

[image: image]

[image:]

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in sustainable forests. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton Park, Abingdon, Oxon OX14 4SE. Telephone: (44) 01235 827827. Fax: (44) 01235 400401. Email: education@bookpoint.co.uk

Lines are open from 9 a.m. to 5 p.m., Monday to Saturday, with a 24-hour message answering service. You can also order through our website: www.hoddereducation.co.uk

ISBN: 978 1 5104 2856 0
eISBN: 978 1 5104 2759 4

© Stuart Davison

First published in 2018 by

Hodder Education,
An Hachette UK Company
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ

Impression number 10 9 8 7 6 5 4 3 2 1

Year 2022 2021 2020 2019 2018

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, Barnard’s Inn, 86 Fetter Lane, London EC4A 1EN.

Typeset in India by Aptara

Printed in Spain

A catalogue record for this title is available from the British Library.

[image:]

Getting the most from this book

This Need to Know guide is designed to help you throughout your course as a companion to your learning and a revision aid in the months or weeks leading up to the final exams.

The following features in each section will help you get the most from the book.

[image:]

You need to know

Each topic begins with a list summarising what you ‘need to know’ in this topic for the exam.

[image:]

[image:]

Key terms

Definitions of highlighted terms in the text to make sure you know the essential terminology for your subject.

[image:]

[image:]

Exam tip

Key knowledge you need to demonstrate in the exam, tips on exam technique, common misconceptions to avoid and important things to remember.

[image:]

[image:]

Synoptic links

Reminders of how knowledge and skills from different topics in your A-level relate to one another.

[image:]

[image:]

Do you know?

Questions at the end of each topic to test you on some of its key points. Check your answers here: www.hoddereducation.co.uk/needtoknow/answers

[image:]

[image:]

End of section questions

Questions at the end of each main section of the book to test your knowledge of the specification area covered. Check your answers here: www.hoddereducation.co.uk/needtoknow/answers

[image:]

1 Programming and computation

1.1 Fundamentals of programming

[image:]

You need to know

• Programs utilise three statements.

• Values are stored in constants and variables.

• Data is categorised by type.

• Operators act on values to produce results.

• A string is an object data type with specific handling operations.

• Exception handling catches errors.

• Subroutines are blocks of code that perform tasks.

• Object-oriented programming encapsulates data within objects.

[image:]

Programming

Programming concepts

There are three principal statements used in all imperative programming languages.

• Sequence: a completed action triggers the next action in a predetermined order.

• Selection: the flow of a program is changed based on the answer to a condition.

• Iteration: repeated passes through a group of instructions.

[image:]

Key term

Imperative programming Languages that describe the sequence of instructions to follow in order to change the state of a program.

[image:]

The repetition of instructions can be:

• definite: the number of loops is known before the loop starts

• indefinite: the loop continues until a stopping condition is realised

Where a condition stops a loop, it can be placed either at the beginning of the loop or at the end.

[image:]

[image:]

Exam tip

You should recognise how these concepts are used within computer programs you have written. These experiences will help you write answers to exam questions.

[image:]

Other important programming concepts:

• selection and iteration can be nested inside other similar statements to complete before finishing the initial statement

• programs also need to include declarations of variables and constants in addition to any definitions of subroutines

[image:]

Key term

Nesting Including additional control structures inside a holding outer structure (e.g. a loop inside a loop).

[image:]

Constants and variables

Computer programs make use of values to produce useful outputs.

These value stored can be stored in named locations known as:

• variables: value stored can be changed as the program runs

• constants: value stored is kept the same throughout the lifetime of the program

Constants are used where important values need to be kept the same throughout a program, for example, pi is set to 3.14 and will never need to be changed.

Data types

Data types are applied to values to determine the format that the values can take and the operations that can be performed on them. Variables and constants are declared with a data type so that appropriate values can be stored and used appropriately.

Table 1 Common data types

	Term

	Definition

	Integer

	Whole numbers

	Real/float

	Numbers with a fractional part

	Boolean

	Either true or false

	Character

	Single alphanumeric character

	String

	A collection of characters as an object

	Date/time

	Pre-formatted to express dates and times correctly

	Pointer

	Address of a memory location

	Record

	Grouped collection of a number of variables

	Array

	Collection of values each with the same data type

[image:]

Exam tip

Make sure you are aware of the uses of different data types within typical computer programs. You should be able to select the most appropriate data type for a given scenario.

[image:]

Operators

Operators work with values to produce a result.

Arithmetic operators perform mathematical operations.

• Addition: 2 + 2 evaluates to 4.

• Subtraction: 5 − 3 evaluates to 2.

• Multiplication: 5 × 8 evaluates to 40.

• Integer division: provides just the whole number part of a division so 7 DIV 3 evaluates to 2.

• Remainder division: provides only the remainder part of the division so 7 MOD 3 evaluates to 1.

• Real/float division: provides the result of the division as a decimal so 7/2 evaluates to 3.5.

• Exponential: raises a value to a power so 2 ^ 3 evaluates to 8.

• Rounding: changes values to the nearest whole number so round(7.6) evaluates to 8.

• Truncating: removes unrequired parts of a value so trunc(7.6) evaluates to 7 (note that casting a real value as an integer can also have the same effect, e.g. int(7.6) produces the value 7).

Operators that compare values

The relational operators used in programming are:

• equal to: checks two values are the same so 3 = 2 evaluates to False

• not equal to: checks two values are different so 3 <> 2 evaluates to True

• less than: 5 < 3 evaluates to False

• greater than: 4 > 0 evaluates to True

• less than or equal to: 7 <= 9 evaluates to True

• greater than or equal to: 5 >= 2 evaluates to True

[image:]

Key terms

Arithmetic operator Takes values called operands and performs a mathematical operation on them to produce a result.

Relational operator Compares two values to determine the way they differ or if they are the same.

[image:]

Results from relational operations are commonly used to provide control over selection and iteration statements. The result of these comparisons is either a True or False Boolean value.

There are four common Boolean operators:

• AND: joining expressions both need to be True to give a True result so 5 > 3 AND 4 < 6 evaluates to True

• OR: only one joining expression needs to be True to give a True result so 4 > 10 OR 3 < 4 evaluates to True

• NOT: inverts the result of a relational expression so NOT 5 > 0 evaluates to False

• XOR: only one joining expression can be True to give a True result so 7 > 1 XOR 8 < 9 evaluates to False

[image:]

Key term

Boolean operator Used to combine statements that use relational operators.

[image:]

String handling

A string is a combination of a variable number of character values treated as its own data type together with operations that can be used to summarise its properties.

Table 2 Common string-handling operations

	Operation

	Description

	Length

	The number of characters in the string, e.g. LEN(“hello”) evaluates to 5

	Position

	Finds the first position of a given character, e.g. POSITION(“hello”, “e”) evaluates to 1 (the first position in a string is 0)

	Substring

	Returns a requested part of a string, e.g. SUBSTRING(2, 4, “hello”) evaluates to “llo”

	Concatenation

	Joins strings together, e.g. “hel” + “lo” evaluates to “hello”

	Character to character code

	Determines the equivalent ASCII code for a specified character, e.g. CHAR_TO_CODE(“s”) evaluates to 83

	Character code to character

	Determines the character from a given ASCII code, e.g. CODE_TO_CHAR(68) evaluates to “d”

String conversion operations translate string values to other data types and back again if required.

Random number generation

Key points:

• Sometimes values that have not been inputted or calculated are needed in a program.

• Random number generation is a feature in programming languages that produces a value between a given range.

For example, if a random integer between the range 0 and 9 was required, the random function would need to be called with these values.

[image:]

Synoptic link

The representation of a data value as a numerical (and ultimately binary) value such as an ASCII code is considered in greater detail in Section 2.1.

[image:]

The result would be assigned to a variable as follows:

[image:]

Exception handling

Key points:

• Exceptions in programs are errors that cause it to stop working, rendering it unusable.

• Code can be written to take action when exceptions are detected.

• An alternative block of code can run to ensure the remainder of the program executes normally.

This is an example of exception handling in Python that prevents characters being entered when an integer is expected:

[image:]

Subroutines

Subroutines:

• are units of code that are ‘out of line’ of the main program and are called to run to produce repeatable results

• can be run from any point in a program using the name of the subroutine, any number of times, e.g. displayTemperature()

• make code easier to read as repeated blocks of code are replaced by a single identifier

• save development time as code does not have to be repeated

• allow changes to be made in a single location

Values in and out of subroutines

Key points:

• Data is passed from the calling program to a subroutine using a parameter.

• A result from a subroutine can be passed back to the calling program using a return value.

• This boundary in and out of the subroutine is known as its interface.

[image:]

Key terms

Exception An error in a program that causes it to abort abnormally.

Parameter A value that is passed into a subroutine for use when executed.

Return value A value that is passed back to the program that originally called the subroutine.

[image:]

[image:]

Data within subroutines

Key points:

• Any variable created inside a subroutine is referred as a local variable and can only be accessed by instructions internal to the subroutine.

• Once the subroutine has finished, these values cease to exist.

• Variables that subroutines use can be either global or local in scope.

• It is good practice to try and limit variable creation to local scope and pass any data in and out of a subroutine using its interface.

• This ensures that the places to change values in a program are limited compared to global scope variables which can be changed anywhere.

Stack frames in subroutine calls

Key points:

• In computer memory, the state of different program subroutines is stored in a call stack as a collection of stack frames.

• The stack builds from the bottom up.

• As a subroutine is called it is pushed on to the top of the stack.

• When the subroutine finishes, it is popped back off the stack and the previous program continues to run.

[image:]

Key terms

Local variables are created inside a subroutine and are usable only by code in that same subroutine.

Global variables are created outside of any subroutine and can be changed anywhere in a program.

Scope The extent to which variables are visible.

Call stack A data structure that is used to store information about subroutines running as part of a computer program.

Stack frame The collection of data that describes the current running state of a program.

[image:]

[image:]

[image:]

Synoptic link

Effective design of programs lends itself to the decomposition of a problem into several smaller solutions that can be implemented as subroutines. See Section 2.9 for more information about software design.

[image:]

Stack frames are created as follows.

1 When a program calls a subroutine to run, the state of the current program is saved.

2 The memory address of where any return value should be copied is added.

3 Values passed into the subroutine are stored.

4 Local subroutine variables are added.

[image:]

Synoptic link

Stacks and other data structures are discussed in more detail in Section 1.2.

[image:]

Recursive techniques

Key points:

• As subroutines are stored in a stack, the results from them can be delayed until other subroutines finish.

• The result of one subroutine can be used as a parameter for another copy of the same subroutine.

• Further subroutines are called until a base case is reached.

• The base case stops any other subroutine calls and the results are passed back to all waiting subroutines.

• This chain is known as recursion.

[image:]

Key terms

Recursion A method of repeating program code by calling copies of the same program until an end condition is reached.

Programming paradigm The approach of writing programs, each requiring different techniques.

[image:]

Programming paradigms

Procedural programming enforces the use of subroutines to provide highly structured code.

Object-oriented programming groups data and instructions together as objects that interact with each other in a tightly controlled manner.

Procedural programming

Key features of procedural programming:

• Key functions are sectioned off into subroutines referred to as procedures.

• Each procedure performs a specific task and is called, in turn, by a main program.

• Structured procedural programs can be designed using hierarchy charts.

[image:]

[image:]

Exam tip

Understanding recursion requires practice. Functional programs, as described in Section 2.8, are based around this concept and provide a means of appreciating how this technique works.

[image:]

Structured design is advantageous because:

• code is easier to read and change

• procedures can be reused

• small parts can be tested and, once working, can be left to function without affecting other parts of the code

[image:]

Exam tip

Recognise where code is repeated and understand how to separate this into subroutines. It will aid your understanding to try this practically with programs you create.

[image:]

Object-oriented programming

Programmers use object-oriented methods to create scalable programs with the advantages of:

• producing easily reusable code

• hiding data within objects to protect it from uncontrolled modification

• as programs get bigger, object-oriented designs become more manageable

• components are easier to maintain

Object-oriented programming utilises the design concepts in Table 3.

Table 3 Design concepts

	Concept

	Definition

	Class

	Defines the data that characterises the object described (attributes) and the behaviours the object has (methods)

	Object

	Created from the class using a constructor

	Instantiation

	The act of creating objects from the class definition

	Encapsulation

	The act of collecting data within an object, often hidden from public view

	Inheritance

	Where new objects or classes take on properties of existing ones

	Aggregation

	The relationship of objects where the destruction of the owning object does not destroy associated objects

	Composition

	An association of objects where the destruction of a parent object results in related objects also being destroyed

	Polymorphism

	Where inherited objects retain named methods of parent classes but with the option to adjust the behaviour accordingly

	Overriding

	The opportunity for subclasses to provide a different implementation of a parent method

OEBPS/OEBPS/images/10-2.gif
Top of stack after
the subroutine has
been called Local variables

in subroutine

Parameter values passed
to the subroutine

Return address of
subroutine that
called new subroutine

Saved registers of
subroutine that called

Top of stack before new subroutine
the subroutine is
called Previously called

programs still running
but suspended

Call stack

Figure 3 Stack frame arrangement

OEBPS/OEBPS/images/10-1.gif
Main program

Values stored in firstNum (3)
and secondNum (4) passed to

firsthum = 3 parameters num1 and num2

secondNum =4

multiplied = productCalc(firsthum, secondNum)

OUTPUT multiplied productCalc(num1, numz2)

product = num1 * num2

*-Value 12 assigned to return product
the variable multiplied

Calculated value (3 x 4) of

12 returned to main program
Interface in and out of subroutine

Figure 2 Values can be passed as parameters into a subroutine for use.
Any result can be passed back as a return value

OEBPS/OEBPS/images/2-1.gif
MIX
Paper from

responsible sources
F.

wniscog FSC™ C104740

OEBPS/OEBPS/images/tp.gif
|

S ‘
. ., Key facts
1 Z atyour
o fingertips
10
N
-~
] LU
> N o
52
<C
<=
o0
< U Stuart Davison

{~ HODDER

OEBPS/OEBPS/images/rules.jpg

OEBPS/OEBPS/images/11-1.gif
Convert miles
to kilometres

Figure 4 Designing a program that uses subroutines with a hierarchy chart

OEBPS/OEBPS/images/9-2.gif
cry:
score = int(input(“Enter your test score: “))
except:
print(“Not a number. Score set to zero.”)
score = 0

print(“Your test percentage was:" (score/50)x100)

OEBPS/OEBPS/images/9-1.gif
randDigit = RANDOM INT(O0, 9)

OEBPS/OEBPS/images/6-1.gif
Figure 1 Conditions that end loops can either be at the top or bottom
of the loop. Both these loops output the numbers 1to 10

OEBPS/OEBPS/images/cover.jpg
&

COMPUTER SCIENCE

AQA A-LEVELcceune..

&
I
3|20
2|sg
HES]
7125

Key facts
at your
fingertips

Stuart Davison

