

[image: Cover Image]

[image:]

[image:]

Endorsement indicates that a resource has passed Cambridge International’s rigorous quality-assurance process and is suitable to support the delivery of a Cambridge International curriculum framework. However, endorsed resources are not the only suitable materials available to support teaching and learning, and are not essential to be used to achieve the qualification. Resource lists found on the Cambridge International website will include this resource and other endorsed resources.

Any example answers to questions taken from past question papers, practice questions, accompanying marks and mark schemes included in this resource have been written by the authors and are for guidance only. They do not replicate examination papers. In examinations the way marks are awarded may be different. Any references to assessment and/or assessment preparation are the publisher’s interpretation of the curriculum framework requirements. Examiners will not use endorsed resources as a source of material for any assessment set by Cambridge International.

While the publishers have made every attempt to ensure that advice on the qualification and its assessment is accurate, the official curriculum framework, specimen assessment materials and any associated assessment guidance materials produced by the awarding body are the only authoritative source of information and should always be referred to for definitive guidance. Cambridge International recommends that teachers consider using a range of teaching and learning resources based on their own professional judgement of their students’ needs.

Cambridge International has not paid for the production of this resource, nor does Cambridge International receive any royalties from its sale. For more information about the endorsement process, please visit www.cambridgeinternational.org/endorsed-resources

Cambridge International copyright material in this publication is reproduced under licence and remains the intellectual property of Cambridge Assessment International Education.

Third-party websites and resources referred to in this publication have not been endorsed by Cambridge Assessment International Education.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests and other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Hachette UK Distribution, Hely Hutchinson Centre, Milton Road, Didcot, Oxfordshire, OX11 7HH. Telephone: +44 (0)1235 827827. Email education@hachette.co.uk Lines are open from 9 a.m. to 5 p.m., Monday to Friday. You can also order through our website: www.hoddereducation.com

ISBN: 978 1 3983 6932 0
eISBN: 978 1 3983 7112 5

© Margaret Debbadi and Pam Jones 2022

First published in 2022 by
Hodder Education,
An Hachette UK Company
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ

www.hoddereducation.com

Impression number 10 9 8 7 6 5 4 3 2 1

Year 2026 2025 2024 2023 2022

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo © AndSus - stock.adobe.com

Illustrations by Aptara, Inc.

Typeset in India by Aptara, Inc.

Printed in Slovenia

A catalogue record for this title is available from the British Library.

[image:]

Contents

Introduction

7.1 Block it out: Moving from blocks to text

7.2 Decomposing problems: Creating a smart solution

7.3 Connections are made: Accessing the internet

7.4 The power of data: Using data modelling

7.5 Living with AI: Digital data

7.6 Sequencing and pattern recognition: Getting the message across

Glossary

Index

Acknowledgements

Introduction

About this book

Computer science is the study of computers, computing hardware and software, computer networks and the design of computer programs. It also includes the study of the way humans interact with computers and computing technology.

Computer science is linked to all areas of the world you live in today. It helps you to make positive changes to the world you live in, and provides important tools and applications to help you solve a wide range of problems. Computer science is continually evolving to provide new and valuable ways of improving your life and your interactions with the world around you.

This Student’s Book will help you to understand some of the key areas of computer science, such as:

	
• How computing devices operate and communicate

	
• How computing devices store and process different types of data

	
• How to develop a program to solve a specific problem

	
• How computer systems and artificial intelligence are used to model and simulate real-life situations to help with task completion and decision-making.

This book also supports the learning objectives within the five strands of the Cambridge Lower Secondary Computing framework:

[image:]

	
• Computational thinking is built into the tasks in this book. It looks at how computing can be used to explore and analyse data collected from the world around you. It is also about the development of skills to support problem-solving, for example how to describe a problem, and the data needed to solve that problem, in a way that a computer can understand.

	
• Programming explores the steps involved in designing and creating a computer program that can be used to carry out a particular task. In this book, you will be moving from block-based to text-based programming languages and explore how to program a physical device to solve a problem.

	
• Managing data looks at how computers and computer programs can be used to store, organise and manage different types of data. It also explores how that data can be used to support problem-solving. In this book, you will learn how to use, edit and create databases and spreadsheets to help with managing different types of data.

	
• Networks and digital communication focuses on the methods used to transfer digital data between different computing devices, and how these devices are used to support communication. In this book, you will explore how different computing devices can be linked together to support data transfer.

	
• Computer systems is about how computer hardware devices and computer programs work together to support users in solving problems. It involves considering how the hardware and software and the data input is processed, stored and then output, to help a user solve a problem. In this book, you will explore the network and communications devices used to transmit data and information around a computer network, and the world, in the process of solving a problem.

[image:]

[image:]

KEYWORDS

hardware: aspects of a computing device that you can touch; the physical components of a device

software: aspects of a computing device that you cannot touch; the programs that run on a device

computer networks: groups of computers connected together

computer programs: the instructions used to tell a computer system how to complete a task

evolving: changing and improving

data: raw facts and figures

block-based programming: programming using drag-and-drop blocks; a popular block-based language is Scratch

text-based programming: programming that requires the programmer to type text, e.g. Python

physical (computing) device: a small microprocessor that can be programmed using block or text-based programming languages

database: a computer application that is used to organise data that can then be stored, processed and accessed electronically

spreadsheet: a computer application that uses rows and columns to organise data and carry out calculations using that data

[image:]

This Student Book has six units:

[image:]

7.1 Block it out: Moving from blocks to text provides a transition from block-based programming to programming in Python, which is a text-based language. It focuses on the key concepts that underpin programming, enabling you to develop a series of programs in Python to be used in an educational environment.

[image:]

[image:]

7.2 Decomposing problems: Creating a smart solution provides an introduction to the text-based programming language MicroPython. You will learn how to program a physical device, the micro:bit, using its sensors to design a software solution for a smart device.

[image:]

[image:]

7.3 Connections are made: Accessing the internet explores how devices interact and send data between each other. It focuses on how data can be kept safe and looks at how artificial intelligence is changing the way in which computers function, enabling you to understand, collect and explain how connectivity technologies work.

[image:]

[image:]

7.4 The power of data: Using data modelling examines how applications, such as databases and spreadsheets, can be used to model data for real-life situations. You will explore how to use some of the key features of these applications, in addition to evaluating forms used to collect data for input into data models.

[image:]

[image:]

7.5 Living with AI: Digital data looks at the key differences between application and systems software. You will revisit the concept of artificial intelligence and how it is used in different industries. You’ll also examine the methods used to store data and learn how image recognition is used in a range of applications.

[image:]

[image:]

7.6 Sequencing and pattern recognition: Getting the message across continues to explore programming the micro:bit using the text-based programming language MicroPython. You will learn to create a light sequence to convey a message, and you’ll discover how to look for and use patterns to design and develop a prototype for a visual alarm.

[image:]

How to use this book

In each unit, you will learn new skills by completing a series of tasks.

These features appear in each unit:

[image:]

Get started!

This box introduces the unit and asks you some questions to discuss in pairs or a small group.

[image:]

[image:]

Learning outcomes

This box lists the learning objectives that you will cover in the unit.

[image:]

[image:]

Warm up

This box provides a task to do in pairs or a small group to get the learning started.

[image:]

[image:]

SCENARIO

This box contains a scenario that puts the tasks in the unit into a real-world context.

[image:]

[image:]

Do you remember?

This box lists the skills you should already have before starting the unit.

[image:]

[image:]

DID YOU KNOW?

This box provides an interesting or important fact about the task or theme.

[image:]

[image:]

Learn

This box introduces new concepts and skills.

[image:]

[image:]

Practise

This box contains tasks to apply and practise the new skills and knowledge from the ‘Learn’ box.

[image:]

[image:]

Go further

This box contains tasks to enhance and develop the skills previously learned in the unit.

[image:]

[image:]

Challenge yourself

This box provides challenging tasks with additional instructions to support new skills.

[image:]

[image:]

Final project

This box contains a final project that encompasses all the skills developed over the unit, in the context of the Scenario. The tasks in this box can be used to support teacher assessment of the learning objectives from the ‘Learning outcomes’ box.

[image:]

[image:]

Evaluation

This box provides guidance on how to evaluate and, if necessary, test the final project tasks.

[image:]

[image:]

KEYWORDS

Important words are shown in emboldened orange font and are defined in this box. They also appear in the glossary at the back of the book.

[image:]

[image:]

What can you do?

This box provides a summary of the skills you have learned in the unit and can be used to support self/peer assessment of the learning objectives.

[image:]

[image:]

Computational thinking

Most computational thinking skills are embedded into the ‘Practise’ tasks. However, where you see this box, an individual computational thinking skill is highlighted for your attention.

[image:]

[image:]

These speech bubbles provide hints and tips as you complete the tasks.

[image:]

Student resource files, used in some of the Practise boxes, are available at www.hoddereducation.com/cambridgeextras

Unit 7.1 Block it out: Moving from blocks to text

[image:]

Get started!

Have you ever considered how a calculator actually works?

Examine a calculator. Discuss the following with a partner:

	
• What do you have to enter into a calculator for it to work?

	
• Are there any buttons that will automatically perform certain calculations? If so, what do these buttons calculate?

	
• How does a calculator display the results of calculations?

[image:]

A calculator is like a computer program. The user enters numbers and presses certain buttons to perform a calculation. We assume calculators work correctly because they have been extensively tested before being released for sale.

In this unit, you will learn how text-based programming can be used to develop programs that perform calculations and allow the user to interact with programs to solve problems. You will use a text-based programming language, called Python, to create your own programs to solve a variety of mathematical problems.

[image:]

[image:]

KEYWORD

text-based programming: programming that requires the programmer to type text, e.g. Python

[image:]

[image:]

Learning outcomes

In this unit, you will learn to:

	
• identify and describe different data types that are used in Python

	
• create programs in Python that use different data types

	
• develop programs in Python that uses input and output

	
• develop programs in Python that use variables to perform calculations

	
• develop programs that use different arithmetic operators

	
• apply a test plan to a program in Python to ensure it works correctly

	
• understand how errors can occur in Python

	
• identify errors and debug programs in Python

	
• create algorithms using flowchart symbols

	
• predict the outcome of flowcharts that use selection

	
• understand and use selection statements and sequences in flowcharts

	
• select and use appropriate comparison operators when creating flowcharts

	
• follow, understand, edit and correct algorithms that use sub-routines.

[image:]

[image:]

Warm up

In pairs, read the following Scenario and write down the steps to calculate the answers to the questions below. You should not use a calculator to complete this task.

[image:]

There are 13 Ashoka trees currently in the park. Park workers will plant 28 more Ashoka trees today and 36 more Ashoka trees tomorrow. It will take 10 workers 8 hours to finish the project.

[image:]

[image:]

	
1 How many Ashoka trees will the park have when the workers are finished?

	
2 How many trees were planted in 1 hour?

	
3 6 of the workers planted 8 trees each. The other workers each planted an equal number of trees. How many trees did each of the other 4 workers plant?

	
4 Check your answers in a small group. Did others break down the calculations in the same way? What problems did others have? Were the problems the same as yours?

In this unit, you will see how Python can be used to break large problems down into small problems, like you did in the calculations above. You will also learn how to test programs to ensure that the calculations are being performed correctly and giving the correct answers.

[image:]

[image:]

SCENARIO

The mathematics department at school want you to develop some programs that generate the answer to various calculation problems. Their current program uses Scratch, a block-based programming language. Students enter two values and the program generates the answer. Currently it allows for addition, subtraction, multiplication or division to be used.

[image:]

To make it more appropriate for older students, they want the current program to be converted into Python (a text-based programming language). The mathematics department want you to create a series of programs that students could use depending on what calculation they want to complete. The programs should be able to complete the following calculations:

	
• Addition

	
• Subtraction

	
• Multiplication

	
• Division

	
• Area of a square

	
• Area of a triangle

	
• Perimeter of a rectangle

	
• Average of three numbers

The new programs should allow students to enter the values that are required and then calculate an answer.

You will first create a flowchart to represent part of the problem. You will then need to create a series of programs to complete the different calculations and finally test the programs to ensure they work correctly.

[image:]

[image:]

DID YOU KNOW?

Python is one of the most popular text-based programming languages in the world, but how did it get its name? The person who created Python, Guido van Rossum, was reading the scripts from a popular UK comedy series called Monty Python’s Flying Circus. He wanted a name that was short and unique, so he called the programming language Python!

[image:]

Guido van Rossum

[image:]

[image:]

In this unit, you will use the following programming languages:

	
• Scratch

	
• Python

Scratch is web-based – find it at https://scratch.mit.edu/.

To install Python:

Python’s Integrated Development and Learning Environment (IDLE) provides features for creating, editing and running programs. Before using Python you will need to install IDLE on your own personal device:

	
1 Go to www.python.org/downloads.

	
2 Select Download Python.

	
3 Once downloaded, double-click on the file to open it and then choose Install Now.

	
4 Once IDLE has installed, it should appear in your start menu.

[image:]

For more information about IDLE see page 11.

[image:]

[image:]

[image:]

Do you remember?

Before starting this unit, you should be able to:

	
[image:] describe what a flowchart is and understand the use of the start/stop, process and decision symbols

	
[image:] describe what an algorithm is and read and interpret algorithms using flowcharts

	
[image:] create block-based programs that use multiple variables

	
[image:] use different data types in block-based programming (for example Scratch) such as integer, character and string

	
[image:] use different arithmetic operators in block-based programming

	
[image:] demonstrate how sequencing can be used in block-based programming

	
[image:] test programs to see whether they work as intended.

[image:]

[image:]

KEYWORDS

block-based programming: programming using drag-and-drop blocks; a popular block-based language is Scratch

value: a number that can be used in a programming language

text-based programming: programming that requires the programmer to type text, e.g. Python

flowchart: a diagram showing the sequence of actions in a computer program; a graphical representation to show the steps to solve a problem

arithmetic operator: +, -, *, / and other symbols that can be used for arithmetic calculations

[image:]

Comparing Scratch and Python

[image:]

Learn

There are hundreds of different types of programming languages used around the world. Most of these programming languages can be categorised into one of two types: block-based or text-based.

Previously you have learned how to program using a block-based programming language; the most common one that is used is Scratch. Block-based programming languages are a popular way to introduce people to programming. This is because you do not have to remember specific code and the different blocks click together like building bricks. To create programs using block-based programming, you use a graphical user interface, where you select the blocks you need and drag and drop, which makes it much easier to use.

[image:]

Computers often make use of input and output to interact with those using it. Inputs are when data is entered into the computer, e.g. someone typing something in, or someone clicking on something. Outputs are when the computer displays something to the user after completing processing.

[image:]

Text-based programming requires you to remember the different syntax (code) that you will need and you have to type in the code that you require. There is no drag-and- drop option to build your programs and this can make it more challenging.

Python is normally installed on a computer with an Integrated Development and Learning Environment (IDLE). IDLE provides lots of functions that are useful when writing Python code.

Regardless of whether you program using block-based or text-based programming languages, the key programming constructs remain the same, and this is why you can transfer from one type of programming language to the other.

The following image shows what the Scratch programming environment looks like:

[image:]

Below is an example of what a text-based programming environment looks like. This is IDLE, which is used to program in Python:

[image:]

These programming environments look very different. However, the examples given produce programs that do exactly the same thing. Can you work out the following questions:

	
• How many pieces of data need to be entered into the program?

	
• What calculation does the program do?

[image:]

[image:]

KEYWORDS

graphical user interface: also known as a GUI; used to interact with a computer using icons and menus

syntax: the structure of the code used in a programming language

Integrated Development and Learning Environment (IDLE): an environment used to program in Python

[image:]

[image:]

Practise

In pairs, take another look at the two screenshots of the Scratch and IDLE coding environments above. Identify what is similar and what is different.

	
• Copy and complete the table, adding as many similarities and differences as you can between the two types of programming language.

[image:]

When looking for similarities and differences, think about:

Is there a specific area to do the programming in?

Do both provide you with areas to select the code you need?

What happens when you run a program?

What can you do if you get stuck?

[image:]

	Similarities

	Differences

	

	

	
• Discuss the similarities and differences with another pair. Do you agree or disagree with their observations? Give a reason for your opinion.

[image:]

Using Python

[image:]

Learn

Using IDLE to program in Python makes it much easier to write, test and run your code. Click on the IDLE (Python) icon on your computer to launch the program.

Python can operate in two modes: the first is interactive mode.

When you launch Python IDLE, the prompt >>>, on the last line, shows that you are in the Python shell. This is the interactive mode, which allows individual Python commands to be typed directly and carried out.

[image:]

In the example above, you can see a print statement. The print statement is a Python command that outputs information onto the screen. This print statement will output the words ‘Hello world’ onto the screen.

The next line (7+6)*2 will output the result of the calculation. Notice that you do not need to use the print commands when performing calculations in the shell.

When using Python code you need to ensure that you type commands using lower-case letters.

Python can tell the difference between upper-case (capital) letters and lower-case (small) letters (it is case sensitive).

[image:]

Python can use arithmetic symbols such as + for adding, / for dividing and * for multiplying.

[image:]

For example, if you enter Print("Hello world") an error should occur because ‘Print’ (with a capital ‘P’) is not the same as ‘print’ (with a small ‘p’). You should always type Python commands in lower case.

Python can also help at the command prompt. You can type help() and find out how to use commands in a Python program, for example you can type help(print) to find out how to use the print command, such as how you can use it to display different data types on screen.

To close Python, type exit().

When a command is typed, it must be ‘translated’ so that the computer can understand it. IDLE has an interpreter that does this. Each command is changed into a form of machine code so that the computer can carry out or execute the command.

Typing commands directly into the Python shell is called programming in interactive mode. One disadvantage of using interactive mode is that the code cannot be saved when using Python in this way.

[image:]

[image:]

KEYWORDS

interactive mode: the Python shell allows commands to be entered and run immediately

Python shell: the Python interactive mode, where commands can be typed directly

print statement: a Python statement used to output text or values onto the screen

case sensitive: able to distinguish between capital and small letters

interpreter: the feature of Python that translates the Python code into language that the computer can understand, line by line

machine code: the language that a computer uses to carry out instructions

[image:]

[image:]

Practise

	
1 Open the Python IDLE. The Python shell will open as shown here:

[image:]

	– Enter this command at the interactive prompt (>>>) and press ENTER:

print("Welcome to the Python Shell")

	– Now enter a command to print your name onto the screen and press ENTER:

print("Type your name here")

	– Now try this command:

print("Hello World)

An error should occur because you have left out a set of quotation marks.

Correct the error and execute the command again.

	
2 Try entering this calculation:

(7+3*2

Look at what has happened this time. Why do think this is?

Correct the error and execute the command again. The answer should be 20.

	– Try entering four of your own maths commands. Remember that the * (star symbol) is used for multiplying.

	– Get Python to add 150 and 23 together and then multiply the result by 3.

[image:]

Using Python IDLE in Script mode

[image:]

Learn

In the previous theme, you used Python Shell to enter single lines of Python code. These are translated and executed one at a time and they cannot be saved.

Most of the time, people write programs with many lines of code that they want to save.

To create and save a program, Python’s IDLE is used in the second mode; this is called script mode.

You use a text editor (a bit like Notepad), which allows you to enter and save lines of code.

Create a program

Follow these steps to create a new program.

	
• From the Python shell, select ‘File’.

	
• Then select ‘New File’.

	
• A new window will open and you can enter lines of code into this text editor.

[image:]

Type the command shown below into the new file.

[image:]

Save a program

Follow these steps to save a program.

	
• From the text editor menu, select ‘File’.

	
• Then select ‘Save as’.

	
• Call the program ‘HelloWorld’ and save it. (Note that all Python programs will have .py at the end to show that they are Python files.)

[image:]

Run a program

Once you have completed the code, you can run the program.

	
• From the text editor menu, select ‘Run’.

	
• Then select ‘Run module’ (or press F5). This will cause the Python interpreter to execute the program.

	
• The output from the program will appear in the window of the shell. In this case, you should see the words ‘Hello world’ in the shell window.

[image:]

Correct errors

Here’s how to correct errors in script mode.

Look at the code in the screenshot below. There is an error (remember that Python can tell the difference between capital and small letters).

[image:]

Can you see the error?

If there are errors in the code, they will be highlighted in red after you run or execute the program:

The only way to correct errors in script mode is to open the program and correct the mistakes in the code.

[image:]

Open a program

Follow these steps to open an existing program.

	
1 From the Python shell, select ‘File’.

	
2 Then select ‘Open’.

	
3 Select the name of the file you wish to open.

	
4 Edit or correct the code.

	
5 Save the program.

Add comments

Here’s how to add comments to a Python program:

Adding comments to code allows you to explain what the code does or to provide extra information about the code. In Python you can do this by starting the comment with a hash (#) symbol. Any text on a line after a # symbol will be ignored by the interpreter.

[image:]

[image:]

[image:]

KEYWORDS

script mode: Python’s text editor, which allows programmers to enter a list of commands and they are executed together

execute: another word for running a program

comments: text entered by a programmer to improve the readability of code; they start with the # symbol in Python

[image:]

[image:]

Practise

	
1 Open Python IDLE.

	– From the Python shell, select ‘File’.

	– Then select ‘New File’.

	– Enter the following code on line 1:

print("Welcome to my first program in Python")

	– Now enter a command to print your favourite hobby onto the screen

print("Add favourite hobby")

	– Save your program. Call it ‘My First Program’.

	– Run the program and make sure it works correctly.

	
2 Now add the following programming code to your program:

print("Did you know Python can do calculations? The line of code below will display the number 10")

print(7+3)

print("How about this? The calculation below should display the number 25")

print(7+3*2+5)

	– Run the code. There should be an error that has occurred; can you correct the error so that the program runs?

	– The final number doesn’t give the correct answer; it says 18 instead of 25. Correct the error and run the program again.

	– Add a comment on your programming code above the line you have just corrected explaining why it didn’t work correctly to begin with.

	
3 Create a new program in IDLE and save the program, calling it ‘Maths Favourites’.

	– Add code so that it prints out three different pieces of information; it should display your name, your favourite number and your favourite type of calculation, for example addition. An example of what your program could look like is shown below:

[image:]

	– Save and run your file.

	
4 Rewrite in Python the Scratch program shown below.

[image:]

	– Create and save a new file first.

	– Save and run your file to check it works.

	– Correct any errors.

[image:]

Variables

[image:]

Learn

You have already seen how to output information onto the screen using the print statement. A computer should also be able to store values in a program so that they can be used at a later time.

Variables are used to store data in a program.

A variable is a named location in the computer’s memory that stores data of a particular type. Data can either be assigned to a variable in the program itself, or it can be assigned from input from the user.

The code below shows four variables; these are the name, age, address and favourite colour of a student. All four variables are assigned a value.

[image:]

If you wanted to print out the contents of the ‘name’ variable, you could use the following code:

print(name)

What if you wanted the message to display ‘Your name is’ followed by the name variable? You could adjust your print message as follows:

print("Your name is",name)

Notice how the variable is not inside quotation marks, and is joined to the other text that is in quotation marks by using a comma. This is what the program looks like when run:

[image:]

You can continue to develop a print statement using variables, for example if you wanted the print message to say ‘Your name is’ followed by their name and then ‘Nice to meet you’, you could use this code:

print("Your name is",name,". Nice to meet you.")

[image:]

[image:]

KEYWORD

variable: a named memory location used to store data of a given type during program execution; a variable can change value as the program runs

[image:]

[image:]

Practise

	
1 Open the Python IDLE.

	– From the Python shell, select ‘File’.

	– Then select ‘New File’.

	– Type the following code:

name = "Ardeel"

age = 12

address = "Station Road"

colour = "Red"

print("Your name is",name)

	– Now add the following code, so it displays the age:

print("You are",age, "years old")

	– Complete the program by getting it to say:

	– ‘You live at’ and then the address

	– The colour and then ‘is your favourite colour’.

	– The finished program should look like this:

[image:]

	
2 Create a new program that shows your name, age, address and favourite colour. Save and run your file.

[image:]

Adding more information to a program

[image:]

Learn

The input() command allow users to enter information into the program and store it in a variable.

For example, name = input("What is your name?") displays the message ‘What is your name?’ on the screen and stores the input from the user in a variable called name.

	Command

	Description

	input()

	Used to take input from a user. If you wish to store this input you need to assign it to a variable.

Here is a comparison of what a Scratch program looks like in Python.

	Scratch

	Python

	

[image:]

	

[image:]

[image:]

[image:]

Practise

	
1 Below are two different programs in Scratch. Rewrite each of these programs in Python.

[image:]

Use the example in the Learn box above to help you.

[image:]

	Program 1

	Program 2

	

[image:]

	

[image:]

	
2 Create a new program in Python that:

	– asks the user to ‘Enter your name’ and stores it in a variable called name

	– asks the user to ‘Enter a number between 1 and 10’ and stores it in a variable called number

	– uses print to create an output that looks something like this when run:

[image:]

Run your program to check for errors.

Pair up with another student and review their solution. Check that the print message is in the same format as the example above.

[image:]

Data types – string, integer and real

[image:]

Learn

Variables can hold different data types. To store data you must decide on a name and a data type for the variable first, for example to store the player’s age you will need to name a variable that can hold a whole number (also known as an integer).

[image:]

Remember: a variable is a named location in the computer’s memory that stores data of a particular type. Data is often entered by the user while the program is running.

[image:]

	Variable name

	Data type

	playerage

	integer

To store the player’s name, you will need a variable that can hold letters – this is called a string.

	Variable name

	Data type

	playername

	string

The variable names have been chosen as playerage and playername but they could have been called anything we wanted.

Variables hold different data types. The table shows examples of each data type.

	Data type

	Example

	String

	Any textual characters, such as ‘Hello World’ or ‘WE5694MC’

	Integer

	Any whole number, such as 24 or −10

	Real

	Any number with a decimal point, such as 6.98 or −0.045

In Python, the data type real is referred to as float. This is short for ‘floating point number’, which is a decimal number.

To capture data from the user, you use the input function.

The input function captures user input as a string data type. This contains numbers, letters and symbols, for example ‘Robot’, @password123’ and ‘**WWW777’ are all examples of a string data type.

Input is a built-in function in Python – it is part of the Python language.

[image:]

[image:]

[image:]

KEYWORDS

data type: the different ways in which data can be stored, e.g. integer, string, decimal number

integer: whole number

real any number with a decimal point, such as 1.2 or 56.8

float: another name for the data type real; it is short for ‘floating point number’, which is a decimal number

input function: a function that Python uses to capture string data from users

string: data that is made up of letters, numbers or any characters on the keyboard

[image:]

[image:]

DID YOU KNOW?

Variables are not used just in computer programming; they are used in other applications as well.

Spreadsheets make use of variables too, but they are referred to as cell references.

Variables are extremely powerful as you can use them to store data and model different scenarios. A common method of modelling is taking historical data about weather conditions and using this to forecast the weather. Other examples of scenarios using variables for modelling include natural disasters, financial markets and aerodynamics.

[image:]

[image:]

[image:]

Practise

	
1 Look at the Python code below. It shows a number of variables storing different pieces of data:

[image:]

Copy and complete the table below, identifying the data type for each variable and giving an explanation of the data type you have chosen.

	Variable name

	Variable name

	Data type

	Explanation

	Name on bank card

	name

	

	

	Bank card number

	cardNumber

	

	

	Bank account balance

	balance

	

	

	Address

	address

	

	

	Age

	age

	

	

	
2 Open the DataTypes.py provided by your teacher.

Edit the code and finish the program so when it is run it looks like this:

[image:]

[image:]

Casting

[image:]

Learn

When using Scratch you did not have to worry about the data types as Scratch worked out the data type automatically. In Python, when the user inputs data and it is stored in a variable, you will need to inform the program what type of data it is. The process of ensuring data is set to the correct data type is known as casting.

It is very important when programming in Python that you always consider what data type the variable is and ensure it is set to the right type using casting. This is particularly important when using variables to perform calculations. If you do not inform Python of the data type of variables, it will not work correctly.

Consider the following example:

[image:]

The program above should multiply the number entered by 2 and give an answer. If 5 was entered it should say 10, but this is not what happens:

[image:]

The input function captures user input as a string data type. This means that if you want to perform a calculation using the input, you will need to cast it to either an integer (int) or decimal (float). Below shows an example of how you cast an input to a different data type:

	Code

	What it does

	num1 = int(input("Enter a number: "))

	The input statement is cast to an integer as it is wrapped in the code int(). This means that Python stores the value entered in the variable num1 as an integer.

	num1 = float(input("Enter a number: "))

	This is exactly the same as the previous example, except the input statement is wrapped in the code float(). This means that Python stores the value entered in the variable num1 as a decimal number.

If the original code is now amended to cast the input to an integer, it will look like this:

[image:]

When the program is run, it now gives the correct answer:

[image:]

[image:]

[image:]

KEYWORD

casting: the process of ensuring data is set to the correct data type

[image:]

[image:]

Practise

	
1 Open the file MealCost.py provided by your teacher:

[image:]

	– Run the program; you will see it contains errors.

	– Make changes to the code so that the inputs are cast to the correct data type and the program runs.

	
2 A rabbit’s age is approximately nine times the age of a human. Create a new program in Python using the Scratch program solution below, which calculates the age of a rabbit in rabbit years:

[image:]

	
3 Create a new program in Python that:

	– asks the user to "Enter the length of one side of a square" and stores it in a variable called length; this should be cast as an integer

	– calculates the area of the square (HINT: this is the length multiplied by the length)

	– uses print to create an output; an example is given below:

[image:]

	
4 Create a new program in Python that calculates the speed of a moving car. The program should:

	– ask the user to enter the distance in meters; this should be cast to an integer

	– ask the user for the journey time in seconds; this should be cast to an integer

	– calculate the speed; this is the distance divided by time

	– use print to output the speed; an example is given below:

[image:]

[image:]

Flowcharts and algorithms

[image:]

Learn

To code a new calculation program in Python, you first need to complete some planning. This allows you to break down the problem and work through a solution. This applies whether you are using block-based programming or text-based programming. To do this you create the algorithm.

A common method of planning using algorithms is to create a flowchart. Here is a reminder of the key symbols and what they are used for:

	
[image:]

Purpose: Used at the start and the end of the flowchart to signify the start and the end

	
[image:]

Purpose: Used when something needs to happen, e.g. Add two numbers together

	
[image:]

Purpose: Used when data needs to be input and/or output from the program, e.g. Input number 1

	

The flowchart below is used for the Scratch program in the Scenario on page 9. You can clearly see:

[image:]

Once you have planned a solution using a flowchart, you can then create the solution in Python. This makes it easier to solve as you have already broken down the problem and worked out the order; you need only get the syntax correct.

This shows the flowchart above written in Python:

[image:]

[image:]

[image:]

KEYWORDS

algorithm: a sequence of steps or instructions to solve a problem

flowchart: a diagram showing the sequence of actions in a computer program; a graphical representation to show the steps to solve a problem

syntax: the structure of the code used in a programming language

[image:]

[image:]

Practise

	
1 Predict the outcome of the flowchart on page 26 if the following values are entered:

	– number1 = 15, number2 = 20

	– number1 = 9, number2 = 17

	– number1 = 45, number2 = 36

	
2 Were your predictions correct?

	– Open the file BasicAddition.py provided by your teacher.

	– Enter the values above into your program. Are the answers the same as your predictions?

	
3 Using the correct symbols, create an algorithm using a flowchart that does the following:

	– Asks the user to input two numbers

	– Adds the two numbers together and then divides by 2 to find the mean average

	– Outputs the average.

Try coding your flowchart in a new Python program.

	
4 Evaluate your flowchart and Python program. Ask a partner to check your flowchart with the following values. Do they get the correct output?

	– number1 = 7, number2 = 9; average should be 8

	– number1 = 15, number2 = 20; average should be 17.5

	
5 Discuss any problems with a partner and make corrections to your flowchart and/or Python code.

[image:]

BIDMAS in Python

[image:]

Learn

BIDMAS is an acronym to help you remember the order of operations when completing mathematical calculations.

When performing a mathematical calculation, a program will carry out the calculation in the following order:

[image:]

Indices are used to show numbers that are multiplied by themselves. For example, 23 is 2 × 2 × 2, which equals 8.

[image:]

	
• Brackets

	
• Indices

	
• Division

	
• Multiplication

	
• Addition

	
• Subtraction

Addition and subtraction are equal, so if both appear in a calculation they will be worked out from left to right.

Consider the following calculations:

	Calculation

	Outcome

	Reason

	3 + 4 * 5

	23

	4 * 5 will be calculated first before adding the 3

	2 * 7 + 3 * 5

	29

	2 * 7 will be calculated first, then 3 * 5, then the two are added together

	6 + 3 * 9 / 11

	8.45 to 2 decimal places

	9 / 11 will be calculated first, then multiplied by 3, then 6 is added to it

	20 * (10 – 6) / 5

	16

	10 – 6 will be calculated first, then divided by 5 and then multiplied by 20

Applying BIDMAS is important when creating computer programs as otherwise you may receive the incorrect result.

[image:]

[image:]

Practise

Open IDLE and use Python in interactive mode.

	
• Copy and complete the table below and enter the different calculations into Python as they are written in the left-hand column. For each calculation, record the answer that is given.

	
• Now change the calculation using BIDMAS until you get the answer in the desired answer column. The first one has been done for you as an example.

	Calculation

	Answer

	Desired answer

	Calculation to get desired answer

	5 * 8 + 6

	46

	70

	5 * (8 + 6)

	35 – 10 + 15

	

	10

	

	9 + 3 * 5

	

	60

	

	9 * 8 – 20 / 5

	

	10.4

	

	60 * 40 – 3 * 4

	

	8880

	

	18 * 6 – 2 / 8

	

	9

	

[image:]

[image:]

KEYWORD

BIDMAS: an acronym to help you remember the order of operations when completing mathematical calculations; a program will carry out the calculation in the following order: brackets, indices, division, multiplication, addition, subtraction

[image:]

Error detection and correction

[image:]

Learn

You have now created a number of different programs in Python and you will have encountered different errors where programs do not work or do not work as they should. Part of programming is being able to identify and debug (remove) the errors in your code.

Test plans

One way to check for errors is to apply a test plan. This is used to check whether a program is working correctly. The plan contains a number of tests that show what is expected to happen (the expected outcome).

Once you have created a program, you can apply a test plan to see whether the finished program does what you expect. An example of what a test plan could look like for a program that should add two numbers together is shown below:

[image:]

The program is not working as expected. Can you work out the error in the arithmetic operator used in the code?

[image:]

	Test number

	Data entered

	Expected outcome

	Actual outcome

	Pass/fail

	1

	num1 = 20

num2 = 15

	total = 35

	total = 300 fail

	Fail

	2

	num1 = 19

num2 = 34

	total = 53

	total = 646 fail

	Fail

There are a wide range of errors you may have come across, for example:

[image:]

Missing brackets

A common problem is not including brackets in the correct place or not using them at all.

	Incorrect code

	Issue

	Correct code

	print("Hello World"

	Missing a close bracket at the end of the line

	print("Hello World")

	num1 = int(input("Enter a number:")

	Missing a close bracket at the end of the line; the code currently has two open brackets but only one close bracket

	num1 = int(input("Enter a number:"))

Missing quotation marks

Adding quotation marks in an incorrect place or forgetting to include them can result in the program not running or not displaying the correct information.

	Incorrect code

	Issue

	Correct code

	name = input(Enter a name")

	There is a missing quotation mark before Enter, after the open bracket

	name = input("Enter a name")

	print("The name you entered was,name)

	There is a missing quotation mark after was, before the comma

	print("The name you entered was",name)

	print("The name you entered was,name")

	There are no missing quotation marks. However, on line 2 the quotation marks are in the wrong place: when run, the program would say "The name you entered was,name" rather than the name that was entered – the quotation marks need to go after was and before the comma

	print("The name you entered was",name)

OEBPS/OEBPS/images/14-1.png
[Python 380 Snell - o x

Fic_Eait Shell Debug Options Window Help
Bychon 3.6.0 (vaga/v3..0:faS15%d, oc 14 2015, 19:37:50) [MSC v.1516 &4 biv (am
06411 on wind2

Iype "help", "copyright®, "credits” or "license()" for more inforsation.

55

3 Cokd

OEBPS/OEBPS/images/20-1.png

OEBPS/OEBPS/images/27-1.png
numberl = int (input("kEnter your first number: "))
number2 = int (input("Enter your second number: "))
total - numberl + number2

print ("The total of the two numbers i

<", total)

OEBPS/OEBPS/images/26-4.png
Start

the two numbers that are the inputs

INPUT /

number2

a calculation to add the two numbers

OUTPUT “The
total of the two

numbers is”, total

an output to let you know the total.

OEBPS/OEBPS/images/26-3.png
[

Input/Output

OEBPS/OEBPS/images/26-2.png
Process

OEBPS/OEBPS/images/8-1.jpg

OEBPS/OEBPS/images/tp.png
Cambridge
Lower Secondary

f‘\

| Computing

Ben Barnes
Margaret Debbadi
Pam Jones

Tristan Kirkpatrick

SERIES EDITOR:

Lorne Pearcey (7 HODDER
AN HACHETTE UK COMPANY

OEBPS/OEBPS/images/rules.jpg

OEBPS/OEBPS/images/11-2.png
L]

B
o

o

RIS A -

OEBPS/OEBPS/images/10-1.jpg

OEBPS/OEBPS/images/20-2.png
name = 1input ("What's your name? ")
print ("Hello", name)

OEBPS/OEBPS/images/15-1.png
[“Python 37.45helr”
Fie| St Shll_Dabug Optons _Window_Help

- o

x

pen.
Opentiodue..
Recane s
Mok Brouzer
[p—

Sove
Seha.
SoveCopy e

P Window,

oz
Bt

B
Atem

e

anes
Cuteshites
AleShites

e

A
aa

roreascer ox "license()® for more tntormasicn.

OEBPS/OEBPS/images/24-3.png
numl = int(input("Enter a number: "))
answer = numl * 2
print("The answer is",answer)

OEBPS/OEBPS/images/24-2.png
Enter a number: 5
The answer is 55

OEBPS/nav.xhtml

Contents

		Cover

		Title Page

		Copyright

		Contents

		Introduction

		7.1 Block it out: Moving from blocks to text

		7.2 Decomposing problems: Creating a smart solution

		7.3 Connections are made: Accessing the internet

		7.4 The power of data: Using data modelling

		7.5 Living with AI: Digital data

		7.6 Sequencing and pattern recognition: Getting the message across

		Glossary

		Index

		Acknowledgements

		Cover

		Title Page

		Copyright

		Contents

		Cover

		C1

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		220

		221

		222

		223

		224

		225

		226

		227

		228

		229

		230

		231

		232

		233

		234

		235

		236

		C2

		C3

OEBPS/OEBPS/images/15-3.png
e Edit Format

orine ("Hello o

OEBPS/OEBPS/images/24-1.png
numl = input("Enter a number: ")
answer = numl * 2
print ("The answer is",answer)

OEBPS/OEBPS/images/c1.png
The Cambridge Lower Secondary Computing series consists of a Student’s Book,
Boost eBook and Teacher’s Guide with Boost Subscription for each stage.

Teacher's Guide with

Student’s Book Boost eBook Boost subscription
Student’s Book 7 eBook 7 Teacher's Guide 7
9781398369320 9781398371149 9781398369337
Student’s Book 8 eBook 8 Teacher's Guide 8
9781398369795 9781398371156 9781398369801
Student’s Book 9 eBook 9 Teacher's Guide 9
9781398369825 9781398371187 9781398369818

To explore the entire series,
visit www.hoddereducation.com/cambridge-lowersec-computing

=

OEBPS/OEBPS/images/15-2.png
[& “untitled*
File Edit Format Run Options Window Help

print ("Hello world"™) I

OEBPS/OEBPS/images/23-3.png
Name: Maryam

Age: 13

Address: Station Road

Bank Card Number: 0012563943029845
Current Balanc 145.98

OEBPS/OEBPS/images/15-4.png
IDLE Shell 3104
Ble Edt Shel Debug Opion: Window belp

Python 3.10.4 (ta
AMD64)] on win32
Type "help", "cop

OEBPS/OEBPS/images/12-1.png
- o x

B sty - Usery/Ben Bomey/ AppOite/LocalProgrems Python/Pythons10fTest . — 0 X | [IDLESheN 3100
Fie Edt_Fom Fun Opons Vindow Help Fie Et_Sheh Dtbug Optons Window_Help
sombeci = int{inpat ("Tater your Eices marbers %)) | [eyehon 3100 (caga/v 10.0basarse, oex 4 2021, 15:00:18) (4C w1 4
mamnerz = tac (iapus (Encer your secend muber: ")) 529 56 biv (aDea)] on wins2
citrarence - namperz - runper Type "nelpr, "oapyTignoe, "oresitsr or mlicense()" for more nforma
Crint (he diEferance btwean the two mumbers ix%,diffesence) =
RESTARI: Ci/Users/sen Barnes/appata/Local /Prograns, Bycnon/ PYnons
Lo/Tenc ey
Eacer your rirst mumer: 13
5551 |

OEBPS/OEBPS/images/26-1.png

OEBPS/OEBPS/images/25-4.png
Enter the distance 1n meters: 1500
Enter the time in seconds: 40
The car was travelling at a speed of 37.5 meters per second

OEBPS/OEBPS/images/25-3.png
Enter the length of one slde of a square: 7
The area of the square is: 49

OEBPS/OEBPS/images/check.png

OEBPS/OEBPS/images/25-2.png
and wait

E ANl The age of the rabbit in rabbit years is -

OEBPS/OEBPS/images/25-1.png
money = 1input ("How much money do you have? ")
input ("How much did the meal cost? ")
left = money - meal

print ("After vour meal you have,",left,"left")

OEBPS/OEBPS/images/24-4.png
Enter a number: 5
The answer is 10

OEBPS/OEBPS/images/16-2.png
Print ("Hello World")
NameError: name 'Print' is not defined

OEBPS/OEBPS/images/19-1.png
Your name is Ardeel

OEBPS/OEBPS/images/16-1.png
(& Helloworidwrong.py -
File Edit Format Run Options Window Help

Print("Hello World")

OEBPS/OEBPS/images/21-4.png
Enter your name Khalil
Enter a number between 1 and 10 €
Your name is Khalil and the number you entered was 6

OEBPS/OEBPS/images/9-2.png
Enter your first number. JEUSRVTS

numbert v o answer

v

number2 v to answer

total v to numberl + number2

o QTETTTIN it (o @ cconie

OEBPS/OEBPS/images/16-3.png
File Edit Format Run Options Window Help
#This is an Adventure Game about The Digital Sweet Shop
#The program was written by me

#

#

#
#The next few lines give the introduction

print ("Welcome to The Digital Sweet Shop")

print()

Pprint("You have been invited to take part in a competition in the shop.
print("You must find the chocolate room where you will be asked a question.”)

print ("If you get it right you will receive letters which are part of a password and a clue.")|

OEBPS/OEBPS/images/21-3.png
How old are you?

Where do you live?

OEBPS/OEBPS/images/9-1.jpg

OEBPS/OEBPS/images/21-2.png
set wodv o answer

AR N The word you entered was T

OEBPS/OEBPS/images/23-2.png
name = "Maryam”™

cardNumber = "0012563943029845"
balance = 145.98

address = "Mall Road"

age = 11

OEBPS/OEBPS/images/23-1.jpg

OEBPS/OEBPS/images/13-1.png
[Python 3.7.4 Shell - u] X
Eile Edit Shell Debug Options Window Help

Python 3.7.4 (tags/v3.7.4:€09359112e, Jul 6 2019, 19:29:22) [MSC v.1916 32 bit A
(Intel)] on win32

Type "help”, "copyright", "credits" or "license()" for more information.
>>> print ("Hello world")

Hello world

>>> (7+6)*2

26

Sos |

Ln:7 Colk4

OEBPS/OEBPS/images/cover.jpg
()
Ben Barnes \
Margaret Debbadi S

Pam Jones -

Tristan Kirkpatrick
SERIES EDITOR:
Lorne Pearcey

OEBPS/OEBPS/images/copy.png
MIX
Paper | Supporting

responsible forestry
ﬁ%ncw FSC™ C104740

OEBPS/OEBPS/images/19-2.png
Your name is Ardeel

You are 12 years old

You live at Station Road
Red is your favourite colour

OEBPS/OEBPS/images/18-2.png
name = "Ardeel"
age = 12
address = "Station Road"

colour = "Red"

OEBPS/OEBPS/images/18-1.png
Welcome to the Maths game

My favourite number is 8

What is yours?

OEBPS/OEBPS/images/22-2.png
playername=input ("What is your name? ")
print ("Welcome",playername)

OEBPS/OEBPS/images/17-1.png
Name: Adnan
Favourite number: 7
Favourite calculation: multiplication

