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Introduction



Mathematics has been evolving for over four thousand years. We still measure angles using the 360-degree system introduced by the Babylonians. Geometry came of age with the ancient Greeks, who also understood irrational numbers. The Moorish civilization developed algebra and popularized the idea of zero as a number.


Mathematics has a rich history for good reason. It is both stunningly useful – the language of science, technology, architecture and commerce – and profoundly satisfying as an intellectual pursuit. Not only does mathematics have a rich past, but it continues to evolve, both in the sophistication of approaches to established areas and in the discovery or invention of new areas of investigation. Recently computers have provided a new way to explore the unknown, and even if traditional mathematical proofs are the end product, numerical simulations can provide a source of new intuition which speeds up the process of framing conjectures.


Only a lunatic would pretend that all mathematics could be presented in 200 bite-sized chunks. What this book does attempt to do is to describe some of the achievements of mathematics, both ancient and modern, and explain why these are so exciting. In order to develop some of the ideas in more detail it seemed natural to focus on core mathematics. The many applications of these ideas are mentioned only in passing.


The ideas of mathematics build on each other, and the topics in this book are organized so that cognate areas are reasonably close together. But look out for long-range connections. One of the amazing features of mathematics is that apparently separate areas of study turn out to be deeply connected. Monstrous moonshine provides a modern example of this, and matrix equations a more established link.


This book is thus a heady distillation of four thousand years of human endeavour, but it can only be a beginning. I hope it will provide a springboard for further reading and deeper thought.


Paul Glendinning, Marsden, October 2011.





Numbers
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Numbers at their most elementary are just adjectives describing quantity. We might say, for instance, ‘three chairs’ or ‘two sheep’. But even as an adjective, we understand instinctively that the phrase ‘two and a half goats’ makes no sense. Numbers, then, can have different uses and meanings.


As ancient peoples used them in different ways, numbers acquired symbolic meanings, like the water lily that depicts the number 1000 in Egyptian hieroglyphs. Although aesthetically pleasing, this visual approach does not lend itself to algebraic manipulation. As numbers became more widely used, their symbols became simpler. The Romans used a small range of basic signs to represent a huge range of numbers. However, calculations using large numbers were still complicated.


Our modern system of numerals is inherited from the Arabic civilizations of the first millennium AD. Using 10 as its base, it makes complex manipulations far easier to manage.


Natural numbers
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Natural numbers are the simple counting numbers (0, 1, 2, 3, 4, …). The skill of counting is intimately linked to the development of complex societies through trade, technology and documentation. Counting requires more than numbers, though. It involves addition, and hence subtraction too.


As soon as counting is introduced, operations on numbers also become part of the lexicon – numbers stop being simple descriptors, and become objects that can transform each other. Once addition is understood, multiplication follows as a way of looking at sums of sums – how many objects are in five groups of six? – while division offers a way of describing the opposite operation to multiplication – if thirty objects are divided into five equal groups, how many objects are in each?


But there are problems. What does it mean to divide 31 into 5 equal groups? What is 1 take away 10? To make sense of these questions we need to go beyond the natural numbers.



One



[image: Image]


Together with zero, the number one is at the heart of all arithmetic. One is the adjective for a single object: by repeatedly adding or subtracting the number to or from itself, all the positive and negative whole numbers, the integers, can be created. This was the basis of tallying, perhaps the earliest system of counting, whose origins can be traced back to prehistoric times. One also has a special role in multiplication: multiplying any given number by one simply produces the original number. This property is expressed by calling it the multiplicative identity.


The number one has unique properties that mean it behaves in unusual ways – it is a factor of all other whole numbers, the first non-zero number and the first odd number. It also provides a useful standard of comparison for measurements, so many calculations in mathematics and science are normalized to give answers between zero and one.



Zero
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Zero is a complex idea, and for a long time there was considerable philosophical reluctance to recognize and put a name to it. The earliest zero symbols are only found between other numerals, indicating an absence. The ancient Babylonian number system, for instance, used a placeholder for zero when it fell between other numerals, but not at the end of a number. The earliest definitive use of zero as a number like any other comes from Indian mathematicians around the ninth century.


Aside from philosophical concerns, early mathematicians were reluctant to embrace zero because it does not always behave like other numbers. For instance, division by zero is a meaningless operation, and multiplying any number by zero simply gives zero. However, zero plays the same role in addition as one does in multiplication. It is known as the additive identity, because any given number plus zero results in the original number.



Infinity
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Infinity (represented mathematically as [image: Image]) is simply the concept of endlessness: an infinite object is one that is unbounded. It is hard to do mathematics without encountering infinity in one form or another. Many mathematical arguments and techniques involve either choosing something from an infinite list, or looking at what happens if some process is allowed to tend to infinity, continuing towards its infinite limit.


Infinite collections of numbers or other objects, called infinite sets, are a key part of mathematics. The mathematical description of such sets leads to the beautiful conclusion that there is more than one sort of infinite set, and hence there are several different types of infinity.


In fact there are infinitely many, bigger and bigger, kinds of infinite set, and whilst this may seem counterintuitive, it follows from the logic of mathematical definitions.



Number systems



A number system is a way of writing down numbers. In our everyday decimal system, we represent numbers in the form 434.15, for example. Digits within the number indicate units, tens, hundreds, tenths, hundredths, thousandths and so on, and are called coefficients. So:
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This is simply a shorthand description of a sum of powers of ten, and any real number can be written in this way.


But there is nothing special about this ‘base 10’ system. The same number can be written in any positive whole-number base n, using coefficients ranging from 0 up to n – 1. For example, in base two or binary, the number [image: Image] can be written as 1000.0101. The coefficients to the left of the decimal point show units, twos, fours and eights – powers of 2. Those to the right show halves, quarters, eighths and sixteenths. Most computers use the binary system, since two coefficients (0 and 1) are easier to work with electronically.
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The number line



The number line is a useful concept for thinking about the meaning of mathematical operations. It is a horizontal line, with major divisions marked by the positive and negative whole numbers stretching away in each direction. The entire range of whole numbers covered by the number line are known as the integers.


Addition of a positive number corresponds to moving to the right on the number line by a distance equivalent to the given positive number. Subtraction of a positive number corresponds to moving to the left by that positive distance.
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Thus one minus ten means moving 10 units to the left of 1, giving minus nine, written –9.


In between the whole number integers shown, there are other numbers, such as halves, thirds and quarters. These are ratios formed by dividing any integer by a non-zero integer. Together with the natural numbers – zero and the positive whole numbers, which are effectively ratios divided by 1 – they form the rational numbers. These are marked by finer and finer subdivisions of the number line.


But do the rational numbers complete the number line? It turns out that almost all the numbers between zero and one cannot be written as ratios. These are known as irrational numbers, numbers whose decimal representations never stop and are not eventually repeating. The complete set of rationals and irrationals together are known as the real numbers.



Families of numbers



Numbers can be classified into families of numbers that share certain properties. There are many ways of putting numbers into classes in this way. In fact, just as there is an infinity of numbers, there is an infinite variety of ways in which they can be subdivided and distinguished from one another. For example the natural numbers, whole numbers with which we count objects in the real world, are just such a family, as are the integers – whole numbers including those less than zero. The rational numbers form another family, and help to define an even larger family, the irrational numbers. The families of algebraic and transcendental numbers are defined by other behaviours while the members of all these different families are members of the real numbers, defined in opposition to the imaginary numbers.


Saying that a number is a member of a certain family is a shorthand way of describing its various properties, and therefore clarifying what sort of mathematical questions we can usefully ask about it. Often, families arise from the creation of functions that describe how to construct a sequence of numbers. Alternatively, we can construct a function or rule to describe families that we recognize intuitively.


For instance we instinctively recognize even numbers, but what are they? Mathematically, we could define them as all natural numbers of the form 2 × n where n is itself a natural number. Similarly, odd numbers are natural numbers of the form 2n + 1, while prime numbers are numbers greater than 1, whose only divisors are 1 and themselves.


Other families arise naturally in mathematics – for example in the Fibonacci numbers (1, 2, 3, 5, 8, 13, 21, 34, …), each number is the sum of the previous two. This pattern arises naturally in both biology and mathematics. Fibonacci numbers are also closely connected to the golden ratio.


Other examples include the times tables, which are formed by multiplying the positive integers by a particular number, and the squares, where each number is the product of a natural number with itself: n times n, or n2, or n squared.



Combining numbers



There are a number of different ways of combining any two given numbers. They can be added together to form their sum, subtracted to form their difference, multiplied together to form their product and divided, provided the divisor is non-zero, to form their ratio. In fact, if we think of a – b as [image: Image] and [image: Image] as [image: Image], then the only operations really involved are addition and multiplication, together with taking the reciprocal to calculate [image: Image]


Addition and multiplication are said to be commutative, in that the order of the numbers involved does not matter, but for more complicated sequences, the order in which operations are performed can make a difference. To aid clarity in these cases, certain conventions have been developed. Most importantly, operations to be performed first are written in brackets. Multiplication and addition also satisfy some other general rules about how brackets can be reinterpreted, known as associativity and distributivity.
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Rational numbers
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Rational numbers are numbers that can be expressed by dividing one integer by another non-zero integer. Thus all rational numbers take the form of fractions or quotients. These are written as one number, the numerator, divided by a second, the denominator.


When expressed in decimal form, rational numbers either come to an end after a finite number of digits, or one or a number of digits are repeated forever. For instance, 0.3333333 … is a rational number expressed in decimal form. In fraction form, the same number is [image: Image]. It is also true to say that any decimal number that comes to an end or repeats must be a rational number, expressible in fractional form.


Since there is an infinite number of integers, it is not surprising to find that there is an infinite number of ways of dividing one by another, but this does not mean there is a ‘greater infinity’ of rational numbers than that of the integers.



Squares, square roots and powers
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The square of any number x is the product of the number times itself, denoted x2. The term originates from the fact that the area of a square (with equal sides) is the length of a side times itself. The square of any non-zero number is positive, since the product of two negative numbers is positive, and the square of zero is zero. Conversely, any positive number must be the square of two numbers, x and –x. These are its square roots.


More generally, multiplying a number x by itself n times gives x to the power of n, written xn. Powers have their own combination rules, which arise from their meaning:


[image: Image]


It also follows from the formula xn× xm = xn+m that the square root of a number can be thought of as that number raised to the power of one-half, i.e. [image: Image].



Prime numbers
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A table of numbers from 1 to 100 with the primes highlighted


Prime numbers are positive integers that are divisible only by themselves and 1. The first eleven are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 and 31, but there are infinitely many. By convention, 1 is not considered prime, while 2 is the only even prime. A number that is neither 1 nor a prime is called a composite number.


Every composite number can be written uniquely as a product of prime factors multiplied together: for example, 12 = 22 × 3, 21 = 3 × 7, and 270 = 2 × 33 × 5. Since prime numbers cannot be factorized themselves, they can be thought of as the fundamental building blocks of positive integers. However, determining whether a number is prime, and finding the prime factors if it is not, can be extremely difficult. This process is therefore an ideal basis for encryption systems.


There are many deep patterns to the primes, and one of the great outstanding hypotheses of mathematics, the Riemann hypothesis, is concerned with their distribution.



Divisors and remainders



A number is a divisor of another number if it divides into that number exactly, with no remainder. So 4 is a divisor of 12, because it can be divided into 12 exactly three times. In this kind of operation, the number being divided, 12, is known as the dividend.


But what about 13 divided by 4? In this case, 4 is not a divisor of 13, since it divides into 13 three times, but leaves 1 left over. One way of expressing the answer is as three, remainder one. This is another way of saying that 12, which is 3 × 4, is the largest whole number less than the dividend (13) that is divisible by four, and that 13 = 12 + 1. When the remainder of one is now divided by four, the result is the fraction [image: Image], so the answer to our original question is 3[image: Image].


3 and 4 are both divisors of 12 (as are 1, 2, 6 and 12). If we divide one natural number, p say, by another, q, that is not a divisor of p, then there is always a remainder, r, that is less than q. This means that in general p = kq + r, where k is a natural number, and r is a natural number less than q.


For any two numbers p and q, the greatest common divisor, GCD, also known as the highest common factor, is the largest number that is a divisor of both p and q. Since 1 is obviously a divisor of both numbers, the GCD is always greater than or equal to 1. If the GCD is I, then the numbers are said to be coprime – they share no common positive divisors except 1.


Divisors give rise to an interesting family of numbers called ‘perfect numbers’. These are numbers whose positive divisors, excluding themselves, sum to the value of the number itself. The first and simplest perfect number is 6, which is equal to the sum of its divisors, 1, 2 and 3. The second perfect number is 28, which is equal to 1 + 2 + 4 + 7 + 14. You have to wait a lot longer to find the third: 496, which is equal to 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248.


Perfect numbers are rare, and finding them is a challenge. Mathematicians have yet to find conclusive answers to some important questions, such as whether there are an infinite number of perfect numbers, or whether they are all even.



Euclid’s algorithm



An algorithm is a method, or recipe, for solving a problem by following a set of rules. Euclid’s algorithm is an early example, formulated around 300 BC. It is designed to find the greatest common divisor, GCD, of two numbers. Algorithms are fundamental to computer science, and most electronic devices use them to produce useful output.


The simplest version of Euclid’s algorithm uses the fact that the GCD of two numbers is the same as the GCD of the smaller number and the difference between them. This allows us to repeatedly remove the larger number in the pair, reducing the size of the numbers involved until one vanishes. The last nonzero number is then the GCD of the original pair.


This method can take many repetitions to reach the answer. A more efficient method, the standard algorithm, replaces the larger number by the remainder obtained when dividing it by the smaller number, until there is no remainder.




FINDING THE GCD OF 585 AND 442


Simple version of Euclid’s algorithm: 15 steps


585 – 442 = 143, so consider 442 and 143


442 – 143 = 299, consider 299 and 143


299 – 143 = 156, consider 156 and 143


156 – 143 = 13, consider 143 and 13


143 – 13 = 130, consider 130 and 13


(at this stage the answer is obvious, but subtracting 13 nine more times leads to …)


13 – 13 = 0, so the GCD is 13.


Standard version of Euclid’s algorithm: 3 steps


[image: Image]


so the process stops, and 13 is the GCD.






Irrational numbers



Irrational numbers are numbers that cannot be expressed by dividing one natural number by another. Unlike rational numbers, they cannot be expressed as a ratio between two integers, or in a decimal form that either comes to an end or lapses into a regular pattern of repeating digits. Instead, the decimal expansions of irrational numbers carry on forever without periodic repetition.


Like the natural numbers and the rationals, the irrationals are infinite in extent. But whilst the rationals and the integers are sets of the same size, or cardinality, the irrationals are far more numerous still. In fact their nature makes them not only infinite, but uncountable.


Some of the most important numbers in mathematics are irrational, including π, the ratio between the circumference of a circle and its radius, Euler’s constant e, the golden ratio shown below, and [image: Image], the square root of 2.




[image: Image]


The golden ratio is the ratio between two numbers when the ratio of the smaller one to the larger is equal to the ratio of the larger to the sum of the whole. It is an irrational number and a constant that arises naturally in many situations and is used to govern proportion in art and architecture.





Algebraic and transcendental numbers


An algebraic number is one that is a solution to an equation involving powers of the variable x, a polynomial with rational coefficients, while a transcendental number is one that is not such a solution. The coefficients in such equations are the numbers that multiply each of the variables. For example, [image: Image] is irrational, since it cannot be written as a ratio of two whole numbers. But it is algebraic, since it is the solution of x2 – 2 = 0, which has rational coefficients (1 and 2). All rational numbers are algebraic, since any given ratio [image: Image] can be found as the solution of qx – p = 0.


We might expect transcendental numbers to be rare, but in fact the opposite is true. [image: Image] is exceptional, and almost all irrationals are also transcendental. Proving this is very difficult, but a randomly chosen number between zero and one would almost certainly be transcendental. This raises the question of why mathematicians spend so much time solving algebraic equations, ignoring the vast majority of numbers.
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