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Preface

This book is an outgrowth of lectures that Julian Schwinger gave at UCLA in 1976, when, for the first time in many years, he was asked to teach Classical Electrodynamics. Of course, Schwinger had contributed greatly to the development of the subject, partly through his profound work on the theory of waveguides and microwave cavities at the MIT Radiation Laboratory during World War II. Only a small part of that material was ever published, in Discontinuities in Waveguides.1 After the war, Schwinger played a key role in the perfection of the synchrotron, and, especially, was largely responsible for the theory of synchrotron radiation.2 His first course at Harvard in 1946, Applied Science 33, was on advanced applications of electromagnetic theory, particularly to waveguides. (We have incorporated four problems from the final exam to that course in the present volume.) Schwinger’s discoveries in classical electrodynamics led directly to his solution of the difficulties in quantum electrodynamics a few years later.

As his former graduate students at Harvard, and postdoctoral fellows working with him, we attended the UCLA lectures and found them so novel and exciting that we proposed turning them into a textbook. Schwinger agreed, and cooperated to the extent of supplying us with his detailed notes. By 1979 a typed manuscript existed, and a publication contract was signed. At that point, Schwinger began to read the manuscript carefully, and not finding his voice there, began an extensive process of revision. That revision, of the first half of the manuscript, continued until 1984. He used the partially revised manuscript as the basis for his Classical Electrodynamics course he taught at UCLA again in 1983. We had gone our separate ways long before that point, so the project lay dormant for a decade.

Shortly after Schwinger’s death in 1994, one of us (KAM) began teaching Classical Electrodynamics, and used the opportunity to begin completion of the manuscript using the extant materials. The present volume is the result of that effort. We offer it now, not merely as a homage to a great physicist and teacher, but as a vital approach to a fundamental, and still not closed, subject. We   have retained our original organization of the manuscript, and not the few, very long chapters of Schwinger’s later revision, because we feel that this makes the contents more accessible to the student and teacher. We have tried to retain Schwinger’s inimitable lecturing style in this book, in which everything flows inexorably from what has gone before. However, as an aid to the reader, we have included a Reader’s Guide, which identifies major themes in each chapter, suggests a possible path through the book, and identifies topics for inclusion or exclusion from a given course, depending upon circumstances.

We dedicate this book to the memory of Julian Schwinger. We are indebted to Clarice Schwinger for her gracious permission to pursue this project, and for her encouragement. We are also grateful to Professor Michael Strauss, who attended Schwinger’s 1983 course, and made available his notes, and the corresponding book manuscript at that time. Further materials have been obtained from the Julian Schwinger Papers (Collection 371), Department of Special Collections, University Research Library, University of California, Los Angeles. Many students at the University of Oklahoma contributed by finding innumerable errors in the typescript, so we thank them as well.

Finally, we acknowledge the Alfred P. Sloan Foundation and the U. S. National Science Foundation for partial financial support during the early stages of this project, and the U. S. Department of Energy for partial support of KAM during the completion of this project.
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Reader’s Guide

As noted in the Preface, this book originated in lectures given in 1976. It further included, in its original incarnation, two chapters, now Chapters 51 and 52, which were based on lectures Schwinger gave, around the same time, on the energy loss by electrically and magnetically charged particles when they pass through matter. This latter work was evidently based on the excitement generated by the purported discovery of magnetic charge in cosmic ray experiments,3 evidence that was subsequently interpreted in terms of a conventional but rare nuclear fragmentation event.4 The manuscript prepared during the 1977–79 period remains the core of the present volume.

However, as noted, Schwinger undertook extensive revisions beginning in 1979, and continuing at least through 1983. Indeed, the UCLA archives contain an extensive revision of the book through electrostatics, corresponding to the material in the present Chapters 1–25. In the interest of preserving the more spontaneous flavor of the original lectures, we have retained most of the original material, but incorporated new material at the appropriate points. A few chapters were not in the original version and are based closely on the 1979–83 revision; they are Chapter 10, “Einsteinian Relativity,” Chapter 18, “Modified Bessel Functions,” Chapter 19, “Cylindrical Conductors,” and Chapter 25, “Modes and Variations.” Schwinger ceased work on the project in 1984, but he did present new material on radiation in his UCLA lectures in the previous year, and that new material now appears in Chapter 44, “Waveguides,” and Chapter 46, “Partial-Wave Analysis of Scattering.” Of course, the present authors have incorporated numerous improvements and additional material. Most significant is the inclusion of a great many problems, of a wide range of difficulty, some of which had been prepared by us in the late 1970s, but many of which are new. The problems constitute an integral part of the text; indeed many important concepts appear only in the problems, and an instructor might feel it appropriate to base lectures on those topics. Examples include covariant notation, introduced in Chapter 10, and vector spherical harmonics, introduced in Chapter 50.

In view of this long history, the reader will not be surprised to detect a certain variation in the level of the material. This seems to us entirely appropriate.   Some of the topics are quite elementary, but there are many which are more advanced, and which therefore could be omitted in a first course. Indeed, it is the authors’ experience that there is far more material here than can be covered in a typical two-semester graduate electrodynamics course. It is hoped that the more advanced material will be of utility to practicing researchers, and indeed, the authors have found the material contained herein extremely valuable in their own research in electromagnetic theory and quantum field theory.

The balance of this Guide will sketch major subjects covered in each chapter, and make suggestions for material that is essential, and inessential, for a first course or reading.


Chapter 1. The central point of this chapter is a hueristic derivation of Maxwell’s equations starting from Coulomb’s law together with the imposition of Galilean invariance. This is not to be taken as a rigorous derivation, especially because the correct relativity group is that of Einstein. Essential.


Chapter 2. Here we show how Maxwell’s equations are modified if magnetic charge is present. Inessential.



Chapter 3. We discuss the conservation of energy, momentum, and angular momentum, thereby establishing the consistency of Maxwell’s equations. Essential.



Chapter 4. This chapter is devoted to the inference of the macroscopic Maxwell equations. Essential.



Chapter 5. Here we present simple classical models for the electric permeability and conductivity, and discuss the Clausius-Mossotti equation. Essential.


Chapter 6. We give models for the magnetic properties of matter here, and introduce the vector potential. Essential.



Chapter 7. We treat the somewhat subtle issues of how to construct the energy and momentum for macroscopic electrodynamics. Essential.



Chapter 8. Mechanical action principles are the subject here. Although these should be familiar, the viewpoint is somewhat novel and crucial in the following. Essential.



Chapter 9. Here we present the action principle for electrodynamics. Essential, except for Section 9.6.


Chapter 10. We discuss the modification of the particle Lagrangian required by Einstein’s relativity, as well as the usual relativistic kinematics and field transformations. Probably only Section 10.1 is essential.



Chapter 11. Here the study of electrostatics begins. We show that the general action principle implies the stationary principles for electrostatics. Essential.



Chapter 12. We introduce Green’s functions. Essential.



Chapter 13. We discuss Green’s function for free space. Essential.



Chapter 14. We derive Green’s function for a semi-infinite dielectric. Only Sections 14.1 and 14.4 are essential.



Chapter 15. Here, we use the previous Green’s function to compute the force between a point charge and a dielectric slab. Inessential.



Chapter 16. Now, we introduce Bessel functions. As they are used throughout the following, this is essential.



Chapter 17. We give the derivation of Green’s function for parallel conducting plates, along with an extensive discussion of image charges in this case. Only Section 17.1 is essential.



Chapter 18. Now, we introduce modified Bessel functions. This material is very useful, but perhaps inessential for a first reading.


Chapter 19. We discuss cylindrical conductors, of rectangular, triangular, and circular cross section, and derive useful mathematical results. Inessential.



Chapter 20. Now we introduce spherical harmonics. Essential.



Chapter 21. Legendre’s polynomials and spherical Bessel functions are the principal topics here. Only the beginning through Section 21.1, and perhaps Section 21.3, are essential.



Chapter 22. The general multipole expansion for the energy of interaction of two arbitrary bounded charge distributions is the subject. At least the beginning of this chapter is essential.



Chapter 23. We consider Green’s functions for conducting and dielectric spheres. The first parts of Sections 23.1 and 23.4 seem essential.



Chapter 24. We give a general treatment of electrostatics in the presence of dielectrics and conductors . We prove Thomson’s theorem, and give the general expression for capacitance. At least the latter, given in Section 24.6, is essential.



Chapter 25. Variational methods for estimating eigenvalues are the subjects treated here. Elegant, but inessential.


Chapter 26. We now introduce the variational principle for magnetostatics. Essential.



Chapter 27. The energy of interaction of steady currents, and inductance, are the subjects here. Essential.



Chapter 28. Here the topic in magnetic dipoles. Essential.



Chapter 29. We introduce the magnetic scalar potential. Inessential.



Chapter 30. Here, the subject is the “string” required for the definition of the vector potential when magnetic charge is present. Inessential.



Chapter 31. Now the treatment of radiation begins, with the retarded Green’s function and the Lienard-Wiechert potentials. Essential.



Chapter 32. We discuss the asymptotic fields, and dipole radiation. Essential.



Chapter 33. Here we study radiation from the point of view of energy transferred from the source, and derive the Darwin-Breit Hamiltonian for the charges. Inessential.



Chapter 34. We discuss radiation from simple models of antennas. Inessential.



Chapter 35. We derive the general formula for the spectral distribution of radiation. Essential.



Chapter 36. Now, we obtain a formula for the power spectrum, and apply it to Cerenkov radiation. Essential.



Chapter 37. We discuss radiation in the extreme situations of constant acceleration, and of impulsive scattering. In the problems, we give general formulas for the energy radiated by a particle undergoing arbitrary acceleration for a finite amount of time. Inessential.



Chapter 38. Synchrotron radiation is the subject here. Essential.


Chapter 39. We derive the power spectrum for the different polarization states in synchrotron radiation. Inessential.


Chapter 40. The high energy regime for synchrotron radiation is the subject here. Sections 40.1 and 40.5 are essential.


Chapter 41. We derive Snell’s law, and the reflection and transmission coefficients for light incident on a plane dielectric interface. Mostly essential.


Chapter 42. We treat reflection by a conductor having finite conductivity here. Inessential.


Chapter 43. Here we perform the 2 + 1 dimensional break up of Green’s function for Helmholtz’ equation leading to Hankel functions. Inessential.


Chapter 44. Here we give a general treatment of cylindrical waveguides, harking back to Chapters 19 and 25. Inessential.



Chapter 45. We present simple models of scattering, including Thomson scattering. Essential.



Chapter 46. We give here a partial-wave approach to scattering. Although this is very useful for quantum mechanics, it is here inessential.



Chapter 47. The elementary theory of diffraction is the subject. At least Sections 47.1 and 47.2 are essential.



Chapter 48. Here we show that the diffraction of a normally incident plane wave on a straight edge is exactly solvable. Inessential.



Chapter 49. We derive Babinet’s principle in the case of a plane with an aperture or slit to give the diffraction for the opposite polarization state. Inessential.



Chapter 50. The general formulation of scattering, the Born approximation, and the optical theorem are the subjects. Essential.



Chapter 51. We derive general dispersion relations for the dielectric constant from causality requirements. Inessential.



Chapter 52. We give a general treatment of energy loss by an electrically or magnetically charged particle traversing matter. Inessential.







Chapter 1

Maxwell’s Equations

The teaching of electromagnetic theory is something like that of American History in school; you get it again and again. Well, this is the end of the line. Here is where we put it all together, and yet, not quite, since it is still classical electrodynamics and the final goal is quantum electrodynamics. This preoccupation reflects the all-pervasive nature of electromagnetism, with implications ranging from the farthest galaxies to the interiors of the fundamental particles. In particular, the properties of ordinary matter, including those properties classified as chemical and biological, depend only on electromagnetic forces, in conjunction with the microscopic laws of quantum mechanics.




1.1 Electrostatics 

Our intention is to move toward the general picture as quickly as possible, starting with a review of electrostatics. We take for granted the phenomenology of electric charge, including the Coulomb law of force between charges of dimensions that are small in comparison with their separation. This is expressed by the interaction energy, E, of a system of such charges in otherwise empty space, a vacuum:[image: 002]

(1.1)

where ea is the charge of the ath particle while[image: 003]

(1.2)

is the separation between the ath and bth particles. (Throughout this book we use the Gaussian system of units. Connection with the SI units will be given in Appendix A.) As we shall see, this starting point, the Coulomb energy (1.1), summarizes all the experimental facts of electrostatics. The energy of interaction of an individual charge with the rest of the system can be emphasized  by rewriting (1.1) as[image: 004]

(1.3)

where we have introduced the electrostatic potential at the location of the ath charge that is due to all the other charges,[image: 005]

(1.4)



This is an action-at-a-distance point of view, in which the charge at a given point interacts with charges at other, distant points. Another approach, which generalizes and transcends action at a distance, employs the field concept (due to Faraday), a field being a local quantity, defined at every point of space. We take a first step in this direction by considering the potential as a field, which is defined everywhere, not just where the point charges are located. This generalized potential function, or simply the potential, ø(r), is[image: 006]

(1.5)

where we now treat every charge on an equal footing, which means that in (1.5) we sum over all charges eb. In terms of this potential, which is different from φa, the energy E can be written as[image: 007]

(1.6)



The last part of (1.6) is not to be understood numerically, but rather as an injunction to remove those terms in the first sum that refer to a single particle. In other words, we remove “self-action,” leaving the mutual interactions between particles. The field concept naturally leads to self-action.

The notion of force is derived from that of energy, as we can see by considering the work done as a result of a spatial displacement. If we displace the ath charge by an amount δra, the energy changes by an amount[image: 008]

(1.7)

where Fa is the force acting on the ath point charge. Comparing this with the energy expression (1.1) we find the force on the ath particle to be[image: 009]

(1.8)



In the last form, we have substituted ø(ra) for φa, so it would appear that an extra self-action contribution has been introduced. To see that this is not true, we first argue physically that the difference between ø(ra) and φa is independent  of position, and so self-action does not contribute to the force. Mathematically, what is this additional, unwanted, term? It is the negative gradient of the self-energy:[image: 010]

(1.9)



Can we make sense of this? We could define the limit here by arbitrarily adding a displacement vector ∊ of fixed direction to ra and letting its length approach zero:[image: 011]

(1.10)

but at the cost of picking out a particular direction. In order to remove the most blatant aspect of this directional dependence, let us also approach ra from the opposite direction,[image: 012]

(1.11)

and average over the two possibilities, so that the additional term (1.9) becomes[image: 013]

(1.12)



More elaborate limiting procedures, such as an average over all directions, can be used, but the simple procedure of (1.12) suffices. Therefore, we can employ φ(r) in (1.8), with the implicit use of the two-sided limit, (1.12), to calculate the force.

With the force given in terms of the gradient of a field (the potential), the electric field E can now be defined by[image: 014]

(1.13)

so that the force on a point charge ea located at ra is[image: 015]

(1.14)



The electric field E so introduced is a function calculable at r in terms of the point charges located at rb,[image: 016]

(1.15)



As such, it remains an action-at-a-distance description, whereas, for many purposes, it would be much more convenient to be able to completely characterize the electric field by local properties. Such local statements will lead to differential equations, which, of course, must be supplemented by boundary conditions.

From its definition as the negative gradient of the potential, (1.13), the electric field has zero curl:[image: 017]

(1.16)

 

[image: 018]


Figure 1.1: A surface S bounding a volume V used in computing the electric flux.

Besides the curl, the other elementary differential operation that can be applied to a vector field is the divergence. To find∇•E, we consider a related integral statement. The integral of the normal component of E over a closed surface S bounding a volume V is the electric flux (see Fig. 1.1):[image: 019]

(1.17)



Here, dS is an area element, directed normal to the surface, and dΩb is an element of solid angle, which is defined in the following manner. The element of area perpendicular to the line from the bth charge is (see Fig. 1.2)[image: 020]

(1.18)

which, when divided by the square of the distance from the bth charge gives the solid angle dΩb subtended by dS as seen from the bth charge. There are now two possible situations: either eb is inside, or it is outside the closed surface S, as shown in Fig. 1.3. Correspondingly, the integral over all solid angles in the two cases is[image: 021]

(1.19)



Hence, the electric flux through a closed surface S is proportional to the enclosed charge:[image: 022]

(1.20)

 [image: 023]


Figure 1.2: Geometrical definition of solid angle.

[image: 024]


Figure 1.3: Topology if eb is inside (a) or outside (b) the surface S.




This is the theorem of Carl Friedrich Gauss (1777–1855).

With our aim of deriving local statements in mind, we generalize the idea of point charges to that of a continuous distribution of charge, as measured by ρ(r), the volume density of charge at the point r. Then, the total charge in a volume V is obtained by integrating the charge density over that region:[image: 025]

(1.21)



[Throughout this book we use the following notation for the element of volume:[image: 026]

(1.22)



For point charges, the charge density is zero except at the location of the charges,[image: 027]

(1.23)

where the three-dimensional (Dirac) δ function is defined by[image: 028]

(1.24)



Then, the flux statement (1.20) becomes[image: 029]

(1.25)

by use of the divergence theorem relating surface and volume integrals. (See Problem 1.2.) Since (1.25) is true for an arbitrary volume V, the integrands of the volume integrals must be equal, so we obtain the equation satisfied by the divergence of E, [image: 030]

(1.26)



These differential equations for the curl and divergence of E, (1.16) and (1.26), respectively, completely characterize E when appropriate boundary conditions are imposed. It is evident from (1.15) that, for a localized charge distribution, the magnitude of the electric field becomes vanishingly small with increasing distance from the collection of charges:[image: 031]

(1.27)



One can also specify how rapidly this occurs. But it is remarkable that the weak boundary condition (1.27) already implies a unique solution to the differential equations (1.16) and (1.26). To show this, we suppose that E1 and E2 are two such solutions. The difference, ε = E1—E2 satisfies[image: 032]

(1.28)

everywhere,[image: 033]

(1.29)


from which we must prove that ε = 0. The identity[image: 034]

(1.30)

combined with the vanishing of ∇ X ε and ∇ • ε, implies that[image: 035]

(1.31)



Let the single function ε(r) be any Cartesian component of the vector field ε; it obeys[image: 036]

(1.32)



We present this as the everywhere valid statement[image: 037]

(1.33)

or[image: 038]

(1.34)



Now we integrate this over the interior volume V(R) of a sphere of radius R centered about an arbitrary point, which we take as the origin. The integral of the second term in (1.34) is turned into an integral over the surface S(R) of the sphere by means of the divergence theorem,[image: 039]

(1.35)



Using the relation between an element of area and an element of solid angle, dS = R2dΩ, we can present this surface integral in terms of the average value of ε2 over the surface of the sphere,[image: 040]

(1.36)



And so the integral of (1.34) is[image: 041]

(1.37)



The decisive step now is to divide by the area 4πR2, and then integrate (1.37) over R from 0 to ∞:[image: 042]

(1.38)

which finally incorporates the boundary condition (1.29), that ε vanishes at all infinitely remote points. Everything on the left side of (1.38) is non-negative, yet it all adds up to zero. Accordingly, every individual contribution must be zero. This tells us quite explicitly that ε = 0 at the origin, which is anywhere, and, consistently, that ∇ε = 0 everywhere, or, that ε is a constant, which is required  to be zero by the boundary condition. This being true of any component, we conclude that the vector ε = 0. This completes our proof of the “uniqueness theorem” of electrostatics, that the differential equations (1.16) and (1.26) have a unique solution when the boundary condition (1.27) is imposed. (See Problem 1.3.)

From the Coulomb energy, we have thus derived the equations of electrostatics: [image: 043]

(1.39)

where the time independence has been made explicit. We are now going to remove the restriction to static conditions by letting the charges move in a particularly simple way. The equations of electromagnetism that emerge from this discussion will then be accepted as applicable to more general motions, as justified by various tests of internal consistency.




1.2 Inference of Maxwell’s Equations 

We introduce time dependence in the simplest way by assuming that all charges are in uniform motion with a common velocity v as produced by transforming a static arrangement of charges to a coordinate system moving with velocity –v. (We insist that the same physics applies in the two situations.) At first we will take |v| to be very small in comparison with a critical speed c, which will be identified with the speed of light. To catch up with the moving charges, one would have to move with their velocity, v. Accordingly, the time derivative in the co-moving coordinate system, in which the charges are at rest, is the sum of explicit time dependent and coordinate dependent contributions,[image: 044]

(1.40)

so, in going from the static system to the uniformly moving system, we make the replacement[image: 045]

(1.41)



The equation for the constancy of the charge density in (1.39) becomes, in the moving system[image: 046]

(1.42)

or, since v is constant,[image: 047]

(1.43)



We recognize here a particular example of the charge flux vector or the (electric) current density j,[image: 048]

(1.44)




The relation between charge density and current density,[image: 049]

(1.45)

is the general statement of the conservation of charge. Conservation demands that the rate of decrease of the charge within an arbitrary volume V must equal the rate at which the charge flows out of the bounding surface S, that is[image: 050]

(1.46)



Since V is arbitrary, the local conservation law, (1.45), follows. We also note that the expression for the current density, (1.44), continues to be valid even when v is dependent upon position, v → v(r, t). (See Problem 1.4.)

We can perform a similar transformation on the equation for the electric field ∂E/∂t = 0; namely,[image: 051]

(1.47)



Making use of a vector identity, together with (1.26) and (1.44), (v is constant),[image: 052]

(1.48)

(1.49)

we find an equation relating E to the current density,[image: 053]

(1.50)



[Notice that by taking the divergence of (1.50) we recover the local charge conservation equation (1.45), so that the conservation of charge is not an independent statement.] The quantity v × E represents a new phenomenon combining the effects of motion with those of electric charge. To describe this new, induced effect, we define the magnetic induction5 B by[image: 054]

(1.51)

where c is a constant having the dimensions of velocity (which will turn out to be the speed of light). Expressed in terms of the magnetic field, (1.50) becomes an equation determining the curl of B,[image: 055]

(1.52)



Next, we naturally ask for the divergence of B. According to the definition, (1.51), we have[image: 056]

(1.53)

 or[image: 057]

(1.54)



Moreover, in the co-moving coordinate system where the charges are at rest—static—the magnetic field should also not change in time:[image: 058]

(1.55)

which becomes, when we use the identity in (1.48) as well as (1.54),[image: 059]

(1.56)

consistent with ∇ • B = 0.

What do we do now? We need one experimental fact. Light is an electromagnetic oscillation. The evidence for this is overwhelming. As examples, we note that electric and magnetic fields are known to influence the emission, propagation, and absorption of light; and that radio and infrared waves, which differ only in wavelength from visible light, are emitted by electric charge oscillations. What must be done so that this fact is built into the equations we are inferring? The existence of electromagnetic waves means that the equations determining the electric field have solutions of the form[image: 060]

(1.57)

where c is the speed of the waves. Such waves, propagating in the z direction, satisfy the second-order differential equation[image: 061]

(1.58)

for an arbitrary direction of propagation, the corresponding wave equation is[image: 062]

(1.59)

More precisely, we require that this equation should hold far from the charges that produce the field. The left side of this equation can be written as [cf. (1.30)][image: 063]

(1.60)

since ∇ • E = 0 outside the charge distribution, while, by means of (1.52) and (1.56), the right side becomes (j is zero outside the charge distribution)[image: 064]

(1.61)



This shows that the desired differential equation will hold if[image: 065]

(1.62)



But this cannot be a completely correct statement, since then v → 0 would require E → 0. No electrostatics! However, all that is really necessary is that the curl of this tentative identification be valid:[image: 066]

(1.63)

or, if we use (1.56),[image: 067]

(1.64)



This is consistent with electrostatics since it generalizes∇×E = 0 to the time-dependent situation. The fact that ∇ × E = 0 has been used before to derive ∇ • B = 0 is consistent here since the error is now seen to be of order (υ/c)2. [See (1.53).]

Collecting the above relations, you will recognize that we have arrived at Maxwell’s equations,[image: 068]

(1.65)



These equations of electromagnetism, as local, differential field equations, are no longer restricted to the initial assumption of a common small velocity for all charges.

To complete the dynamical picture we ask: What replaces (1.14) to describe the force on an electric charge, when that charge moves with some velocity v in given electric and magnetic fields E and B? We consider two coordinate systems, one in which the particle is at rest (co-moving coordinate system) and one in which it moves at velocity v. Suppose in the latter coordinate system, the electric and magnetic fields are given by E and B, respectively. In the co-moving frame, the force on the particle is[image: 069]

(1.66)

where Eeff is the electric field in this frame. In transforming to the co-moving frame, all the other charges—those responsible for E and B—have been given an additional counter velocity —v. We then infer from (1.62) that (v/c) × B has the character of an additional electric field in the co-moving frame. Hence, the suggested Eeff is[image: 070]

(1.67)

leading to the force law, due to Hendrick Antoon Lorentz (1835–1928),[image: 071]

(1.68)



These results, Maxwell’s equations, (1.65), and the Lorentz force law, (1.68), have not been derived, but inferred from a special circumstance. We will adopt  these equations as describing the electromagnetic fields produced by, and acting on, charges possessing arbitrary velocities, although the above discussion does allow room for additional terms if υ/c is no longer small. The fact that no such terms are actually required is part of the implication of the special theory of relativity (see problem 1.6). We will prefer, instead, to show the physical consistency of the equations as they stand (see Chapter 3).




1.3 Discussion 

We have arrived at the Maxwell-Lorentz electrodynamics by combining three ingredients: the laws of electrostatics; the Galileo-Newton principle of relativity (charges at rest, and charges with a common velocity viewed by a co-moving observer, are physically indistinguishable); and the existence of electromagnetic waves that travel in a vacuum at the speed c. The historical line of development was otherwise. Until the beginning of the nineteenth century, electricity and magnetism were unrelated phenomena. The discovery in 1820 by Hans Christian Oersted (1777–1851) that an electric current influences a magnet—creates a magnetic field—is formulated, for stationary currents, in the field equation[image: 072]

(1.69)



The symbol c that appears in this equation is the ratio of electromagnetic and electrostatic units of electricity (see Appendix A). Then, in 1831, Michael Faraday (1791–1867) discovered that relative motion of a wire and a magnet induces a voltage in the wire—creates an electric field. Such is the content of[image: 073]

(1.70)

which extends the magnetostatic relation[image: 074]

(1.71)

that expresses the empirical absence of single magnetic poles. Finally, in 1864, James Clerk Maxwell (1831–1879) recognized that the restriction to stationary currents in (1.69), as expressed by ∇ · j = 0, was removed in[image: 075]

(1.72)

when joined to the electrostatic equation[image: 076]

(1.73)



The deduction of the existence of electromagnetic waves that travel at the speed c, in remarkable numerical agreement with the speed of light, was confirmed in 1867 by Heinrich Rudolf Hertz (1857–1894). It was the conflict between the  existence of this absolute speed c and the relativity concept of Newtonian mechanics that set the stage for Einsteinian relativity. Already at the age of 16, Albert Einstein (1879–1955) had recognized this paradox: To a co-moving Newtonian observer, light waves should oscillate in space, but not move; however, Maxwell’s equations admit no such solutions. Einsteinian relativity is an outgrowth of Maxwellian electrodynamics, not the other way about. That is the spirit in which electrodynamics is developed as a self-contained subject in this book.




1.4 Problems for Chapter 1 

1. Verify the following identities explicitly:

A×(B×C)+B×(C×A)+C × (A×B) =0, 
∇×(A×B) = A×(∇×B) − B×(∇×A) − (A×∇)×B + (B×∇)×A, 
∇ · (λA×B) = λ(B · ∇×A−(A · ∇×B) + A×B · ∇λ.





2. Verify, using Cartesian coordinates, the divergence theorem,[image: 077]

where V is the volume contained within the closed surface S, dS being the surface element in the direction of the outward normal, and Stokes’ theorem,[image: 078]

where C is the closed boundary of the open surface S, and dl is the tangentially directed line element. The sense of the line integration is given by the right hand rule. [That is, if the contour C is traversed in the sense of the fingers of the right hand, the thumb points in the sense of the orientation of the surface.]

3. This question has to do with the uniqueness theorem which follows from (1.37).a. Directly from that equation, what assumption about |ε(r)|, |r| → ∞, will produce the conclusion that ε = 0 everywhere?

b. How would it work out if one had integrated this equation from R = 0 to ∞, without dividing by R2?

c. How fast would 〈ε2〉R have to fall off with R so that we could conclude ε = 0 everywhere by simply taking R → ∞ in (1.37)? 




4. For an arbitrarily moving charge, the charge and current densities are[image: 079]

where R(t) is the position vector of the charged particle. Verify the statement of conservation of charge,[image: 080]



5. In a region where no charges are present, the potential satisfies Laplace’s equation,[image: 081]

Such a function is called harmonic. Show that in a region where the potential is harmonic, the potential nowhere assumes a maximum or minimum value. Use this result to give another proof of the uniqueness theorem of electrostatics proved in Section 1.1.



6. In this chapter we “derived” Maxwell’s equations by exploiting approximate Galilean invariance. However, we cannot push Galilean invariance further, since it is not valid in O(υ2/c2). The correct relativity is that of Einstein. Verify that Maxwell’s equations are invariant under the transformations of Einstein’s special relativity, as follows. Consider a Lorentz transformation corresponding to a boost in the x direction, which on the space-time coordinates is defined by[image: 082]

Here x0 = ct, x1 = x, x2 = y, x3 = z, and[image: 083]

v being the relative velocity of the two coordinate frames. We can regard the four quantities xμ, μ = 0, 1, 2, 3, as forming a four-vector. The four-current jμ, j0 = cp, ji, i = 1, 2, 3, constructed from the electric charge and current densities, transforms by the same law:[image: 084]




On the other hand, the electric and magnetic field vectors are components of a four-tensor, and so they have a more complicated transformation law. Consider a boost by an arbitrary velocity v. Then the components of the electric and magnetic fields in the direction of v do not change, while the components in directions perpendicular to v are entangled:[image: 085]



For v = (υ, 0, 0) verify explicitly that if Maxwell’s equations hold in the unprimed frame, they hold in the primed frame as well, no matter how near υ may approach c. This was essentially the path by which Lorentz and Poincaré derived the transformation equations (but not the physics) of special relativity. A more complete treatment of Einsteinian relativity will be given in Chapter 10.



7. A charge e moves in the vacuum under the influence of uniform fields E and B. Assume that E · B = 0 and that v · B = 0. At what velocity does the charge move without acceleration? What is its speed when |E| = |B|?





Chapter 2

Magnetic Charge I

Our discussion in Chapter 1 contains a certain implicit assumption. When it came to (1.62),[image: 086]

(2.1)

with its implication that static electric charges produce no electric field, we knew better than to accept this and altered it to[image: 087]

(2.2)

thereby admitting, for v = 0, a static electric field, one obeying ∇×E = 0. Why then did we earlier accept without question the relation (1.51),[image: 088]

(2.3)

with its implication that all magnetic fields are due to the motion of electric charges? This is the (1820) hypothesis of André Marie Ampere (1775–1836). But is it true? An affirmative response is conventional, but the mathematical development allows a more general possibility. Again, all that was really required in the above was the curl relation[image: 089]

(2.4)

admitting the possibility, for v = 0, of a static magnetic field obeying ∇ × B = 0, one that has its origin in magnetic charge. If ρm is the density of such magnetic charge, the analogy with electrostatics suggests that[image: 090]

(2.5)



The implication of (2.5) is that a further source of magnetic fields, other than moving electric charges, could exist in magnetic charge. Whether this possibility is realized in nature still awaits experimental confirmation.

Further changes in Maxwell’s equations are required if magnetic charge exists. Since then ∇ · B ≠ 0, the co-moving time derivative of B becomes [cf. (1.48)][image: 091]

(2.6)



Then, using (2.5) and the magnetic current density jm, defined as[image: 092]

(2.7)

together with (2.2), we obtain the following modified Maxwell equation[image: 093]

(2.8)



Notice that (2.8) implies the conservation of magnetic charge:[image: 094]

(2.9)



The complete set of Maxwell’s equations, when magnetic charge is present, now reads[image: 095]

(2.10)

where we have consistently used the subscript e to denote densities for electric charge. Observe that these equations are invariant in form under the replacements (duality transformation)[image: 096]

(2.11)



The generalized Lorentz force law, suggested by this symmetry, is[image: 097]

(2.12)

for a particle carrying both electric and magnetic charge, e and g, respectively.

Although from time to time there have been spectacular reports of the discovery of magnetic charge (Price, 1975; Cabrera, 1982), these “discoveries” were never replicated, and serious objections were raised in each instance. Nevertheless, there are strong theoretical reasons to believe that magnetic charge exists in nature, and may have played an important role in the development of the universe. Searches for magnetic charge continue at the present time, emphasizing that electromagnetism is very far from being a closed subject.




2.1 A Very Brief History of Magnetic Charge 

It is said that Peregrinus in 1269 observed that magnets (lodestones) always have two poles, which he called north and south. This was elevated to a “hypothesis” by Ampère in the early 19th Century. The first theoretical calculation of the motion of a charged particle in the presence of a single magnetic pole was performed by Poincaré in 1896 to explain recent observations. A few years later, Thomson showed that a static system consisting of a magnetic pole and an electric charge possessed an angular momentum—see Problem 3.8. It was Dirac in 1931 who showed that magnetic charge was consistent with quantum mechanics only if electric and magnetic charges were quantized: For a system consisting of a pure magnetic charge g and a pure electric charge e, eg had to be an integral (or half-integral) multiple of ħc. Many people have contributed to the theory of magnetic charge subsequently; notable is the work of Schwinger in the 1960s and 1970s, especially his concept of dyons, particles which carry both electric and magnetic charge.

Many searches, both terrestrial and cosmic, have been carried out to find magnetic monopoles in nature, but, so far, to no avail. Worth mentioning is the induction technique of Luis Alvarez, et al. Positive reports were given by Price in 1975 [cited in the Reader’s Guide] and by Blas Cabrera in 1982.6 These, however, were never confirmed, and are no longer believed to offer any evidence for magnetic charge, even by their authors.

However, modern unified theories of fundamental interactions typically imply the existence of magnetic monopoles, or of dyons, often at extremely high mass scales (~ 1016 GeV), but perhaps at nearly accessible energies (~ 10 TeV). Moreover, there appears to be no reason why an elementary monopole or dyon of the Dirac-Schwinger type could not exist. So experimental searches continue.




2.2 Problems for Chapter 2 

1. Write Maxwell’s equations with magnetic charge in terms of[image: 098]

and related combinations of charge and current. Verify that these equations retain their form under the transformation illustrated by[image: 099]

where φ is an arbitrary constant. Express this as a transformation of E, B, and the charge-current quantities. What is the geometric interpretation? What is the particular form of this transformation when φ = π/2?

2. Suppose every charged particle carried electric and magnetic charge in the universal ratio gk/ek = λ. Is there another way of looking at this situation in which we would be unaware of magnetic charge?  





Chapter 3

Conservation Laws

In order to check the physical consistency of the above set of equations governing Maxwell-Lorentz electrodynamics [(2.10) and (2.12) or (1.65) and (1.68)], we examine the action of, and reaction on, the sources of the electromagnetic fields. To be precise, we ask whether there is a correct balance in the exchange of energy, momentum, and angular momentum between the charged particles and the electromagnetic fields. As we shall see, the Maxwell-Lorentz system as it stands implies the conservation of these mechanical properties, no matter how rapidly the charges are moving.




3.1 Conservation of Energy 

We start with a consideration of the rate at which work is done on the particles, that is, the rate of energy transfer, or the power absorbed by the particles. For one particle, we know that the rate at which work is done on it is[image: 100]

(3.1)

where we have used the Lorentz force law, (2.12), and the expressions for the currents, (1.44) and (2.7), for a point particle. We interpret this equation as meaning, even for general current distributions, that je · E+jm · B is the rate of energy transfer from the field to the particles, per unit volume. Then through elimination of the currents by use of Maxwell’s equations, (2.10), this rate can be rewritten as[image: 101]

(3.2)



The general form of any local conservation law, (1.45) or (1.46), suggests the following interpretations: 1. In the absence of charges (je = jm = 0), this is the local energy conservation law[image: 102]

(3.3)

We label the two objects appearing here as

[image: 103]

(3.4)

[image: 104]

(3.5)

[The latter is usually called the Poynting vector, after John Henry Poynting (1852–1914).]



2. In the presence of charges, the relation (3.2) is[image: 105]

(3.6)

which, if we integrate over an arbitrary volume V, bounded by a surface S, becomes[image: 106]

(3.7)

The three terms here are identified, respectively, as the rate of change of the electromagnetic field energy within the volume, the rate of flow of electromagnetic energy out of the volume, and the rate of transfer of electromagnetic energy to the charged particles. Thus, (3.6) gives a complete description of energy conservation.








3.2 Conservation of Momentum 

Next we consider the force on a particle, (2.12), as the rate of change of momentum,[image: 107]

(3.8)

where f is the force density. Removing reference to the (generalized) charge and current densities by use of Maxwell’s equations, (2.10), we rewrite the force density f as[image: 108]

 [image: 109]

(3.9)



The quadratic structure in E occurring here is[image: 110]

(3.10)

which introduces dyadic notation, including the unit dyadic 1, with components[image: 111]
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