial. By unique factorization, the ideal (f) is prime.

2) A = Z. Every ideal in Z is of the form (m) for some m ≥ 0. The ideal (m) is prime ⇔ m = 0 or a prime number. All the ideals (p), where p is a prime number, are maximal: Z/(p) is the field of p elements.

The same holds in Example 1) for n = 1, but not for n > 1. The ideal m of all polynomials in A = k[x1, ···, xn] with zero constant term is maximal (since it is the kernel of the homomorphism A → k which maps f ∈ A to f(0)). But if n > 1, m is not a principal ideal: in fact it requires at least n generators.

3) A principal ideal domain is an integral domain in which every ideal is principal. In such a ring every non-zero prime ideal is maximal. For if (x) ≠ 0 is a prime ideal and (y) ⊃ (x), we have x ∈ (y), say x = yz, so that yz ∈ (x) and y ∉ (x), hence z ∈(x): say z = tx. Then x = yz = ytx, so that yt = 1 and therefore (y) = (1).

NILRADICAL AND JACOBSON RADICAL

Proposition 1.7. The set [image: image] of all nilpotent elements in a ring A is an ideal, and A/[image: image] has no nilpotent element ≠ 0.

Proof. If x ∈ [image: image], clearly ax ∈ [image: image] for all a ∈ A. Let x ∈ [image: image]: say xm = 0, yn = 0. By the binomial theorem (which is valid in any commutative ring), (x + y)m+n–1 is a sum of integer multiples of products xrys, where r + s = m – 1; we cannot have both r < m and s < n, hence each of these products vanishes and therefore (x + y)m+n–1 = 0. Hence x + y ∈ [image: image] and therefore [image: image] is an ideal.

Let [image: image] be represented by x ∈ A. Then [image: image] is represented by xn, so that [image: image] = 0 ⇒ xn ∈ [image: image] ⇒ (xn)k = 0 for some k > 0 ⇒ x ∈ [image: image] ⇒ [image: image] = 0. [image: image]

The ideal [image: image] is called the nilradical of A. The following proposition gives an alternative definition of [image: image]:

Proposition 1.8. The nilradical of A is the intersection of all the prime ideals of A.

Proof. Let [image: image] denote the intersection of all the prime ideals of A. If f ∈ A is nilpotent and if þ is a prime ideal, then fn = 0 ∈ þ for some n > 0, hence f ∈ þ (because þ is prime). Hence f ∈ [image: image].

Conversely, suppose that f is not nilpotent. Let Σ be the set of ideals a with the property

n > 0 ⇒ fn ∉ a

Then Σ is not empty because 0 ∈ Σ. As in (1.3) Zorn’s lemma can be applied to the set Σ, ordered by inclusion, and therefore Σ has a maximal element. Let þ be a maximal element of Σ. We shall show that þ is a prime ideal. Let x, y ∉ þ. Then the ideals þ + (x), þ + (y) strictly contain þ and therefore do not belong to Σ; hence

fm ∈ þ + (x),   fn ∈ þ + (y)

for some m, n. It follows that fm+n ∈ þ + (xy), hence the ideal þ + (xy) is not in Σ and therefore xy ∉ þ. Hence we have a prime ideal þ such that f ∉ þ, so that f ∉ [image: image]. [image: image]

The Jacobson radical [image: image] of A is defined to be the intersection of all the maximal ideals of A. It can be characterized as follows:

Proposition 1.9. [image: image] is a unit in A for all y ∈ A.

Proof. ⇒: Suppose 1 – xy is not a unit. By (1.5) it belongs to some maximal ideal m; but x ∈ [image: image] ⊆ m, hence xy ∈ m and therefore 1 ∈ m, which is absurd.

⇐: Suppose x ∉ m for some maximal ideal m. Then m and x generate the unit ideal (1), so that we have u + xy = 1 for some u ∈ m and some y ∈ A. Hence 1 – xy ∈ m and is therefore not a unit. [image: image]

OPERATIONS ON IDEALS

If a, b are ideals in a ring A, their sum a + b is the set of all x + y where x ∈ a and y ∈ b. It is the smallest ideal containing a and b. More generally, we may define the sum [image: image] of any family (possibly infinite) of ideals ai of A; its elements are all sums Σxi, where xi ∈ ai for all i ∈ I and almost all of the xi (i.e., all but a finite set) are zero. It is the smallest ideal of A which contains all the ideals ai.

The intersection of any family (ai)i∈I of ideals is an ideal. Thus the ideals of A form a complete lattice with respect to inclusion.

The product of two ideals a, b in A is the ideal ab generated by all products xy, where x ∈ a and y ∈ b. It is the set of all finite sums Σxiyi where each xi ∈ a and each yi ∈ b. Similarly we define the product of any finite family of ideals. In particular the powers an (n > 0) of an ideal a are defined; conventionally, a0 = (1). Thus an (n > 0) is the ideal generated by all products x1x2···xn in which each factor xi belongs to a.

Examples. 1) If A = Z, a = (m), b = (n) then a + b is the ideal generated by the h.c.f. of m and n; a ∩ b is the ideal generated by their l.c.m.; and ab = (mn). Thus (in this case) ab = a ∩ b ⇔m, n coprime.

2) A = k[x1, ···, xn], a = (x1, ···, xn) = ideal generated by x1, ···, xn. Then am is the set of all polynomials with no terms of degree < m.

The three operations so far defined (sum, intersection, product) are all commutative and associative. Also there is the distributive law

a(b + c) = ab + ac.

In the ring Z, ∩ and + are distributive over each other. This is not the case in general, and the best we have in this direction is the modular law

a ∩ (b + c) = a ∩ b + a ∩ c if a ⊇ b or a ⊇ c.

Again, in Z, we have (a + b)(a ∩ b) = ab; but in general we have only (a + b)(a ∩ b) ⊆ (since (a + b)(a ∩ b) = a(a ∩ b) + b(a ∩ b) ⊆ ab). Clearly ab ⊆ a ∩ b, hence

a ∩ b = ab provided a + b = (1).

Two ideals a, b are said to be coprime (or comaximal) if a + b = (1). Thus for coprime ideals we have a ∩ b = ab. Clearly two ideals a, b are coprime if and only if there exist x ∈ a and y ∈ b such that x + y = 1.

Let Ai, ···, An be rings. Their direct product

[image: image]

is the set of all sequences x = (xi, ···, xn) with xi ∈ Ax(1 ≤ i ≤n) and componentwise addition and multiplication. A is a commutative ring with identity element (1, 1, ···, 1). We have projections pi: A → Ai defined by pi(x) = xi; they are ring homomorphisms.

Let A be a ring and a1, ···, an ideals of A. Define a homomorphism

[image: image]

by the rule ϕ(x) = (x + a1, ···, x + an).

Proposition 1.10. i) If ai, aj are coprime whenever i ≠ j, then [image: image].

 ii)  ϕ is surjective ⇔ ai, aj are coprime whenever i ≠ j

iii)  ϕ is injective ⇔ ∩ ai = (0).

Prooof. i) by induction on n. The case n = 2 is dealt with above. Suppose n > 2 and the result true for a1, ···, an–1, and let [image: image]. Since [image: image] we have equations [image: image] and therefore

[image: image]

Hence an + b = (1) and so

[image: image]

ii) ⇒: Let us show for example that a1, a2 are coprime. There exists x ∈ A such that ϕ(x) = (1, 0, ···, 0); hence x ≡ 1 (mod a1) and x ≡ 0 (mod a2), so that

[image: image]

⇐: It is enough to show, for example, that there is an element x ∈ A such that ϕ(x) = (1, 0, ···, 0). Since a1 + ai = (1)(i > 1) we have equations ui + vi = 1 (ui ∈ a1, vi ∈ ai). Take [image: image] and x ≡ 0 (mod ai), i > 1. Hence ϕ(x) = (1, 0, ···, 0) as required.

iii) Clear, since ∩ ai is the kernel of ϕ. [image: image]

The union a ∪ b of ideals is not in general an ideal.

Proposition 1.11. i) Let þ1, ···, þn be prime ideals and let a be an ideal contained in [image: image]. Then a ⊆ þi for some i.

ii) Let a1, ···, an be ideals and let þ be a prime ideal containing [image: image]. Then þ ⊇ ai for some i. If þ = ∩ ai, then þ = ai for some i.

Proof. i) is proved by induction on n in the form

[image: image]

It is certainly true for n = 1. If n > 1 and the result is true for n – 1, then for each i there exists x ∈ a such that xi ∉ þj whenever j ≠ i. If for some i we have xi ∉ þi, we are through. If not, then xi ∈ þi for all i. Consider the element

[image: image]

we have y ∈ a and y ∉ þi (1 ≤ i ≤ n). Hence [image: image].

ii) Suppose þ [image: image] ai for all i. Then there exist [image: image], and therefore [image: image]; but ∏xi ∉ þ (since þ is prime). Hence þ [image: image] ∩ ai. Finally, if þ = ∩ ai then þ ⊆ ai, and hence þ = ai for some i. [image: image]

If a, b are ideals in a ring A, their ideal quotient is

[image: image]

which is an ideal. In particular, (0:b) is called the annihilator of b and is also denoted by Ann (b): it is the set of all x ∈ A such that xb = 0. In this notation the set of all zero-divisors in A is

[image: image]

If b is a principal ideal (x), we shall write (a : x) in place of (a : (x)).

Example. If A = Z, a = (m), b = (n), where say [image: image] then (a:b) = (q) where [image: image] and

[image: image]

Hence q = m/(m, n), where (m, n) is the h.c.f. of m and n.

Exercise 1.12. i)  a ⊆ (a:b)

 ii)  (a:b)b ⊆ a

iii)  ((a:b):c) = (a:bc) = ((a:c):b)

iv)  (∩i ai: b) = ∩i(ai:b)

 v)  (a:Σi bi) = ∩i(a:bi).

If a is any ideal of A, the radical of a is

[image: image]

If ϕ: A → A/a is the standard homomorphism, then [image: image] and hence r(a) is an ideal by (1.7).

Exercise 1.13. i)   r(a) ⊇ a

 ii)  r(r(a)) = r(a)

iii)  r(ab) = r(a ∩ b) = r(a) ∩ r(b)

iv)  r(a) = (1) ⇔ a = (1)

v)  r(a + b) = r(r(a) + r(b))

vi)  if þ is prime, r(þn) = þ for all n > 0.

Proposition 1.14. The radical of an ideal a is the intersection of the prime ideals which contain a.

Proof. Apply (1.8) to A/a. [image: image]

More generally, we may define the radical r(E) of any subset E of A in the same way. It is not an ideal in general. We have r(∪α Eα) = ∪ r(Eα), for any family of subsets Eα of A.

Proposition 1.15. D = set of zero-divisors of [image: image].

Proof. [image: image]. [image: image]

Example. If A = Z, a = (m), let pi (1 ≤ i ≤ r) be the distinct prime divisors of m. Then [image: image]

Proposition 1.16. Let a, b be ideals in a ring A such that r(a), r(b) are coprime. Then a, b are coprime.

Proof. r(a + b) = r(r(a) + r(b)) = r(1) = (1), hence a + b = (1) by (1.13).

EXTENSION AND CONTRACTION

Let f: A → B be a ring homomorphism. If a is an ideal in A, the set f(a) is not necessarily an ideal in B (e.g., let f be the embedding of Z in Q, the field of rationals, and take a to be any non-zero ideal in Z.) We define the extension ae of a to be the ideal Bf(a) generated by f(a) in B: explicitly, ae is the set of all sums Σyif(xi) where xi, ∈ a, yi ∈ B.

If b is an ideal of B, then f–1(b) is always an ideal of A, called the contraction bc of b. If b is prime, then bc is prime. If a is prime, ae need not be prime (for example, f: Z → Q, a ≠ 0; then ae = Q, which is not a prime ideal).

We can factorize/as follows:

[image: image]

where p is surjective and j is injective. For p the situation is very simple (1.1): there is a one-to-one correspondence between ideals of f(A) and ideals of A which contain Ker (f), and prime ideals correspond to prime ideals. For j, on the other hand, the general situation is very complicated. The classical example is from algebraic number theory.

Example. Consider Z → Z[i], where [image: image]. A prime ideal (p) of Z may or may not stay prime when extended to Z[i]. In fact Z[i] is a principal ideal domain (because it has a Euclidean algorithm) and the situation is as follows:

 i)  (2)e = ((1 + i)2), the square of a prime ideal in Z[i];

ii)  If p ≡ 1 (mod 4) then (p)e is the product of two distinct prime ideals (for example, (5)e = (2 + i)(2 – i));

iii)  If p ≡ 3 (mod 4) then (p)e is prime in Z[i].

Of these, ii) is not a trivial result. It is effectively equivalent to a theorem of Fermat which says that a prime p ≡ 1 (mod 4) can be expressed, essentially uniquely, as a sum of two integer squares (thus 5 = 22 + 12, 97 = 92 + 42, etc.).

In fact the behavior of prime ideals under extensions of this sort is one of the central problems of algebraic number theory.

Let f: A → B, a and b be as before. Then

Proposition 1.17. i)  a ⊆ aec, b ⊇ bce;

ii)  bc = bcec, ae = aece;

iii)  If C is the set of contracted ideals in A and if E is the set of extended ideals in B, then [image: image] is a bijective map of C onto E, whose inverse is [image: image].

Proof. i) is trivial, and ii) follows from i).

iii) If a ∈ C, then a = bc. = bcec = aec; conversely if a = aec then a is the contraction of ae. Similarly for E. [image: image]

Exercise 1.18. If a1, a2 are ideals of A and if b1 b2 are ideals of B, then

[image: image]

The set of ideals E is closed under sum and product, and C is closed under the other three operations.

EXERCISES

1.  Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

2.  Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let f = a0 + a1x + ··· + anxn ∈ A[x]. Prove that

  i)  f is a unit in A[x] ⇔ a0 is a unit in A and a1, ···, an are nilpotent. [If b0 + b1x + ··· + bmxm is the inverse of f, prove by induction on r that [image: image]. Hence show that an is nilpotent, and then use Ex. 1.]

 ii)  f is nilpotent ⇔ a0, a1, ···, an are nilpotent.

iii)  f is a zero-divisor ⇔ there exists a ≠ 0 in A such that af = 0. [Choose a polynomial g = b0 + b1 + ··· + bmxm of least degree m such hat fg = 0. Then anbm = 0, hence ang = 0 (because ang annihilates f and has degree < m). Now show by induction that an–rg = 0 (0 ≤ r ≤ n).]

iv)  f is said to be primitive if (a0, a1, ···, an) = (1). Prove that if f, g ∈ A[x], then fg is primitive ⇔ f and g are primitive.

3.  Generalize the results of Exercise 2 to a polynomial ring A[x1





 

   

   
  

        

       
 


        

       
 


     
 
   
   
 
 

  

     
















































































































