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Preface



 


This book compiles some teaching notes on axiomatic choice theory which were developed from 1976 to 1981 at the Graduate School of Business, Stanford University. The notes have been updated a bit, and they have been cleaned up a bit, but they are otherwise much as they were in 1981. They were used in conjunction with a one term course for first year Ph.D. students, and they provide about enough material for just such a course, when supplemented with one or two advanced topics. The course was originally required of all the first year Ph.D. students in the Business School, and so the level of mathematical complexity that could be permitted for most of the development was low. Nonetheless, the purpose of the course was to give students some basic training in the theorem proving parts of economic theory, and the notes are written in the style of theorem-proof. Hence the reader will find the book to be somewhat schizophrenic. The style is such that it seems to want to be taken seriously as a reference book on choice theory, but then whenever the mathematical going gets tough, arms start to wave and the reader is sent to a real book on the subject. Appearances notwithstanding, this is not intended to be a reference book on choice theory. It is meant instead to be a first course on the subject for graduate (Ph.D.) students, although I imagine it could be used by really good undergraduates. Serious students of the subject can use this book as a chatty introduction to some of the basic ideas and logic, but it must be supplemented by a serious reference book. When I taught the course, I would send students to Fishburn’s Utility Theory for Decision Makers, to Krantz et al. Foundations of Measurement, and, of course, to Savage’s Foundations of Statistics for the “real stuff”; those recommendations are still quite good and valid. The reader will notice as well that the general lines adopted are those of Fishburn. It is hard to improve on that classic, although in places I do move some stuff around. In any case, much of what is reported here I learned by reading Fishburn, and an enormous intellectual debt is owed to him.


The reader will note that the style of writing is both informal and uneven. I have not made a great effort to clean up the original notes, which were not intended for this sort of dissemination, and excursions into the first person or phrases masquerading as sentences will have to be excused. Students have said that they found this style more accessible than the standard texts; and I hope (a) this is correct and (b) you will find it so.


At the end of most chapters are some homework problems. They were an integral part of the course, and I would urge any serious reader to try them out. This being a series in “Underground” writings, perhaps the publisher will allow me to suggest here that there are copies of suggested solutions floating around in the deep underground.


The book comes roughly in three parts. After an introduction (Chapter 1), we have a very brief excursion into the theory of choice and preference without any uncertainty (Chapters 2 and 3). This goes by very quickly, since the interesting questions in this development become too mathematical in short order.


The second part of the book, and the bulk of it, is devoted to the standard models of choice under uncertainty. Chapter 4 provides an introduction to what will be sought, and then Chapter 5 takes on von Neumann-Morgenstern expected utility, first for finite outcome lotteries and then more generally, via the mixture space approach of Herstein and Milnor. Chapter 6 discusses the special case of utility functions defined on dollar prizes, which is to say, a brief development of the Arrow and Pratt measures of risk aversion. Chapter 7 presents the development of subjective expected utility with extraneous objective randomizing devices, as given by Anscombe and Aumann. Chapters 8 and 9 then introduce (but fax from cover) the classic development of Savage – subjective probability is discussed in Chapter 8, with expected utility in Chapter 9. Finally, Chapter 10 gives a very short discussion of conditional preference and conditional probability within the Savage framework, and it introduces ideas about the use of static theories of choice in the context of dynamic choice.


The third part of the book discusses a number of special topics, the selection of which was entirely idiosyncratic and formed in part by my then current research. Chapter 11 introduces the concept of exchangeability and gives a simple version of de Finetti’s theorem. In Chapter 12 we discuss why the classical models don’t work when they are applied to pieces of a larger problem. Chapter 13 gives the reader a quick taste of what I think dynamic choice theory ought to look like (which is not what was discussed in Chapter 10). And in Chapter 14 the reader, by now exhausted, is given a very quick introduction to the bad news about the experimental evidence.


The course on which these notes are based was taught first by J. Michael Harrison, and so much of the credit for the basic organization of the course, left over after the large allocation of credit to Fishburn, goes to him. He is also to be credited with any artistry in the drama of Chapter 11, and I am grateful for his permission to include my bastardized version of his classic. The teaching of the course subsequently was shared by Joel Demski, who made many contributions. Comments and suggestions on the notes also came from the students who suffered through them; without trying to recall everyone who made suggestions, Rick Antle, Elchanan Ben-Porath, and Paul Milgrom come to mind as individuals who deserve special thanks. Renee Gibb turned a badly typed typescript into serviceable TeX files, from which this book eventually emerged, and Hideo Suehiro and the students of Faruk Gul’s 1988 edition of the course read pieces of the final manuscript and pointed out numerous typos.


The hero of this book is a character named Totrep, Mike Harrison’s acronym for a Trade-Off Talking Rational Economic Person. With apologies, Totrep will use male pronouns throughout.


 


David M. Kreps
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Introduction


 


The subject matter of this book is the axiomatic development of single-person choice theory, also known as decision theory and preference theory. This includes bits of the philosophy of probability. The easiest way to describe what we’ll be doing is to give an example. If you’ve read a book on decision analysis or the economics of uncertainty, you probably will be familiar with this example, although not in quite so formal a manner.


Let P denote the set of all simple probability distributions on the interval [0,100], where a simple probability distribution is one with a finite number of outcomes. Such things can be represented graphically by chance nodes, as in figure 1.1a below.


[image: image]


Figure 1.1a


[image: image]


Figure 1.1b


[image: image]


Figure 1.1c


This represents a .5 chance at the prize 10, a .2 chance at 60, and a .3 chance at 100. If p and p′ are two such probability distributions and a is a number between 0 and 1, we can define a new probability distribution ap + (1 – a)p′ which is the “a, 1 – a mixture of p and p′.” For example, suppose that p is as above and p′ is the distribution given by the chance node in figure 1.1b. Then .6p + 4p′ is the distribution given by the chance node in figure 1.1c.


Interpret these probability distributions as gambles or lotteries with dollar prizes between $0 and $100, based on devices such as fair coins, dice, roulette wheels, etc.


An individual – you, your friend, the man in the street – whom we will call Totrep, for Trade-Off Talking Rational Economic Person, has preferences among these lotteries. These preferences are described by a binary relation [image: image] which stands for “strict preference” – we write p [image: image] ρ′ if and only if Totrep strictly prefers p to p′. (If you aren’t sure what a binary relation is exactly, just go with the spirit of the thing for the moment.)


Consider the following properties of such a binary relation:


Axiom (1.1). If p [image: image] p′, then not p′ [image: image] p.


Axiom (1.2). If not p [image: image] p′ and not p′ [image: image] p″, then not p [image: image] p″.


Axiom (1.3). If we let δr denote the lottery which gives the prize r with certainty, then r > r′ implies δr [image: image] δr′.


Axiom (1.4). If p [image: image] p′ [image: image] p″, then there exist a and b in (0,1) such that ap + (1 – a)p″ [image: image] p′ [image: image] bp + (1 – b)p″.


Axiom (1.5). If p [image: image] p′, then for all a ∈ (0,1) and p″ ∈ P it follows that ap + (1 – a)p″ [image: image] ap′ + (1 – a)p″.


These five axioms may not be in a form familiar to you, but the following results are probably familiar. Some notation: If u is a function from [0,100] to R (the real line), and if p is a simple probability distribution, then Ep[u] means the expectation of u taken with respect to the probability distribution p. That is,


[image: image]


Theorem (1.6). A binary relation [image: image] on P satisfies Axioms (1.1) through (1.5) if and only if there exists a strictly increasing function u : [0,100] → R such that


[image: image]


Theorem (1.8). Suppose [image: image] on P satisfies Axioms (1.1) through (1.5) and that u and u′ are two functions : [0,100] → R such that (1.7) holds. Then there exist real numbers c > 0 and d such that cu + d = u′.


This book will be spent developing results like Theorems (1.6) and (1.8). Note carefully the steps:


(a) Some set of objects, the choice set X, is identified. Typically the objects in X will have some structure; for example, in this example, X is the set P of probability distributions on the set [0,100].


(b) Axioms concerning Totrep’s preferences among members of X are proposed. These are qualitative statements about the relation [image: image], typically involving the structure in X.


(c) A representation theorem is stated and proved. Most of the time we seek a function from the choice set to the real numbers (called a Utility function) such that higher utility corresponds to more preferred items. The representation will typically exploit the structure; e.g., in the example we have an expected utility representation.


When we look at a set of axioms and a representation, we will sometimes wonder whether the axioms are sufficient for a representation, which means that if the axioms hold, then a representation is possible, and whether the axioms are necessary for the representation, which means that if the representation holds, then the axioms must hold. Note that in our example, Theorem (1.6) establishes that the five axioms are both necessary and sufficient for the representation (1.7).


(d) A uniqueness result is given – this characterizes the extent to which two similarly structured representations of a given preference relation can vary. Theorem (1.8) is an example of this. These sorts of results axe called uniqueness theorems because of the stock phrase: “The representation is unique up to . . .” (in the case of Theorem (1.8), “. . . a positive affine transformation.”)


What constitutes a “good” set of axioms? This largely depends on the application that you have in mind – cf. the next section. In general, axioms should be basic, primitive, intuitive, qualitative, etc., whatever these things mean. But there are two technical properties of sets of axioms that should be watched out for:


A consistent set of axioms is a set of axioms which can be satisfied simultaneously. That is, there is some identifiable collection of objects which satisfies the axioms. For example, suppose I added to Axioms (1.1) through (1.5) the following:


Axiom (1.9). If p assigns probability .5 or more to prizes below the value r, and p′ assigns zero probability to this range, then p′ [image: image] p.


Then I’d have an inconsistent set of axioms. (Can you prove this?)


An independent set of axioms is a set of axioms where no subset of them implies the others. For example, consider adjoining to Axioms (1.1) through (1.5) the following:


Axiom (1.10). If p [image: image] p′ and a, b ∈ (0,1) are such that a > b, then ap + (1 – a)p′ [image: image] bp + (1 –b)p′.


This larger set of axioms is not independent, because Axioms (1.1) through (1.5) imply (1.10). (Can you give a proof?) Good sets of axioms should be both consistent – for obvious reasons – and independent – for reasons of parsimony.


That, more or less, is what constitutes choice theory. “So,” you ask, “Why would anyone be interested?” There are two basic reasons for this, with a lot of fuzzy middle ground between. Everything, we shall see, depends on who is to play the role of Totrep.


NORMATIVE APPLICATIONS


Suppose that you, or a friend, had to choose one of the following three lotteries:


[image: image]


(a)


[image: image]


(b)


[image: image]


(c)


The choice is not an easy one, because there are lots of prizes and “strange” probabilities such as .62. But if you examine the five axioms, you might be able to conclude that in this particular choice situation you want your choice behavior to conform to the axioms. (Alternatively, you might be able to convince your friend that the five axioms are reasonable guides to how a choice should be made in this circumstance.) If you do come to this conclusion then the theorems guarantee that you want your choice behavior to conform to expected utility maximization. And you can then assess your utility function u by making judgments about simpler lotteries and use the assessed u to choose among the three complicated lotteries above. That is, you solve the problem by analysis: (a) Decide that you want to obey the axioms because they seem reasonable guides to behavior, (b) Assess your utility function using simpler lotteries, (c) Combine the logical conclusion of (a), the representation theorem, with the numbers derived in (b) to make your choice. (Similarly, for your friend.)


In this sort of normative application, there is obviously going to be great emphasis on finding axioms that are reasonable guides to behavior; intuitive axioms will be much prized. Also, you’ll be content with a sufficient set of axioms.


One normative application deserves special mention. Social scientists, and often physical scientists, go around making pronouncements about their theories being based on empirical evidence. This involves statements of likelihood or degree of belief – if any sense is to be made of such things, then “probability” had better be defined in terms that social scientists can agree on. We’ll touch on the very basics of this problem, but we won’t get too far with it. Since axiomatizations of probability and empirical proof should be of paramount concern to any social scientist who is reading this book, you can supplement the little we do here with the book of readings by Kyburg and Smokier listed in the references.


DESCRIPTIVE APPLICATIONS


Insofar as individuals’ preference (as revealed by their choices – more about this in the next chapter) conform to the five axioms, their behavior can be modeled as if they are expected utility maximizers.


Much of modern micro-economic theory, and its applications in Accounting, Finance, Marketing, and so on, is done in this fashion: Models of organizations/economies are studied wherein all the agents or actors are copies of Tot rep in one or more of his various guises.


The obvious question in such applications is empirical: To what extent do individuals’ choices conform to a given set of axioms and/or a given representation? In looking at this question, the emphasis will be on testable axioms, on necessary sets of axioms, and on testable implications of a given set of axioms/representation.


Descriptive applications, at least in the realm of economics that I know best, raise all sorts of tough philosophical questions. No one that I know of would seriously maintain that individuals do conform exactly to the sorts of axiomatic systems that will be studied here. Indeed, in the last chapter we’ll see some empirical evidence which casts great doubt on the standard models of choice that economists use. At best then, individual behavior approximates the axiomatic based behavior that we shall study. Why then does it make sense to study the behavior of systems (economies, organizations) where the actors are presumed to satisfy exactly the axiom systems? The answer must be: Because if their behavior is approximately what is modeled, then the model will tell us something about how their behaviors interact or intertwine in the system. This, the reader will surely note, takes a somewhat large leap of faith; a leap for which this book will not provide assistance.


PROBLEMS


(1) Assume the truth of Theorem (1.6). Show that the set of axioms (1.1) through (1.5) and (1.9) are inconsistent. Show, on the other hand, that Axioms (1.1) through (1.5) are consistent.


(2) Assume the truth of Theorem (1.6). Show that the set of axioms (1.1) through (1.5) imply axiom (1.10).


(3) Show that Axiom (1.1) is independent of Axioms (1.2) through (1.5). This is not a trivial exercise. You are being asked to prove that there is no possible proof that (1.2) through (1.5) imply (1.1). Even if you can’t do this for the particular axioms here, discuss how such a thing could conceivably be proved. If you are really up for a challenge, show that each of the first five axioms is independent of the other four. You will be in better shape to tackle this assignment after you finish Chapter 5, including the problems given there.
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Preference Relations and Revealed Preference


 


BINARY RELATIONS


For a given set X, let X × X denote the usual Cartesian product of all ordered pairs (x, y), where both x and y are from X.


A binary relation B on the set X is formally defined as a subset of X × X – write B ⊆ X × X, and (x, y) ∈ B if the ordered pair (x, y) is in the relation B. Another, quicker way to write (x, y) ∈ B is xBy, which can be read as “x Bees y” or “x stands in the relation B to y.” If (x, y) ∉ B, I’ll write “not xBy” or x[image: image]y.


Examples:


(a) Let X = {1,2,3} and B = {(1,1), (1,2), (1,3), (2,3), (3,1)}.


(b) Let X = all people in the world and let B be the relation “shares at least one given name with.”


(c) Let X = R (the real line, remember) and let B be the relation “greater or equal to”; that is, B = ≥.


(d) Let X = R and let B be the relation: xBy if |x – y| > 1.


(e) Let X = R and let B be the relation xBy if x – y is an integer multiple of 2.


There is a long list of properties that a given binary relation might or might not have. The properties that will be important in this book axe the following. A binary relation B on a set X is:


reflexive if xBx for all x ∈ X;


irreflexive if x[image: image]x for all x ∈ X;


symmetric if xBy implies yBx;


asymmetric if xBy implies y[image: image]x;


antisymmetric if xBy and yBx imply x = y;


transitive if xBy and yBz imply xBz;


negatively transitive if x[image: image]y and y[image: image]z imply x[image: image]z;


complete or connected if for all x, y ∈ X, xBy or yBx (or both; “or”s are never exclusive in this book unless specifically mentioned);


weakly connected if for all x, y ∈ X, x = y or xBy or yBx;


acyclic if x1Bx2, x2Bx3,. . . xn–1Bxn imply x1 ≠ xn.


Example (a) (above) is weakly connected, but nothing else. Example (b) is reflexive and symmetric. Example (c) is reflexive, antisymmetric, transitive, negatively transitive, complete, and weakly connected. Example (d) is irreflexive, symmetric. Example (e) is reflexive, symmetric, transitive.


PREFERENCE RELATIONS


In this section, we take up the following simple story. There is a set of items X, and Totrep is willing to express his preferences among these items by making paired comparisons of the form: “I strictly prefer x to y” which is written x [image: image] y. “Strict preference” is a binary relation on X. Consider the following properties that this binary relation might possess:


(a) Asymmetry – if x is strictly preferred to y, then y is not strictly preferred to x. (What do you think of this? Reasonable normatively? How about descriptively? Think of these questions for each of the following.)


(b) Transitivity – if x is strictly preferred to y and y is strictly preferred to z, then x is strictly preferred to z.


(c) Irreflexivity – no x is strictly preferred to itself.


(d) Negative transitivity – if x is not strictly preferred to y and y is not strictly preferred to z, then x is not strictly preferred to z.


Negative transitivity is a hard property to deal with intuitively in the form given, so let me develop an alternative statement that is completely equivalent.


Lemma (2.1). A binary relation B is negatively transitive iff (if and only if) xBz implies that, for all y ∈ X, xBy or yBz.


Proof. (Very pedantic.) The statement [M implies N] is the same as the statement [N or not M], thus [M implies N] is the same as [not N implies not M]. (The second equivalence is called contraposition.) Thus [{xBz} implies {xBy or yBz for all y ∈ X}] is the same as [{not(xBy or yBz for all y ∈ X)} implies {not xBz}] which is [{there exists y ∈ Z with x[image: image]y and y[image: image]z} implies {x[image: image]z}], which is negative transitivity.


Now back to [image: image]. Is negative transitivity reasonable? Is it reasonable to say that if x is strictly preferred to z, then for all y either x is strictly preferred to y or y is strictly preferred to z? As a normative property, I think it is (barely) reasonable. But as a descriptive property, I don’t think it is reasonable. Suppose X = (0, ∞) × (0, ∞), where x = (x1, x2) ∈ X is interpreted as the commodity bundle x1 bottles of beer and x2 bottles of wine. Totrep (if his tastes are like my own) would certainly say that (10,10) [image: image] (9, 9). But consider (15, 6). Totrep might not be willing to say either that (10,10) [image: image] (15, 6) or (15, 6) [image: image] (9,9) – he might plead that comparisons called for are too difficult for him to make.


Despite these difficulties with negative transitivity, it is standard to proceed assuming that [image: image] is asymmetric and negatively transitive.


Definition (2.2). A binary relation [image: image] on a set X is called a preference relation if it is asymmetric and negatively transitive.


Proposition (2.3). If [image: image] is a preference relation, then [image: image] is irreflexive, transitive, and acyclic.


Proof. (a) Asymmetry directly implies irreflexivity.


(b) Suppose x [image: image] y and y [image: image] z. By negative transitivity (and Lemma (2.1)), x [image: image] y implies that either z [image: image] y or x [image: image] z. But z [image: image] y is impossible because y [image: image] z is assumed and [image: image] is asymmetric. Thus x [image: image] z, which is transitivity.


(c) If x1 [image: image] x2, x2 [image: image] x3,. . . xn – 1 [image: image] xn, then by transitivity x1 [image: image] xn. Since [image: image] is irreflexive, this implies x1 ≠ xn. Thus [image: image] is acyclic.


When we are given a binary relation [image: image] that expresses strict preference, we use it to define two other binary relations:


x [image: image] y if y [image: image] x, and x ~ y if x [image: image] y and y [image: image] x,


where we are using [image: image] as shorthand for [image: image] or for “not [image: image].” The relation [image: image] is called weak preference, although it really expresses the absence of strict preference. The relation ~ is called indifference – it expresses the absence of strict preference in either direction, which is perhaps not quite the same thing as active indifference.


Proposition (2.4). If [image: image] is a preference relation, then:


(a) For all x and y, exactly one of x [image: image] y, y [image: image] x or x ~ y holds.


(b) [image: image] is complete and transitive.


(c) ~ is reflexive, symmetric, and transitive.


(d) w [image: image] x, x ~ y, y [image: image] z imply w [image: image] y and x [image: image] z.


(e) x [image: image] y iff x [image: image] y or x ~ y.


(f) x [image: image] y and y [image: image] x imply x ~ y.


Proof. (a) follows from the definition of ~ and the fact that [image: image] is asymmetric.


(b) By the asymmetry of [image: image], either x [image: image] y or y [image: image] x (or both) for all x and y, thus [image: image] is complete. For transitivity of [image: image] note that this follows immediately from the negative transitivity of [image: image].


(c) ~ is reflexive because [image: image] is irreflexive. ~ is symmetric because the definition of ~ is symmetric. For transitivity, suppose x ~ y ~ z. Then x [image: image] y [image: image] z and z [image: image] y [image: image] x. By negative transitivity of [image: image], x [image: image] z [image: image] x, or x ~ z.


(d) If w [image: image] x ~ y, then by part (a) one of w [image: image] y or y ~ w or y [image: image] w. But y [image: image] w is impossible, since then transitivity of [image: image] would imply y [image: image] x. And y ~ w is impossible, since then transitivity of ~ would imply x ~ w contradicting w [image: image] x. Thus w [image: image] y must hold. The other part is similarly done.


(e) x [image: image] y iff y [image: image] x iff x [image: image] y or x ~ y (by part (a)).


(f) This is immediate from the definitions of [image: image] and ~.


Note well the plot: Totrep expresses strict preferences, from which we define weak preferences and indifference. It is strict preference that is basic – Totrep is not being called upon to express any judgments concerning weak preference or indifference, and he might disagree with our use of those terms to describe the negation of strict preference.


Another possible plot would be to ask Totrep to express weak preferences or preference or indifference. That is, the basic relation is. [image: image]. This is a plot that is followed in many developments of choice theory, and in the standard treatment it leads to the same mathematical results:


Proposition (2.5). Given a binary relation [image: image]′ on a set X, define two new binary relations [image: image]′ and ~′ from [image: image]′ by


x [image: image]′ y if y [image: image]′ x, and x ~′ y if x [image: image]′ y and y [image: image]′ x.


Then if [image: image]′ is complete and transitive, [image: image]′ will be a preference relation. Moreover, if we start with a binary relation [image: image]′, define [image: image]′ and ~′ as above from [image: image]′, and then define [image: image] and ~ from [image: image]′ by


x [image: image] y if y [image: image]′ x, and x ~ y if y [image: image]′ x and x [image: image]′ y,


then [image: image]′ and [image: image] will agree, as will ~′ and ~.


The proof is left as an exercise. So it doesn’t matter whether we start with a strict preference relation that is asymmetric and negatively transitive or with a weak preference relation that is complete and transitive – we end up in the same place. For reasons of interpretation I prefer to take strict preference as being basic. But it is a matter of personal taste, and most authors do it the other way.


REVEALED PREFERENCE THEORY


In the previous section, the story was that Totrep was making paired comparisons between items in X. But especially from a descriptive point of view, we would like to start with an even more basic concept – that of choices made rather than preferences expressed. That is, from a descriptive point of view what we see is an individual’s choice behavior – we have to connect that behavior as best we can with his preferences which are never directly expressed. The individual’s choice behavior reveals his preferences, hence the name of this subject: revealed preference theory. This subject also has some normative justifications – taking preferences as given, how should choices be made? But this subject is of greatest interest from the descriptive viewpoint.


To keep matters simple, throughout this section I’ll assume that the choice set X is finite. Especially if the application you are thinking of is demand for consumption bundles or for any item that is infinitely divisible, this is not a very nice simplification. For nonempty subsets of X, I’ll use notation such as A, B, etc. The set of all nonempty subsets of X will be denoted P(X).


Definition (2.6). A choice function for a (finite) set X is a function c : P(X) → P(X) such that for all A ⊆ X, c(A) ⊆ A.


The interpretation is: If Totrep is offered his choice of anything in the set A, he says that any member of c(A) will do just fine.


If Totrep’s preferences are given by the binary relation [image: image] (and by the corresponding [image: image] and ~), it is natural to suppose that he chooses according to the rule that from a set A, anything that is undominated will be okay. In symbols, define a function c(·, [image: image]) : P(X) by


c(A, [image: image]) = {x ∈ A : for all y ∈ A, y [image: image] x}.


It is clear that for any [image: image], c(A, [image: image]) ⊆ A, but it isn’t clear whether c(A, [image: image]) ≠ ø. Thus it isn’t clear that c(·,[image: image]) is a choice function. That will be something to be investigated.


The other questions to be looked at are:


(a) From the normative point of view: Given a relation [image: image] (not necessarily a preference relation), when is c(·, [image: image]) a choice function? If [image: image] is a preference relation, what properties does c(·, [image: image]) have?


(b) From the descriptive point of view: Given a choice function c, when is there a binary relation [image: image] such that c(·) = c(·, [image: image])? When is this binary relation a preference relation? (N.B., this last question is the critical one, as we’re going to be building models where individuals are assumed to be maximizing their preferences according to some preference relation.)


Proposition (2.7). If a binary relation [image: image] is acyclic, then c(·,[image: image]) is a choice function.


Proof. We need to show that for A ∈ P(X), the set


c(A, [image: image]) = {x ∈ A : for all y ∈ A, y [image: image] x},


is nonempty. Suppose it was empty – then for each x ∈ A there exists a y ∈ A such that y [image: image] x. Pick x1 ∈ A (A is nonempty), and let x2 be x1 ’s “y”. Let x3 be x2 ’s “y”, and so on. In other words, x1, x2, x3, . . .  is a sequence of elements of A where


. . .xn [image: image] xn–1 [image: image] . . . [image: image] x2 [image: image] x1.


Because A is a finite set, there must exist some m and n such that xm = xn and m > n. But this would be a cycle, and [image: image] is assumed to be acyclic. The necessary contradiction is established.


Note the following instant corollary: If [image: image] is a preference relation, then c(·,[image: image]) is a choice function. Also, we can strengthen (2.7) as follows.


Proposition (2.8). For a binary relation [image: image], c(·,[image: image]) is a choice function iff [image: image] is acyclic.


Proving this is left as an exercise.


Next we survey some properties of choice functions. The classic axiomatic property of choice is Houthakker’s axiom of revealed preference.


Houthakker’s axiom (2.9). If x and y are both in A and B and if x ∈ c(A) and y ∈ c(B), then x ∈ c(B).


In words, if x is sometimes chosen (from A) when y is available, then whenever y is chosen and x is available, x is also chosen.


Houthakker’s axiom is broken into two pieces by Sen:


Sen’s property α (2.10). If x ∈ B ⊆ A and x ∈ c(A), than x ∈ c(B).


Sen’s paraphrase of this is: If the world champion in some game is a Pakistani, then he must also be the champion of Pakistan.


Sen’s property β (2.11). If x, y ∈ c(A), A ⊆ B and y ∈ c(B), then x ∈ c(B).


Sen’s paraphrase: If the world champion in some game is a Pakistani, then all champions (in this game) of Pakistan are also world champions.


• Note that Houthakker’s axiom concerns A and B such that x, y ∈ A ∩ B Property α specializes to the case B ⊆ A, and property β specializes to the cause A ⊆ B. Property α is sometimes referred to as Independence of Irrelevant Alternatives, the idea being that the choice out of a larger set of options doesn’t change when some of the (unchosen, hence) irrelevant alternatives in the set are removed.


Proposition (2.12). For an arbitrary binary relation [image: image], c(·, [image: image]) satisfies Sen’s property α.


The proof is left as an exercise. It is interesting that even if [image: image] is acyclic, c(·, [image: image]) may fail to satisfy property β. Providing an example makes a good homework exercise.


Proposition (2.13). If [image: image] is a preference relation, then c(·, [image: image]) satisfies Houthakker’s axiom, hence both Sen’s α and Sen’s β.


Proof. Suppose x and y are in A and B, x ∈ c(A, [image: image]) and y ∈ c(B, [image: image]). Since x ∈ c(A, [image: image]) and y ∈ A, we have that y [image: image] x. Since y ∈ c(B, [image: image]), we have that for all z ∈ B, z [image: image] y. Thus by negative transitivity of [image: image], for all z ∈ B it follows that z [image: image] x. This implies x ∈ c(B, [image: image]).


Question: In this proof we seemingly only used the negative transitivity of [image: image]. Does this mean that c(·, [image: image]) satisfies Houthakker’s axiom whenever [image: image] satisfies negative transitivity?


Proposition (2.14). If a choice function c satisfies both properties α and β, then there exists a preference relation [image: image]

OEBPS/page-template.xpgt
 

   

   
	 
    

     
	 
    

     
	 
	 
    

     
	 
    

     
	 
	 
    

     
         
             
             
             
             
             
        
    

  

   
     
  





OEBPS/images/f0001-02.jpg





OEBPS/images/f0001-01.jpg
10

100





OEBPS/images/titlepage.jpg







OEBPS/images/8827-un.jpg






OEBPS/images/8827.jpg






OEBPS/images/8833.jpg





OEBPS/images/btilde.jpg





OEBPS/images/f0004-02.jpg





OEBPS/images/11a.jpg





OEBPS/images/f0004-03.jpg





OEBPS/images/prectilde.jpg





OEBPS/images/9780813375533.jpg
0

e
—
@
=}
=

<Y

T N E

David M. Kreps |

at¢ UNDERGROUND CLASSICS IN ECONOMICS






OEBPS/images/f0002-01.jpg





OEBPS/images/f0001-03.jpg
10

100





OEBPS/images/f0004-01.jpg





OEBPS/images/pub.jpg





OEBPS/images/f0002-02.jpg
p>p ifandonlyif E,|u|l > Ey






