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SCIENCE MASTERS


‘These books admirably achieve what the series sets out to do – to explain exciting science clearly’


Sunday Times


‘The whole series . . . manages to tell powerful stories very simply and cheaply. What more could you want?’


Science Now


‘The Science Masters series looks set to play a major role in the responsible popularisation of science’


New Scientist


The Pattern on the Stone


‘A breath of fresh air. Hillis knows what he is talking about . . . Hillis takes us on a lightning tour of the fundamentals of computing . . . Nowhere does Hillis lose sight of the fact that what is important is not the detail of these issues, but the story that flows through them and the rationality of thought that connects them . . . It’s this mixture of anecdote, insight and challenging ideas that marks this book out from the herd. The Pattern on the Stone will prove excellent reading for many an audience, from undergraduates to readers who just want to know what all the fuss is about’ New Scientist


‘Hillis shows how the complexity of computers is actually made up of thousands of simple logical operations . . . Hillis’s book provides a clear, concise explanation of how computers work which will be of invaluable help both to those considering a career in computer science and interested laymen alike’


Daily Telegraph
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The Pattern on the Stone



THE SIMPLE IDEAS THAT MAKE COMPUTERS WORK


W. Daniel Hillis
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PREFACE: MAGIC IN THE STONE
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I etch a pattern of geometric shapes onto a stone. To the uninitiated, the shapes look mysterious and complex, but I know that when arranged correctly they will give the stone a special power, enabling it to respond to incantations in a language no human being has ever spoken. I will ask the stone questions in this language, and it will answer by showing me a vision: a world created by my spell, a world imagined within the pattern on the stone.


A few hundred years ago in my native New England, an accurate description of my occupation would have gotten me burned at the stake. Yet my work involves no witchcraft; I design and program computers. The stone is a wafer of silicon, and the incantations are software. The patterns etched on the chip and the programs that instruct the computer may look complicated and mysterious, but they are generated according to a few basic principles that are easily explained.


Computers are the most complex objects we human beings have ever created, but in a fundamental sense they are remarkably simple. Working with teams of only a few dozen people, I have designed and built computers containing billions of active parts. The wiring diagram of one of these machines, if it were ever to be drawn, would fill all the books in a good-sized public library, and nobody would have the patience to scan the whole of it. Fortunately, such a diagram is unnecessary, because of the regularity of a computer’s design. Computers are built up in a hierarchy of parts, with each part repeated many times over. All you need to understand a computer is an understanding of this hierarchy.


Another principle that makes computers easy to understand is the nature of the interactions among the parts. These interactions are simple and well-defined. They are also usually one-directional, so that the actions of the computer can be sorted neatly into causes and effects, making the inner workings of a computer more comprehensible than, say, the inner workings of an automobile engine or a radio. A computer has a lot more parts than a car or a radio does, but it’s much simpler in the way the parts work together. A computer is not dependent so much on technology as on ideas.


Moreover, the ideas have almost nothing to do with the electronics out of which computers are built. Present-day computers are built of transistors and wires, but they could just as well be built, according to the same principles, from valves and water pipes, or from sticks and strings. The principles are the essence of what makes a computer compute. One of the most remarkable things about computers is that their essential nature transcends technology. That nature is what this book is about.


This is the book I wish I had read when I first started learning about the field of computing. Unlike most books on computers—which are either about how to use them or about the technology out of which they’re built (ROM, RAM, disk drives, and so on)—this is a book about ideas. It explains, or at least introduces, most of the important ideas in the field of computer science, including Boolean logic, finite-state machines, programming languages, compilers and interpreters, Turing universality, information theory, algorithms and algorithmic complexity, heuristics, uncomputable functions, parallel computing, quantum computing, neural networks, machine learning, and self-organizing systems. Anyone interested enough in computers to be reading this book will probably have encountered many of these ideas before, but outside of a formal education in computer science there are few opportunities to see how they all fit together. This book makes the connections—all the way from simple physical processes like the closing of a switch to the learning and adaptation exhibited by self-organizing parallel computers.


A few general themes underlie an exposition of the nature of computers: the first is the principle of functional abstraction, which leads to the aforementioned hierarchy of causes and effects. The structure of the computer is an example of the application of this principle—over and over again, at many levels. Computers are understandable because you can focus on what is happening at one level of the hierarchy without worrying about the details of what goes on at the lower levels. Functional abstraction is what decouples the ideas from the technology.


The second unifying theme is the principle of the universal computer—the idea that there is really only one kind of computer, or, more precisely, that all kinds of computers are alike in what they can and cannot do. As near as we can tell, any computing device, whether it’s built of transistors, sticks and strings, or neurons, can be simulated by a universal computer. This is a remarkable hypothesis: as I will explain, it suggests that making a computer think like a brain is just a matter of programming it correctly.


The third theme in this book, which won’t be fully addressed until the last chapter, is in some sense the antithesis of the first. There may be an entirely new way of designing and programming computers—a way not based on the standard methods of engineering. This would be exciting, because the way we normally design systems begins to break down when the systems become too complicated. The very principles that enable us to design computers lead ultimately to a certain fragility and inefficiency. This weakness has nothing to do with any fundamental limitations of information-processing machines—it’s a limitation of the hierarchical method of design. But what if instead we were to use a design process analogous to biological evolution—that is, a process in which the behaviors of the system emerge from the accumulation of many simple interactions, without any “top-down” control? A computing device designed by such an evolutionary process might exhibit some of the robustness and flexibility of a biological organism—at least, that’s the hope. This approach is not yet well understood, and it may turn out to be impractical. It is the topic of my current research.


In an explanation of the nature of computers, there are some fundamentals that have to be dealt with before we can move on to the good stuff. The first two chapters introduce the fundamentals: Boolean logic, bits, and finite-state machines. The payoff is that by the end of chapter 3 you’ll understand how computers work, top to bottom. This sets the stage for the exciting ideas about universal computing machines, which begin in chapter 4.


The philosopher Gregory Bateson once defined information as “the difference that makes a difference.” Another way of saying this is that information is in the distinctions we choose to make significant. In a primitive electrical calculator, say, information is indicated by light bulbs that go on or off depending on whether a current is flowing or not. The voltage of the signal doesn’t matter, nor does the direction of current flow. All that matters is that a wire carries one of two possible signals, one of which causes a bulb to light. The distinction that we choose to make significant—the difference that makes a difference, in Bateson’s phrase—is between current flowing and not flowing. Bateson’s definition is a good one, but the phrase has always meant something more to me. In my lifetime of four decades, the world has been transformed. Most of the changes we’ve seen in business, politics, science, and philosophy in that time have been caused by, or enabled by, developments in information technology. A lot of things are different in the world today, but the difference that has made the difference has been computers.


These days, computers are popularly thought of as multi-media devices, capable of incorporating and combining all previous forms of media—text, graphics, moving pictures, sound. I think this point of view leads to an underestimation of the computer’s potential. It is certainly true that a computer can incorporate and manipulate all other media, but the true power of the computer is that it is capable of manipulating not just the expression of ideas but also the ideas themselves. The amazing thing to me is not that a computer can hold the contents of all the books in a library but that it can notice relationships between the concepts described in the books—not that it can display a picture of a bird in flight or a galaxy spinning but that it can imagine and predict the consequences of the physical laws that create these wonders. The computer is not just an advanced calculator or camera or paintbrush; rather, it is a device that accelerates and extends our processes of thought. It is an imagination machine, which starts with the ideas we put into it and takes them farther than we ever could have taken them on our own.





CHAPTER 1
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NUTS AND BOLTS


When I was a child, I read a story about a boy who built a robot out of parts he found lying around a junkyard. The boy’s robot could move, talk, and think, just like a person, and it became his friend. For some reason, I found the idea of building a robot very appealing, so I decided to build one myself. I remember collecting body parts—tubes for the arms and legs, motors for the muscles, lightbulbs for the eyes, and a big paint can for the head—in the full and optimistic expectation that after they were assembled and the contraption was plugged in, I would end up with a working mechanical man.


After nearly electrocuting myself a few times, I began to get my parts to move, light up, and make noises. I felt I was making progress. I began to understand how to construct movable joints for the arms and legs. But something even more important was beginning to dawn on me: I didn’t have the slightest idea how to control the motors and the lights, and I realized that something was missing in my knowledge of how robots worked. I now have a name for what was missing: it’s called computation. Back then, I called it “thinking,” and I saw that I didn’t have a clue about how to get something to think. It seems obvious to me now that computation is the hardest part of building a mechanical man, but as a child this came as a surprise.



BOOLEAN LOGIC



Fortunately, the first book I ever read on the subject of computation was a classic. My father was an epidemiologist, and we were living in Calcutta at the time. Books in English were hard to come by, but in the library of the British consulate I found a dusty copy of a book written by the nineteenth-century logician George Boole. The title of the book was what attracted me: An Investigation of the Laws of Thought. This grabbed my imagination. Could there really be laws that governed thought? In the book, Boole tried to reduce the logic of human thought to mathematical operations. Although he did not really explain human thinking, Boole demonstrated the surprising power and generality of a few simple types of logical operations. He invented a language for describing and manipulating logical statements and determining whether or not they are true. The language is now called Boolean algebra.


Boolean algebra is similar to the algebra you learned in high school, except that the variables in the equations represent logic statements instead of numbers. Boole’s variables stand for propositions that are either true or false, and the symbols ˆ, ˇ, and ¬ represent the logical operations And, Or, and Not. For example, the following is a Boolean algebraic equation


¬(A ˇ B) = (¬A)ˆ(¬B)


This particular equation, called De Morgan’s theorem (after Boole’s colleague Augustus De Morgan), says that if neither A nor B is true, then both A and B must be false. The variables A and B can represent any logical (that is, true or false) statement. This particular equation is obviously correct, but Boolean algebra also allows much more complex logical statements to be written down and proved or disproved.


Boole’s work found its way into computer science through the master’s thesis of a young engineering student at the Massachusetts Institute of Technology named Claude Shannon. Shannon is best known for having invented a branch of mathematics called information theory, which defines the measure of information we call a bit. Inventing the bit was an impressive accomplishment, but what Shannon did with Boolean logic was at least as important to the science of computation. With these two pieces of work, Shannon laid the foundation for the developments that were to occur in the field of computing for the next fifty years.


Shannon was interested in building a machine that could play chess—and more generally in building mechanisms that imitated thought. In 1940, he published his master’s thesis, which was titled “A Symbolic Analysis of Relay Switching Circuits.” In it, he showed that it was possible to build electrical circuits equivalent to expressions in Boolean algebra. In Shannon’s circuits, switches that were open or closed corresponded to logical variables of Boolean algebra that were true or false. Shannon demonstrated a way of converting any expression in Boolean algebra into an arrangement of switches. The circuit would establish a connection if the statement was true and break the connection if it was false. The implication of this construction is that any function capable of being described as a precise logical statement can be implemented by an analogous system of switches.


Rather than presenting the detailed formalisms developed by Boole and Shannon, I will give an example of their application in the design of a very simple kind of computing device, a machine that plays the game of tic-tac-toe. This machine is much simpler than a general-purpose computer, but it demonstrates two principles that are important in any type of computer. It shows how a task can be reduced to logical functions and how such functions can be implemented as a circuit of connected switches. I actually built a tic-tac-toe machine out of lights and switches shortly after I read Boole’s book in Calcutta, and this was my introduction to computer logic. Later, when I was an undergraduate at MIT, Claude Shannon became a friend and teacher, and I discovered that he, too, had used lights and switches to build a machine that could play tic-tac-toe.


As most readers know, the game is played on a 3 × 3 square grid. Players take turns marking the squares, one player using an X, the other an O. The first player to place three symbols in a row (horizontally, vertically, or diagonally) wins the game. Young children enjoy tic-tac-toe because it seems to offer limitless possible strategies for winning. Eventually they realize that only a small number of patterns can occur, and the game consequently loses its charm: once both players learn the patterns, each game invariably ends in a tie. Tic-tac-toe is a good example of a computation precisely because it wavers on this line between the complex and the simple. Crossing that line is what computation is all about. Computation is about performing tasks that seem to be complex (like winning a game of tic-tac-toe) by breaking them down into simple operations (like closing a switch).


In tic-tac-toe, the situations that occur are few enough so that it’s practical to write them all down, and therefore to build the correct response in every case into the machine. We can use a simple two-step process for designing the machine: first, reduce the play to a series of cases defining the correct response to each pattern of moves; second, convert those cases into electrical circuits by wiring the switches to recognize the pattern and indicate the appropriate response.


One way to proceed would be to write down every conceivable arrangment of X’s and O’s which could be placed on the grid and then decide how the computer would play in each instance. Since each of the nine squares has three possible states (X, O, and blank), there are 39 (or 19,683) ways to fill the grid. But most of these patterns would never occur in the course of a game. A better method of listing the possibilities is to draw up a game tree—a configuration that traces every possible line of play. The game tree starts with a blank grid at the root and has a branch for every possible alternative line of play, determined by the move of the human player. (The tree does not need to branch when the machine plays, because the response of the machine to any given move is always predetermined.) Figure 1 shows a small part of such a tree. For every possible move made by X, the human player, there is a predetermined O response to be made by the machine. (For some strange reason, computer scientists always draw trees upside-down, with the “root” at the top.)
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FIGURE 1
Part of a game tree for tic-tac-toe


The tree in Figure 1 illustrates the strategy that I always use in tic-tac-toe: I play in the center whenever I can. The machine’s moves are determined by the human player’s moves, which vastly reduces the number of possibilities to be considered. A full game tree, showing what the machine should do in every situation, has about five hundred or six hundred branches, the exact number depending on the details of strategy. Following the tree will cause the machine to win, or at least tie, every game. The rules of the game are built into the responses, so by following the tree the machine will always obey the rules. From this game tree, we can write down specifications that say exactly when the machine should play in any particular position. These specifications constitute the Boolean logic of the machine.


Once we have defined the desired behavior, we can translate that behavior into electrical circuits built out of batteries, wires, switches, and lights. The basic circuit in the machine is the same circuit used in a flashlight: when the switch is pressed down—that is, closed—the light goes on, because a complete path has been formed between the bulb and the battery. (The connections to the battery are indicated by the + and – signs.) Most important, these switches can be wired either in series or in parallel. For instance, we can put two switches together in series to make a light that works only when both switches are closed. This circuit implements one of the basic switching functions of the computer—the “logic block” known as the And function, so called because the bulb lights only when the first and the second switches are closed. Switches connected in parallel form the Or function, which connects the circuit (and thus lights the bulb) whenever either or both of the switches are closed (see Figure 2).


These simple patterns of serial and parallel wiring can be used in combinations to form connections that follow various logical rules. In the tic-tac-toe machine, chains of switches connected in series are used to detect patterns, and these chains are connected in parallel to lights, so that several patterns can light the same bulb—that is, produce the same response from the machine.
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FIGURE 2
Switches in series and parallel


The tic-tac-toe machine I built has four banks of nine switches each, and each switch corresponds to one of the nine squares on the tic-tac-toe grid. It also has nine lightbulbs, arranged in the pattern of a tic-tac-toe board. The machine, which always plays first, makes its moves by lighting a bulb. The human player moves by closing a switch—using the first bank of switches to make his first move, the second bank for his second move, and so on. In my version, the machine always begins by playing in the upper left corner of the board, a scheme that reduces the number of cases considerably. The human player responds by closing one of the switches in the first bank (say, the one corresponding to the center square in the grid), and the game proceeds. The machine’s strategy is embodied in the wiring between the switches and the lights.


The wiring that produces the machine’s first response is easy (see Figure 3). Each switch in the first bank is connected to a light that corresponds to the machine’s reply. For instance, a play in the center causes a response in the lower right, so the center switch is wired to the lower-right light. Since my machine always responds in the center square if it can, most of the first bank of switches is wired in parallel to the middle light.
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FIGURE 3
Several different patterns that produce the same response


Each pattern for the second round of play depends on the human player’s first and second moves. To recognize this combination of human moves, the corresponding switches are wired in series. For example, if the player’s first move is in the center and second move in the upper right, the machine is then supposed to respond by playing in the lower left. This pattern is accomplished by wiring the center switch in the first bank in series with the upper-right switch in the second bank (“if center and upper-right squares are filled, then . . .”), with the chain of two switches being connected to the lightbulb in the lower left. Each parallel connection to a bulb specifies a different combination that will cause the bulb to light (“this move or that move will provoke this response”). Whenever it was necessary to use the same switch in two different circuits, I used a “double throw” switch—two switches mechanically linked to the same button, so that they switch together—which allows the same move to be part of two different patterns. The wiring of the third and fourth banks of switches follows the same principle, but there are even more combinations. As you can imagine, the wiring gets complicated, even though the principles are simple. There are fewer choices open on the grid, but the chains of switches are longer.


The tic-tac-toe machine I built has about a hundred and fifty switches. This seemed like a lot to me at the time (I made the switches out of wood and nails), but the computer chips I design today have millions of switches, most of them connected in patterns very similar to those used in the tic-tac-toe machine. Most modern computers use a different kind of electrical switch—a transistor, which I will describe later—but the basic notion of connecting switches in series to produce the And function and connecting switches in parallel to produce the Or function is exactly the same.


While the logic of the tic-tac-toe machine is similar to the logic of a computer, there are several important differences. One is that the tic-tac-toe machine has no notion of events happening sequentially in time; therefore, the entire sequence of the game—that is, the entire game tree—must be determined in advance. This is cumbersome enough where tic-tac-toe is concerned and practically impossible for a more complicated game, like chess, or even checkers. Modern computers are very good at playing checkers and pretty good at playing chess (see chapter 5), because in place of the predetermined game tree they use a different method—one that involves examining patterns sequentially in time.


Another difference between the tic-tac-toe machine and a general-purpose computer is that the tic-tac-toe machine can perform only one function. The “program” of the machine is built into its wiring. The tic-tac-toe machine has no software.


BITS AND LOGIC BLOCKS


As I noted in the Introduction, there is no reason the tic-tac-toe machine (or any other computer) has to be built out of electrical switches. A computer can represent information using electrical currents, fluid pressures, or even chemical reactions. Whether you build a computer out of transistors, hydraulic valves, or a chemistry set, the principles on which it operates are much the same. The key idea of the tic-tac-toe machine is that the And function is implemented by connecting two switches in series and the Or function is implemented by connecting two switches in parallel, but there are many other ways to implement And and Or.


Here I must pause to mention the bit. The smallest “difference that makes a difference” (to use Bateson’s phrase again) is a difference that splits all signals into two distinct classes. In the tic-tac-toe machine, the two classes are “current flowing” and “no current flowing.” By convention, we call the two possible classes 1 and 0. These are just names; we could as easily call them True and False, or Alice and Bob. Even the choice of which class is called 0 and which is called 1 is arbitrary. A signal that can carry one of two different messages (like 1 or 0) is called a binary signal, or a bit. A

 computer uses combinations of bits to represent all kinds of sets of alternatives—different moves in tic-tac-toe, say, or different colors to be displayed on a screen. Since the convention is to designate the bits by 1’s and 0’s, people often think of these bit patterns as numbers, hence the old chestnut “The computer does everything with numbers.” But this convention is simply a way of thinking about what’s going on. If we had named the two possible messages conveyed by the bit the letters X and Y, people would be saying, “The computer does everything with letters.” The more accurate statement is “The computer represents numbers, letters, and everything else with patterns of bits.”
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FIGURE 4
Mechanical implementation of the OR function


Instead of using the flow of electricity to represent a bit, we could have used mechanical motion. Figure 4 shows how the Or function is implemented using a technology that represents 1 by sliding a stick to the right. As long as both the A and the B input sticks stay to the left, representing 0, then the spring will keep the output stick pushed to the left, but if either input stick slides to the right, then the output stick will slide to the right also. The object in Figure 5 computes another useful function, that of inversion: The inverter turns every signal into its opposite: for example, it turns a push to the right into a pull to the left, and vice versa.


These And, Or, and Invert functions are logic blocks, and they can be connected in order to create other functions. For instance, the output of an Or block can be connected to an Invert block to create a Nor function: the Nor output will be a 1 when neither of its inputs is 1. In another example (using De Morgan’s theorem), we can make an And block by connecting two Invert blocks to the inputs of an Or block and connecting a third Invert block to the output (see Figure 6). These four work together to implement the And function, so the final output is 1 only when both the inputs are 1.
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FIGURE 5
Mechanical inverter
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