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2

Flows on the Line

2.1 A Geometric Way of Thinking

[image: ]

2.1.1

The fixed points of the flow [image: ] occur when

[image: ]

[image: ]

2.1.3

a)

We can find the flow’s acceleration [image: ] by first deriving an equation containing [image: ] by taking the time derivative of the differential equation.

[image: ]

We can obtain [image: ] solely as a function of x by plugging in our previous equation for [image: ].

[image: ]

b)

We can find what values of x give the acceleration [image: ] maximum positive values by using the trigonometric identity

[image: ]

which can be used to rewrite [image: ] as

[image: ]

which has maximums when

[image: ]

[image: ]

2.1.5

a)

A pendulum submerged in honey with the pendulum at the 12 o’clock position corresponding to x = 0 is qualitatively similar to [image: ]. The force near the 12 o’clock position is small, is greatest at the 3 o’clock position, and is again small at the 6 o’clock position.

b)

x = 0 and x = π being unstable and stable fixed points respectively is consistent with our intuitive understanding of gravity.

2.2 Fixed Points and Stability

[image: ]

2.2.1

[image: ]

[image: ]

[image: ]

2.2.3

[image: ]

[image: ]

[image: ]

2.2.5

[image: ]

There are no fixed points, but the rate increase for x(t) does vary.

[image: ]

[image: ]

2.2.7

[image: ]

We can’t solve for the fixed points analytically, but we can find the fixed points approximately by looking at the intersections of ex and cos(x), and determine the stability of the fixed points from which graph is greater than the other nearby.

[image: ]

We could also plot the graph using a computer.

[image: ]

There are fixed points at [image: ], [image: ], and x = 0.

[image: ]

Unable to find an analytic solution.

[image: ]

2.2.9

[image: ]

[image: ]

2.2.11

RC circuit

[image: ]

Multiply by an integrating factor [image: ] to both sides.

[image: ]

Apply an indefinite integral to both sides with respect to t.

[image: ]

And using the initial condition.

[image: ]

[image: ]

2.2.13

Terminal velocity

The velocity v(t) of a skydiver falling follows the equation

[image: ]

with m the mass of the skydiver, g the acceleration due to gravity, and k > 0 the drag coefficient.

a)

[image: ]

b)

[image: ]

c)

The terminal velocity should occur at a fixed point. The fixed point occurs when

[image: ]

d)

[image: ]

e)

[image: ]

which can be rewritten using [image: ] into

[image: ]

Using s(116sec) = 29300ft and [image: ] gives

[image: ]

which can be solved numerically to give [image: ].

2.3 Population Growth

[image: ]

2.3.1

Logistic equation

[image: ]

a)

Solve by separating the variables and integrating using partial fractions.

[image: ]

b)

Making the change of variables [image: ].

[image: ]

[image: ]

2.3.3

Tumor growth

[image: ]

a)

a can be interpreted as specifying how fast the tumor grows, and [image: ] specifies the stable size of the tumor.

b)

[image: ]

[image: ]

2.3.5

Dominance of the fittest

[image: ]

a)

Show as t → ∞, x(t) → 1 by solving for X(t) and Y(t).

[image: ]

b)

Show as t → ∞, x(t) → 1 by deriving an ODE for x(t).

[image: ]

This is the logistic equation

[image: ]

and x(t) increases monotonically as t → ∞ from our previous analysis of the logistic equation.

2.4 Linear Stability Analysis

[image: ]

2.4.1

[image: ]

[image: ]

2.4.3

[image: ]

There are also stable fixed-like points at [image: ] because [image: ] is positive on the left and negative on the right. However, these points aren’t true fixed points because tan(x) has infinite discontinuities at these points and hence is not defined there.

[image: ]

2.4.5

[image: ]

[image: ]

The fixed point 0 is stable from the left and unstable from the right.

[image: ]

2.4.7

[image: ]

[image: ]

[image: ]

2.4.9

a)

[image: ]

Depending on the sign of the initial condition

[image: ]

b)

[image: ]

2.5 Existence and Uniqueness

[image: ]

2.5.1

[image: ]

a)

x = 0 is the only fixed point [image: ] and x(0) ≥ 0 ⇒ x(t) → 0 so x = 0 is stable from the right.

b)

[image: ]

The particle will reach the origin in finite time if x0 = 0 or if x0 > 0 and c < 1 so that a t > 0 will make

[image: ]

If x0 = 1 then

[image: ]

And with c < 1 then

[image: ]

[image: ]

2.5.3

[image: ]

Which will blow up when the denominator vanishes at

[image: ]

[image: ]

2.5.5

[image: ]

x(t) = 0 is a solution, but we can find another solution through

[image: ]

a)

[image: ]

Here there are an infinite number of solutions because we can specify that x(t) = 0 for an arbitrary amount of time t0 and then switch to

[image: ]

b)

[image: ]

Here we only have x(t) = 0 for all time because the RHS of

[image: ]

would not always be nonnegative, which is inconsistent with the absolute value on the LHS.

2.6 Impossibility of Oscillations

[image: ]

2.6.1

The harmonic oscillator does oscillate along the x-axis, but the position alone does not uniquely describe the state of the system. The system is not uniquely determined unless both the position x(t) and the velocity [image: ] are specified. The harmonic oscillator is a two-dimensional system so does not contradict the text by the fact that solutions can oscillate.

2.7 Potentials

[image: ]

2.7.1

[image: ]

[image: ]

2.7.3

[image: ]

The pattern of equilibrium points continues in both directions.

[image: ]

2.7.5

[image: ]

[image: ]

2.7.7

Assume for

[image: ]

there is an oscillating solution x(t) with period T ≠ 0. Then

[image: ]

but

[image: ]

is constant. In other words, the solution x(t) does not oscillate and never moves. Contradiction!

2.8 Solving Equations on the Computer

[image: ]

2.8.1

The slope is constant along horizontal lines because the equation for the slope [image: ] explicitly depends on x but not on t. Although t varies along the horizontal lines, x remains constant, so the slope remains constant.

[image: ]

2.8.3

a)

[image: ]

b)

[image: ]

c)

[image: ]

The slope is approximately 1 for small values of Δt, which indicates that the error of the method is proportional to Δt.

[image: ]

[image: ]

2.8.5

a)

[image: ]

b)

[image: ]

c)

[image: ]

[image: ]

The slope is approximately 4 for small values of Δt, which indicates that the error of the method is proportional to Δt4.

[image: ]

[image: ]

2.8.7

Euler’s method

[image: ]

a)

[image: ]

b)

[image: ]

[image: ]

2.8.9

Runge-Kutta

[image: ]

a)

[image: ]

Here we have to translate each derivative into f(x(t0))’s.

[image: ]

And then we need to substitute all the k1’s as f(x0)’s.

[image: ]

And then we need to substitute all the k2’s as f(x0)’s.

[image: ]

And then we need to substitute all the k3’s as f(x0)’s.

b)

[image: ]

And then we need to substitute the x(t0 + Δt), k1, k2, k3, and k4 as f(x0)’s. This is a herculean task, but at the end we will get a bound on the absolute value of the local truncation error, C(Δt)5.
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Bifurcations

3.1 Saddle-Node Bifurcation

[image: ]

3.1.1

[image: ]

The fixed points are

[image: ]

To sketch the vector fields for different values of r, draw y = 1 + x2 and y = −rx. The intersections represent the fixed points, and the flow is to the right and left if 1 + x2 > −rx and 1 + x2 < −rx respectively.

[image: ]

[image: ]

[image: ]

[image: ]

[image: ]

[image: ]

[image: ]

The bifurcation diagram is [image: ] or equivalently [image: ], which is easier to plot.

[image: ]

[image: ]

3.1.3

[image: ]

To sketch the vector fields for different values of r, draw y = r + x and y = ln(1 + x). The intersections represent the fixed points, and the flow is to the right and left if r + x > ln(1 + x) and r + x < ln(1 + x) respectively.

[image: ]

[image: ]

The bifurcation occurs when the curves y = r + x and y = ln(1 + x) have a tangential intersection. We can find this r value analytically by solving the equations

[image: ]

Hence, a saddle-node bifurcation occurs at r = 0.

[image: ]

[image: ]

3.1.5

a)

[image: ]

[image: ]

A saddle-node bifurcation doesn’t occur. Instead there is more of a transcritical bifurcation, but not quite since both of the fixed-point positions change with r.

b)

[image: ]

[image: ]

Again, a saddle-node bifurcation doesn’t occur. In this case there is almost nothing to plot on the bifurcation diagram.

3.2 Transcritical Bifurcation

[image: ]

3.2.1

[image: ]

Transcritical bifurcation occurs at r = 0.

[image: ]

[image: ]

3.2.3

[image: ]

[image: ]

Note: The positive fixed point goes to x = ∞ as r → 0−, disappears when r = 0, then reappears at x = −∞ when r becomes slightly positive.

[image: ]

Transcritical bifurcation occurs at r = 1.

[image: ]

[image: ]

3.2.5

a)

[image: ]

The k1 reaction has a net gain of one X at rate k1[A][X], the k−1 reaction has a net loss of one X at rate k−1[X][X] = k−1[X]2, and the k2 reaction has a net loss of one X at rate k2[B][X], making the rate of concentration change [image: ] the sum of the rates for positive gains and negative losses.

[image: ]

So c1 = k1a − k2b and c2 = k−1.

b)

[image: ]

This makes sense chemically because the amount of chemical X will always either increase or decrease to 0. Chemicals A and B are considered inexhaustible, so if the first reaction creates X faster than the second reaction irreversibly destroys X(k2b < k1a), then the amount of X will grow unbounded. But if the first reaction creates X slower than the second reaction irreversibly destroys X(k1a < k2b), then the amount of X will approach 0.

3.3 Laser Threshold

[image: ]

3.3.1

[image: ]

a)

If [image: ], then

[image: ]

b)

[image: ]

c)

If we set G = k = f = 1,

[image: ]

[image: ]

A transcritical bifurcation occurs at pc.

[image: ]

d)

[image: ]

The assumption that N almost isn’t changing relative to n is valid if [image: ]. Then N will initially change far more rapidly than n, but then stay put once it reaches an equilibrium with the current n value. Now n will still change, but N will reach the equilibrium with the newer n value almost instantly, keeping [image: ].

3.4 Pitchfork Bifurcation

[image: ]

3.4.1

[image: ]

A subcritical pitchfork bifurcation occurs at r = 0.

[image: ]

[image: ]

3.4.3

[image: ]

A supercritical pitchfork bifurcation occurs at r = 0.

[image: ]

[image: ]

3.4.5

[image: ]

A saddle-node bifurcation occurs at r = 0.

[image: ]

[image: ]

3.4.7

[image: ]

[image: ]

A saddle-node bifurcation occurs at r = 5.

[image: ]

[image: ]

3.4.9

[image: ]

[image: ]

A subcritical pitchfork bifurcation occurs at r = −1.

[image: ]

[image: ]

3.4.11

[image: ]

a)

[image: ]

There are an infinite number of fixed points when r = 0 at every integer multiple of π. All even multiples of π are stable, and all odd multiples of π are unstable.

b)

[image: ]

[image: ]

For r ≥ 1, there is only one intersection between y = rx and y = sin(x), which is an unstable fixed point at the origin.

c)

There are no bifurcations until r ≤ 1, and the first bifurcation is a subcritical pitchfork bifurcation at r = 1.

[image: ]

Note: To add more rigor to our bifurcation classification, we can expand in a Taylor series about x = 0, which gives

[image: ]

This is the normal form of a subcritical pitchfork bifurcation at r − 1 = 0.

There are more bifurcations as r continues to decrease toward zero. However, all these subsequent bifurcations are saddle-node bifurcations.

The first of these bifurcations occurs at r ≈ 0.1284 when the line y = rx becomes tangent to a hilltop of the sine wave.

[image: ]

Saddle-node bifurcations occur repeatedly as the line y = rx becomes tangent to the next hilltop of the sine wave, and an infinite number of hilltops implies an infinite number of saddle-node bifurcations.

d)

To find a formula for the r values of the saddle-node bifurcations, we can use the fact that y = rx and y = sin(x) tangentially intersect at the bifurcation values.

[image: ]

Therefore, the saddle-node bifurcation values are r = cos(x*) where x* is a root of the equation x* = tan(x*).

For an approximate formula when [image: ], the saddle-node bifurcations occur approximately at the hilltops of the sine wave, since y = rx intersects y = sin(x) tangentially and y = rx is almost flat. Therefore, the bifurcations on the positive x-axis and negative x-axis respectively occur approximately at the local minimums and local maximums of sin(x). These points are

[image: ]

We have to skip the first local minimum and local maximum on the positive x-axis and negative x-axis respectively because they are involved in the subcritical pitchfork bifurcation.

The approximate values of r at which the saddle-node bifurcations occur are the reciprocals of that set.

[image: ]

So x and r in the first and second set respectively implies rx = ±1 and sin(x) = ±1, which will cancel out in [image: ].

e)

For −∞ < r < 0, we again have saddle-node bifurcations occurring.

[image: ]

But there is no accompanying pitchfork bifurcation because after r < −0.2172 there is only one fixed point left at x = 0.

f)

The bifurcation diagram is made of the line x = 0 and the curve [image: ] plotted sideways. Hence, x can take on any value from positive to negative infinity.

[image: ]

[image: ]

3.4.13

a)

[image: ]

b)

[image: ]

[image: ]

3.4.15

[image: ]

The critical points occur when

[image: ]

and the local minima occur when

[image: ]

so the three candidate wells occur at x1, x2, and x4 with [image: ].

V(x0) = C, so for simplicity we’ll set C = 0, which leaves

[image: ]

[image: ]

So [image: ] and the three minima x1, x2, and x4 occur at the value of the integrating constant C.

3.5 Overdamped Bead on a Rotating Hoop

[image: ]

3.5.1

There shouldn’t be an equilibrium between [image: ] and π because the rotation would force the bead outward and down, and gravity would force the bead down. The forces wouldn’t cancel, so the bead would move.

[image: ]

3.5.3

A Taylor series expansion of f(ϕ) = sin(ϕ)(γ cos(ϕ) − 1) centered at ϕ = 0 gives

[image: ]

[image: ]

3.5.5

a)

Starting with the dimensionless equation

[image: ]

We already have [image: ] from the text, but we don’t know what order of magnitude Tfaster is in relation to Tslow, so we’ll guess a new time scale [image: ]. The dimensionless equation is now

[image: ]

We still need to be able to solve the equation, meaning each of the terms must be of the same order or negligible compared to all the other terms.

To have all the terms of the same order, we need ∈1−2k = ∈−k = 1, which is impossible.

To have two terms of the same order and one term negligible, we need

[image: ]

Choosing k = 0 gives the equation we started with, and [image: ] gives

[image: ]

which is bad because [image: ] makes the [image: ] term enormous. But the k = 1 choice looks good.

If we choose [image: ] for the new time scale, then we can find Tfast in terms of m, g, r, ω, and b by using

[image: ]

from the text.
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