



[image: image]









[image: ]






Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Education cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of the home page for a website in the URL window of your browser.


Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in sustainable forests. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.


Orders: please contact Bookpoint Ltd, 130 Milton Park, Abingdon, Oxon OX14 4SB. Telephone: +44 (0)1235 827720. Fax: +44 (0)1235 400454. Lines are open 9.00a.m.– 5.00p.m., Monday to Saturday, with a 24-hour message answering service. Visit our website at www.hoddereducation.co.uk


© Nick England, Carol Davenport, Jeremy Pollard, Nicky Thomas 2015


First published in 2015 by


Hodder Education,


An Hachette UK Company


Carmelite House


50 Victoria Embankment


London, EC4Y 0DZ






	Impression number  

	10 9 8 7 6 5 4 3 2 1






	Year

	2019 2018 2017 2016 2015







All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, Saffron House, 6–10 Kirby Street, London EC1N 8TS.


Cover photo © Hurstville - Fotolia


Illustrations by Aptara


Typeset in 11/13 pt ITC Berkeley Oldstyle by Aptara, Inc.


Printed in Italy


A catalogue record for this title is available from the British Library.


ISBN 978 1471 807763
eISBN 978 1471 828935





Get the most from this book


Welcome to the AQA A-level Physics Year 2 Student’s Book. This book covers Year 2 of the AQA A-level Physics specification.


The following features have been included to help you get the most from this book.
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Prior knowledge


This is a short list of topics that you should be familiar with before starting a chapter. The questions will help to test your understanding.
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Activities and Required practicals


These practical-based activities will help consolidate your learning and test your practical skills. AQA’s required practicals are clearly highlighted.
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Test yourself questions


These short questions, found throughout each chapter, are useful for checking your understanding as you progress through a topic.
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Tips


These highlight important facts, common misconceptions and signpost you towards other relevant topics.
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Practice questions


You will find Practice questions at the end of every chapter. These follow the style of the different types of questions you might see in your examination, including multiple-choice questions, and are colour coded to highlight the level of difficulty. Test your understanding even further with Stretch and challenge questions.
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Questions are colour-coded, to help target your practice:





•  Green – Basic questions that everyone should be able to answer without difficulty.



•  Orange – Questions that are a regular feature of exams and that all competent candidates should be able to handle.



•  Purple – More demanding questions which the best candidates should be able to do.



•  Stretch and challenge – Questions for the most able candidates to test their full understanding and sometimes their ability to use ideas in a novel situation.





Key terms and formulae


These are highlighted in the text and definitions are given in the margin to help you pick out and learn these important concepts.
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Maths boxes


These provide additional material for the more mathematical physicists.
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Examples


Examples of questions and calculations feature full workings and sample answers.
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AQA has provided five optional topics as part of the full A-level course so students can focus on their areas of interest: Astrophysics, Medical physics, Engineering physics, Turning points in physics, and Electronics.


A chapter covering the first optional topic, Astrophysics, has been included in this book (Chapter 13), as well as a dedicated chapter for developing your Maths in physics (Chapter 14). Additional chapters covering the other optional topics can be accessed online, as well as further chapters focusing on Developing practical skills in physics, and Preparing for written assessments. More information on how to access these can be found in the Free online resources section at the back of this book.
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1 Circular motion
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PRIOR KNOWLEDGE


Before you start, make sure that you are confident in your knowledge and understanding of the following points:
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•  Resultant force = mass × acceleration.



•  You need to recall that a vector quantity has magnitude and direction: force, velocity and acceleration are vectors.



•  Resolving a vector into components.



•  Circumference of a circle = 2π × radius of circle, c = 2πr.



•  Newton’s first law of motion: a body remains at rest or continues to move in a straight line at a constant speed unless acted on by an unbalanced force.
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TEST YOURSELF ON PRIOR KNOWLEDGE





1  a) Explain the difference between speed and velocity.


    b)  Explain why acceleration is a vector quantity.



2      The three diagrams in Figure 1.1 show three separate examples of how a vehicle’s velocity changes from v1 to v2 over a time of 10 s. Use the equation [image: ] to calculate the magnitude and direction of the acceleration in each case.
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3  The vehicle in question 2 has a mass of 2 kg. In each case shown in Figure 1.1, calculate the average resultant force that caused the acceleration of the vehicle.








4  An unbalanced force acts on a moving vehicle. Explain three changes that could occur to the vehicle’s velocity.








5  You walk a quarter of the way round a circle of diameter 20 m.







    a)  Calculate the distance you have walked.


    b)  Calculate your displacement if you started at the north of the circle and walked to the eastern side of the circle.
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Circular measure


You are used to measuring angles in degrees, but in physics problems involving rotations we use a different measure.


In Figure 1.2, an arc AB is shown. The length of the arc is s, and the radius of the circle is r. We define the angle θ as


[image: ]
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The advantage of this measure is that θ is a ratio of lengths, so it has no unit. However, to avoid the confusion that the angle might be measured in degrees, we give this measure the unit radian, abbreviated to rad.


Since the circumference of a circle is 2πr, it follows that 2π radians is the equivalent of 360°:
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so
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Equations of rotation


When something rotates about a fixed point we use the term angular displacement to measure how far the object has rotated. For example, in Figure 1.2, when an object rotates from A to B, its angular displacement is θ radians.


The term angular velocity, ω, is used to measure the rate of angular rotation. Angular velocity has units of radians per second or rad s−1:


[image: ]


or
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where ∆θ is the small angle turned into a small time ∆t.
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EXAMPLE


The ‘big wheel’


A ‘big wheel’ at a funfair takes its passengers for a ride, completing six complete revolutions in 120 s.





1 Calculate the angular displacement of the wheel.





Answer
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2 Calculate the average angular velocity during the ride.





Answer
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In general, there is a useful relationship connecting the time period of one complete rotation, T, and angular velocity, ω, because after one full rotation the angular displacement is 2π:
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or
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where f is the frequency of rotation. There is a further useful equation, which connects angular velocity with the velocity of rotation. Since
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and
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then
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This equation shows that the rotational speed of something is faster further away from the centre. For example, all the children on a roundabout in a playground have the same angular velocity ω, but the ones near the edge are moving faster (Figure 1.3).
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TEST YOURSELF





1  The Earth has a radius of 6400 km. The Shetland Isles are at latitude of 60°.







    a)  Calculate the angular velocity of the Earth.


    b)  Calculate the velocity of rotation of a point on the equator.


    c)  Calculate the velocity of rotation of the Shetland Isles.








2  A proton in a synchrotron travels round a circular path of radius 85 m at a speed of close to 3.0 × 108 m s−1.







    a)  Calculate the time taken for one revolution of the synchrotron.


    b)  Calculate the frequency of rotation of the protons.


    c)  Calculate the proton’s angular velocity.








3  The Sun rotates around the centre of our Galaxy, the Milky Way, once every 220 million years, in an orbit of about 30 000 light years.







    a)  Calculate the angular velocity of the Sun about the centre of the Milky Way.


         Calculate the velocity of the Sun relative to the centre of the Galaxy.





[1 light year = 9.47 × 1015 m; 1 year = 3.16 × 107 s]
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Centripetal acceleration


In Figure 1.4 a particle is moving round a circular path at a constant speed v, and because it is continually changing direction the particle is always accelerating.
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It is easier to understand the acceleration when you recall the formula:
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Velocity is a vector quantity, so if the direction of the motion changes, even though there is no change of speed, there must be an acceleration.


Figure 1.5 shows the direction of the acceleration. In going from position A to position C, the particle’s velocity changes from v1 to v2. So the change in velocity, Δv, is the vector sum v2−v1.
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The diagram shows the change in velocity, Δv, which is directed along the line BO, towards the centre of the circle. So, as the particle moves around the circular path, there is an acceleration towards the centre of the circle. This is called the centripetal acceleration. Because this acceleration is at right angles to the motion, there is no speeding up of the particle, just a change of direction.


The size of the acceleration, a, is calculated using this formula:


[image: ]


or because v = ωr


[image: ]


Here v is the constant speed of the particle, ω is its angular velocity, and r is the radius of the path.
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MATHS BOX


You are not expected to be able to derive the formula for centripetal acceleration, but it is given here for those who want to know where the formula comes from.


In Figure 1.4, the particle moves from A to C in a small time Δt. We now look at the instantaneous acceleration at the point B, by considering a very small angle Δθ. The distance travelled round the arc AC, Δs, is given by


[image: ]


so
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In Figure 1.5 the angle θ is given by


[image: ]


provided Δθ is very small. Then by combining equations (i) and (ii), it follows that
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or
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Centripetal force


Figure 1.6 illustrates the path of a railway carriage as it turns round a corner (part of a circle), moving from A to B at a constant speed v. The rails provide a force to change the direction of the carriage. However, a ball that is placed on the floor behaves differently. The ball carries on moving in a straight line until it meets the side of the carriage. The ball experiences no force, so, as predicted by Newton’s first law of motion, it carries on moving in a straight line at a constant speed, until the side of the carriage exerts a force on it.
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Now suppose that the ball is suspended from the ceiling of the carriage and the experiment is repeated. Figure 1.7 illustrates what happens now as the carriage moves from a straight track to a curved track. In Figure 1.7(a) the carriage moves along a straight track at a constant speed. The ball hangs straight down and the forces acting on it balance: the tension of the string, T, upwards, balances the ball’s weight, W, downwards.




[image: ]




In Figure 1.7(b) the train turns the corner. The ball keeps moving in a straight line until tension in the string acts to pull the ball round the corner. Now the forces acting on the ball do not balance. The vector sum of the tension T and the weight W provides an unbalanced force R, which acts towards the centre of the circle (Figure 1.7c).


This unbalanced force R provides the centripetal acceleration. So we can write


[image: ]


where R is the unbalanced centripetal force, m is the mass of the ball, v is the ball’s forward speed, and r is the radius of the (circular) bend it is going round.


It is important to understand that a centripetal force does not exist because something is moving round a curved path. It is the other way around – according to Newton’s second law of motion, to make something change direction a force is required to make the object accelerate. In the example you have seen here, the tension in the string provides the centripetal force, which is necessary to make the ball move in a circular path. When a car turns a corner, the frictional force from the road provides the centripetal force to change the car’s direction. When a satellite orbits the Earth, the gravitational pull of the Earth provides the centripetal force to make the satellite orbit the Earth – there is no force acting on the satellite other than gravity.


A common misunderstanding


Figure 1.8 shows the same ball discussed earlier held hanging, at rest, at an angle in the laboratory. Now it is kept in place by the balance of three forces: the tension in the string, T, its weight, W, and a sideways push, P, from a student’s finger.
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If the student removes his finger, the ball will accelerate and begin moving to the left, because there is now an unbalanced force acting on it, exactly as there was in Figure 1.7.


However, the situations are different. In Figure 1.8 the ball is stationary until the finger is removed, and it begins to accelerate and move in the direction of the unbalanced force. In Figure 1.7 the ball is moving forwards and the action of the unbalanced force is to change the direction of the ball.
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TEST YOURSELF





4  Explain how a force can change the velocity of a body without increasing its speed.



5  The force of gravity makes things fall towards the ground. Explain why the Earth’s gravity does not make the Moon fall towards the Earth.



6  A satellite is in orbit around the Earth, at a distance of 7000 km from the Earth’s centre. The mass of the satellite is 560 kg and the gravitational field strength at that height is 8.2 N kg−1.







    a)  Draw a diagram to show the direction and magnitude of the force (or forces) that act(s) on it.


    b)  Calculate the centripetal acceleration of the satellite.


    c)  Calculate







        i)   the speed of the satellite


        ii)  the time period of its orbit.








7  This question refers to the suspended ball in the train, illustrated in Figure 1.7. The ball has a mass of 0.15 kg.







    a)  The train accelerates forwards out of the station along a straight track at a rate of 2 m s−2.







        i)   Explain why the ball is displaced backwards.


        ii)  Calculate the resultant force on the ball.


        iii) Show that the angle at which the ball hangs to the vertical is about 11.5°.







    b)  The train reaches a speed of 55 m s−1 and travels round a curved piece of the track. At this moment, the ball is deflected sideways by about 11.5°.







        i)   State and explain the direction and magnitude of the resultant force on the ball.


        ii)  Explain why the ball is accelerating. In which direction is the acceleration? Calculate the magnitude of the acceleration.


        iii) Explain why the ball’s speed remains constant.


        iv) Calculate the radius of the bend the train is going round.







    c)  The train carriage that carries the ball has a mass of 40 tonnes.







        i)   Calculate the centripetal force that acts on the carriage as it turns the corner. What provides this force?


        ii)  Explain why trains go round tight bends at reduced speeds.





[image: ]







[image: ]


ACTIVITY


Investigating centripetal forces


Figure 1.9 shows a way in which you can investigate centripetal forces. The idea is that you whirl a rubber bung around your head in a horizontal circle. The bung is attached by a thin string to a plastic tube, which is held vertically. A weight is hung on the bottom of the string. This causes the tension to provide the necessary centripetal force to keep the bung moving in its circular path.




[image: ]







•  Use a bung, of mass m, of about 50 g to 100 g.



•  Wear safety glasses (useful to protect yourself from others doing the same experiment).



•  A suitable plastic tube is an old case from a plastic ballpoint pen.



•  The time of rotation, T, can be calculated by measuring the time for 10 rotations, 10T.



•  The radius r can be measured after you have finished 10 rotations by pinching the string with your finger, then measuring the length from the top of the tube to the centre of the bung.



•  We assume that there is no friction between the plastic tube and the string.



•  It is assumed that the string is horizontal, although this will not be entirely possible, so it is important to try to meet this condition as far as you can.





Table 1.1 shows some data measured by a student doing this experiment.





1 Copy and complete Table 1.1 by filling in the gaps. Comment on how well the results support the hypothesis that the weight on the end of the string causes the centripetal force to keep the bung in its circular path. In this experiment the bung has a mass of 0.09 kg.
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2 Discuss the sources of error in this experiment. Suggest how the errors can be minimised.



3 To improve the reliability of the data, it might be helpful to plot a graph.







    a) Plot a graph of F against mω2r.


    b) Explain why this should be a straight line. What gradient do you expect to get when you measure it?





[image: ]
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EXAMPLE


Round in circles





1 A physics teacher, shown in Figure 1.10, demonstrates a well-known trick. She puts a beaker of water on a tray, suspended by four strings at its corners. Then she whirls the tray round in a vertical circle, so that the beaker is upside down at the top. She then asks why the water does not fall at the top of the swing. A student (who has not been paying attention) says ‘the pull of gravity is balanced by an outwards force’. Explain why this is not correct.
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Answer




    The teacher gives this explanation: At the top, the water and the beaker are falling together. Look at Figure 1.10. At point A, the beaker is travelling along the direction AB. The string pulls the beaker down in the direction BC so at the top it has fallen to point C.


    The teacher repeated the demonstration and asked the students to time the revolutions. The students determined that the tray completed 10 revolutions in 8.3 s. They measure the radius of the circle to be 0.95 m.


    The speed of the tray is


[image: ]







    So, while the beaker rotates, it has a centripetal acceleration of


[image: ]







    This tells us that the water is accelerating all the time at 55 m s−2 (more than five times the gravitational acceleration). So the water does not fall out ofthe beaker at the top, because it is already falling with an acceleration greater than gravitational acceleration.



2 A cyclist is cycling at 14.5 m s−1 in a velodrome where the track is bankedat an angle of 40° to the horizontal (Figure 1.11). The track is curved so that the cyclist is turning in a horizontal circle of radius 25 m. The cyclist and bicycle together have a mass of 110 kg.







[image: ]






    a) Calculate the centripetal force acting on the cyclist.





Answer


[image: ]




    b) Calculate the contact force R from the track on the bicycle.





Answer




    Figure 1.11 shows the two forces acting on the bicycle and cyclist: the contact force R and the weight W. The forces combine to produce the unbalanced centripetal force, which keeps the cyclist moving round her horizontal circular path.


    Force R may be resolved horizontally and vertically as follows:


[image: ]







    The vertical component Rv balances the weight, and the horizontal component provides the unbalanced centripetal force. (It is important to realise that the cyclist can only lean her bicycle as shown because she is accelerating towards the centre of the circle. She would fall over if she were stationary.) So
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TEST YOURSELF





8  This question refers to the teacher’s demonstration with the beaker of water shown in Figure 1.10.







    a)  The beaker and water have a combined mass of 0.1 kg. Use this information, together with the information in the text, to calculate the centripetal force required to keep the beaker in the circular path that the teacher used.


    b)  The only two forces that act on the beaker and water are their weight, W, and the contact force, R, from the tray. Calculate the size and direction of R at the following points shown in Figure 1.10:







        i)   C


        ii)  D


        iii) E.







    c)  The water will fall out of the beaker at point C if the beaker moves so slowly that the required centripetal acceleration is less than g.







         Assuming the teacher still rotates the beaker in a circle of 0.95 m radius, calculate the minimum speed at which the water does not fall out of the beaker at point C.








9  Formula 1 (F1) racing cars are designed to enable them to corner at high speeds. Traction between the tyres and the road surface is increased by using soft rubber tyres, which provide a large frictional force, and by using wings to increase the down force on the car.







    The tyres of an F1 car can provide a maximum frictional force to resist sideways movement of 15 500 N. The car’s mass (including the driver) is 620 kg.







    Calculate the maximum cornering speed of the car going round a bend of







    a)  radius 30 m


    b)  radius 120 m.
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Practice questions




  1 The orbit of an electron in a hydrogen atom may be considered to be a circle of radius 5 × 10−11 m. The period of rotation of the electron is 1.5 × 10−16 s. The speed of rotation of the electron is







    A 2 × 105 m s−1



    B 4 × 105 m s−1



    C 2 × 106 m s−1



    D 4 × 107 m s−1








  2 From the information in question 1, the centripetal acceleration of the electron is







    A 3 × 1022 m s−2



    B 9 × 1022 m s−2



    C 12 × 1022 m s−2



    D 30 × 1022 m s−2








  3 The Moon orbits the Earth once every 29 days with a radius of orbit of 380 000 km. The angular velocity of the Moon is







    A 2.5 × 10−6 rad s−1



    B 5.0 × 10−6 rad s−1



    C 8.5 × 10−6 rad s−1



    D 25 × 10−6 rad s−1








  4 From the information in question 3, the Moon’s centripetal acceleration is







    A 2.4 mm s−2



    B 4.0 mm s−2



    C 7.6 mm s−2



    D 24 mm s−2








  5 The centripetal acceleration of a car moving at a speed of 30 m s−1 round a bend of radius 0.45 km is







    A 1.0 m s−2



    B 2.0 m s−2



    C 100 m s−2



    D 200 m s−2








  6 A satellite is in orbit around the Earth in a circular orbit of radius 10 000 km. The angular velocity of the satellite is 6.4 × 10−4 rad s−1. The time of orbit of the satellite is







    A 4800 s


    B 6800 s


    C 8400 s


    D 9800 s







  7 From the information in question 6, the centripetal acceleration of the satellite is







    A 2 m s−2



    B 3 m s−2



    C 4 m s−2



    D 8 m s−2








  8 A student swings a bucket of water in a vertical circle of radius 1.3 m. The bucket and water have a mass of 2.5 kg. The bucket rotates once every 1.4 s. When the bucket is upside down, the water does not fall out. Which of the following gives a correct explanation of why the water stays in the bucket.







    A The weight of the water is balanced by a centrifugal force.


    B The centripetal force and the weight of the water balance.


    C The water and bucket are falling at the same rate.


    D The bucket moves so fast that the water has no time to fall.







  9 From the information in question 8, the centripetal force on the swinging bucket is







    A 6 N


    B 36 N


    C 52 N


    D 65 N








10 From the information in question 8, for the swinging bucket, at the bottom of the swing the rope exerts a force on the student’s hand of







    A 90 N


    B 63 N


    C 52 N


    D 36 N







•



11 An astronaut undergoes some training to test his tolerance to acceleration. He is placed in a rotor, which carries him in a circle of radius 7.0 m. The rotor completes 10 revolutions in 24.3 s, moving at a constant speed.







    a) Explain why the astronaut is accelerating, although his speed is constant.


(2)


    b) Calculate the size of the astronaut’s acceleration.


(3)







•



12 (Synoptic question: you need to think about energy transformations to help solve this question.)


     A large steel ball of mass 2100 kg is used to demolish buildings. The ball is suspended on a cable of length 8 m, and is pulled back to a height of 4 m above its lowest point, before being released to hit a building.







    a) Calculate the maximum speed of the ball just prior to hitting the building.


(3)


    b) Calculate the tension in the cable when the ball is at its lowest point.


(4)







•



13 Figure 1.12 shows an aircraft propeller that is undergoing tests in a laboratory.







[image: ]






     The propeller is made out of high-strength, low-density carbon-fibre-reinforced plastic (CFRP). In a test, it is rotating at a rate of 960 times per minute.







    a) Calculate the angular velocity of the propeller.


(2)


    b) Calculate the speed of the propeller blade at these two positions.


(2)







        i)   A


        ii)  B







    c) Explain why the propeller blade is made of CFRP.


(2)


    d) At which point is the blade more likely to fracture, A or B? Explain your answer.


(2)


    e) Estimate the centripetal force required to keep a propeller blade rotating at a rate of 960 times per second, if its centre of mass is 0.6 m from the centre of rotation and the mass of the blade is 3.5 kg.


(3)





Stretch and challenge





14 This question is about apparent weight. Your weight is the pull of gravity on you. But what gives you the sensation of weight is the reaction force from the floor you are standing on.







    a) A man has a mass of 80 kg. Calculate his apparent weight (the reaction from the floor) when he is in a lift that is







        i)   moving at a constant speed of 3 m s−1



        ii)  accelerating upwards at 1.5 m s−2



        iii) accelerating downwards at 1.5 m s−2.







    b) A designer plans the funfair ride shown in Figure 1.13. A vehicle in an inverting roller coaster leaves point A with a very low speed before reaching point B, the bottom of the inverting circle. It then climbs to point C, 14 m above B, before leaving the loop and travelling to point D.







[image: ]






        Assuming that no energy is transferred to other forms due to frictional forces, show that







        i)   the speed of the vehicle at B is 20 m s−1



        ii)  the speed of the vehicle at C is 11 m s−1.







    c) Use your answers to (b) to calculate the centripetal acceleration required to keep the vehicle in its circular path







        i)   at B


        ii)  at C.







    d) Now calculate the apparent weight of a passenger of mass 70 kg







        i)   at B


        ii)  at C.







        In the light of your answers, discuss whether or not this is a safe ride.







    e) Figure 1.14 shows the design of a space station. It rotates so that it produces an artificial gravity. The reaction force from the outer surface provides a force to keep people in their circular path.







[image: ]






        Use the information in the diagram to calculate the angular velocity required to provide an apparent gravity of 9.8 m s−2.





[image: ]








2 Simple harmonic motion




[image: ]


PRIOR KNOWLEDGE


Before you start, make sure that you are confident in your knowledge and understanding of the following points:





•  Displacement, velocity, force and acceleration are all vector quantities.



•  Acceleration [image: ]




•  Time period [image: ]




•  Frequency = number of oscillations per second.



•  The natural measure of angle is the radian; 2π radians = 360°.



•  Resultant force = mass × acceleration.





[image: ]
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TEST YOURSELF ON PRIOR KNOWLEDGE





1  a) An electromagnetic wave has a frequency of 2.6 GHz. Calculate the time period of the wave.


    b)  A boat that is anchored at sea lifts up six times in 30 s as waves pass it. What is the frequency of the waves?








2  A car is travelling with a velocity of 20 m s−1 due north. Two minutes later the car has travelled round a large bend and is travelling with a velocity of 15 m s−1 due south. Calculate the car’s average acceleration over this time.



3  Calculate the values of these trigonometric functions, where the angle has been expressed in radians.







    a)  tan 0.01


    b)  sin π


    c)  cos π





[image: ]





Simple harmonic motion


Last year, when you studied wave motion, you learnt that all types of waves require a vibrating source to produce them. For example, vibrating or oscillating electric and magnetic fields are responsible for the production of electromagnetic waves. There are also many examples of mechanical waves – sound waves, water waves, waves on strings or wires, and shock waves from earthquakes. All these waves are caused by a vibrating source.


In this chapter, you are going to be studying oscillations about a fixed point. Figure 2.1 shows three examples of mechanical oscillations – a clamped ruler, a mass on a spring and a pendulum. In each of these examples, we observe that the motion is repetitive about a fixed point. The oscillating object is stationary at each end of the motion, and is moving with its maximum speed, in either direction, at the midpoint.




[image: ]




To a good approximation, these objects have these features in common:





•  The force acting on the body always acts towards the equilibrium position.



•  The force acting on the body is proportional to its displacement from the equilibrium position.





An oscillating body that satisfies both these conditions is said to be moving with simple harmonic motion or SHM. The two features of the motion above may be summarised in the equation:


[image: ]


or


[image: ]


or


[image: ]


Here k is a constant (which can be called the spring constant or the force per unit displacement). The significance of the minus sign is that it shows that the force (and acceleration) are in the opposite direction to the displacement. Force, acceleration and displacement are vectors, so we must define the direction of the displacement and motion.





[image: ]




Figure 2.2 shows some important features of a simple harmonic oscillator. When at rest, the mass hangs in its equilibrium position. A is the amplitude of the oscillation – this is the greatest displacement of the oscillator from its equilibrium position. When the mass is displaced downwards by x, the force acts upwards on the mass towards the equilibrium position.


If you investigate the time period of a simple harmonic oscillator, you will discover that the time period does not depend on the amplitude of the oscillations, provided the amplitude is small. If you overstretch a spring or swing a pendulum through a large angle, the motion ceases to be simple harmonic.


Mathematical description of SHM


The question we want to answer is this: How do the displacement, velocity and acceleration of a simple harmonic oscillator vary with time?


Figure 2.3 gives us some insight. Here a mass is oscillating up and down on a spring. The mass has been stroboscopically photographed by a camera, moving horizontally at a constant speed. The shape of the curve we see is sinusoidal. Figure 2.4 shows how the displacement of the mass varies with time if it is released from rest with an amplitude A.




[image: ]
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The graph has the shape of a cosine function, which can be written as


[image: ]


But the value of θ is 2π after one complete cycle so, at the end of the cycle,


[image: ]


However, we know that the oscillation is a function of t. The function that fits the equation is


[image: ]


or


[image: ]


where T is the time period for one oscillation. Remember that [image: ] where f is the frequency of the oscillation. This function solves the equation because after one oscillation t = T, so the inside of the bracket has the value 2π.


Once we have an equation that connects displacement with time, we can also produce equations that link velocity with time, and then also acceleration with time. These are shown below:
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and since x = A cos(2πft)


[image: ]


We derive this assuming x = A when t = 0. However, the same equation would have been obtained whatever the starting condition.


(Mathematicians will see that the velocity equation is the derivative of the displacement equation, and that the acceleration equation is the derivative of the velocity equation.)


Since the maximum value of a sine or cosine function is 1, we can write the maximum values for x, v and a as follows:


[image: ]
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We also write down one further useful equation now, which allows us to calculate the velocity v of an oscillating particle at any displacement x:


[image: ]


This will be proved later when we consider the energy of an oscillating system.
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Tip


NOTE


In the AQA specification the symbol ω is used to represent 2π f or [image: ], so you will also meet equations in this form:


[image: ]
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Figure 2.5 shows graphically the relationship between x, v and a. These graphs are related to each other.





•  The graph of velocity v against time t links to the gradient of the displacement–time (x–t) graph because


[image: ]


    For example, at time 0 (in Figure 2.5), the gradient of the x–t graph (a) is zero, so the velocity is zero. At time 1, the gradient of the x–t graph (a) is at its highest and is negative, so the velocity is at its maximum negative value.



•  The graph of acceleration a against time t (c) links to the gradient of the velocity–time (v–t) graph (b) because


[image: ]


    For example, at time 1 (in Figure 2.5), the gradient of the v–t graph (b) is zero, so the acceleration is zero. At time 2, the gradient of the v–t graph (b) is positive and at its largest value, so the acceleration has its largest value.
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EXAMPLE


SHM of a mass on a spring


A mass hanging on a spring oscillates with simple harmonic motion. The amplitude of the oscillation is 4.0 cm, and the frequency of the oscillation is 0.5 Hz. The spring is released from rest at its lowest position, 4 cm below its equilibrium position (Figure 2.6).




[image: ]







1 Calculate the maximum velocity of the mass.





Answer


[image: ]





2 Calculate the maximum acceleration of the mass.





Answer


[image: ]





3 Calculate the acceleration of the mass 1.2 s after release.





Answer


We need to define a direction before applying our formulae. In Figure 2.6 we define positive as our downwards direction. (This is arbitrary. You will get the same answer if you choose this direction to be negative.)


[image: ]


Since this is positive, the acceleration is downwards.





4 Calculate the velocity of the mass when it is displaced 2 cm from itsequilibrium position.





[image: ]
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TEST YOURSELF





1  A pendulum is released from point A in Figure 2.7. It swings from A to C and back with SHM. The distance AC is 24 cm, and the time taken to travel from A to B is 0.8 s.







[image: ]






    a)  State the frequency of the oscillation.


    b)  State the amplitude of the oscillation.







    c)  i)  Calculate the speed of the pendulum as it passes B.


        ii)  Calculate the velocity of the pendulum when it is displaced 4 cm from B.







    d)  Calculate the acceleration of the pendulum when it is displaced 6 cm to the right of B.








2  A ruler is clamped to a bench. When the free end is displaced, the ruler oscillates with SHM, at a frequency of 100 Hz. The amplitude of the oscillations is 1.8 mm.







    a)  Calculate the highest velocity of the ruler.


    b)  Calculate the highest acceleration of the ruler. State where this is.


    c)  State the point in the oscillation where







        i)   the acceleration of the ruler is zero


        ii)  the velocity of the ruler is zero.








3  A marker buoy is oscillating in a vertical line with SHM. The buoy takes 2.8 s for one oscillation and is seen to fall a distance of 1.8 m from its highest to its lowest point.







    a)  Calculate the buoy’s maximum velocity.


    b)  Calculate the buoy’s acceleration when it is 1.4 m below its highest point.








4  Figure 2.8 shows the displacement of a particle oscillating with SHM. To represent its motion, the equation x = A sin(2πft) is used, where x = 0 when t = 0.


    Copy the diagram and add sketches, using the same time axis, to show the variations of v and a with time.
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Time period of oscillations


We can combine two of the equations that we used in the previous sections to produce a further equation that links the time period of oscillation, T, to the mass of the oscillating particle, m, and the force per unit displacement, k.


The two equations that define the motion of a simple harmonic oscillator that we need from the earlier sections are equations (i) and (v):


[image: ]


Combining these gives


[image: ]


or


[image: ]


or


[image: ]


Once you recognise that a particle is oscillating with SHM, you can use this general solution to calculate the time period of any oscillator.




[image: ]


EXAMPLE


Calculating the time period





1 A mass of 400 g hangs on a steel spring, which has a spring constant of 0.20 N cm−1. Calculate the time period for one oscillation.





Answer


[image: ]
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2 In Figure 2.9, a light ruler is clamped to a desk and a mass of 250 g is attached securely to the free end. When a newtonmeter is attached to the end of the ruler, a force of 1.4 N displaces the ruler by 3 cm. Calculate the time period of the oscillations, stating any assumptions you make.





Answer




    The force per unit displacement is
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    so
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The simple pendulum


Figure 2.10(a) shows a pendulum held at rest by a small sideways force F. Figure 2.10(b) shows the three forces acting on the pendulum bob to keep it in equilibrium.
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The force F = mg sin θ. For small angles we have θ ≈ sin θ, and therefore


[image: ]


Figure 2.10(c) shows that x can be related to the length of the pendulum, l, by


[image: ]


For small angles, we also have θ ≈ tan θ, and therefore


[image: ]


and


[image: ]


Combining equations (xi) and (xii) gives


[image: ]


When the pendulum is released, the restoring force now acts in the opposite direction. So


[image: ]


and


[image: ]


This is the defining equation for SHM because the acceleration is proportional to, and in the opposite direction to, the displacement.


Therefore


[image: ]


and
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REQUIRED PRACTICAL 7


Investigation into simple harmonic motion using a mass–spring system and a simple pendulum.


Note: This is just one example of how you might tackle this required practical.


Make a simple pendulum using a small mass hanging on a piece of string about 1.5 m long.





•  Investigate whether the time period of the pendulum depends on the amplitude of the swings.



•  Investigate how the time period, T, of the pendulum varies with length between 1.5 m and 0.2 m.



•  Plot a suitable straight line graph to investigate whether: T2 α l. Use the gradient of the graph to find a value for g.





[image: ]
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ACTIVITY


Oscillation of a tethered trolley


The purpose of this activity is to investigate how the time period of a tethered trolley depends on its mass. The mass of the trolley is changed by putting additional weights on top of it.


In Figure 2.11, the identical springs A and B are both under tension, but in the trolley’s equilibrium position the forces from the two springs balance.





[image: ]




Each spring has a spring constant k. What is the resultant force acting on the trolley when it is displaced a distance x to the right?





•  Spring A exerts an extra force of kx to the left.



•  Spring B exerts a force reduced by kx to the right.





So the resultant force on the trolley is 2kx to the left.





1 Explain why the time period of the tethered trolley is given by





[image: ]





2 In an experiment, a student determines the spring constant of her springs to be 17.8 N m−1. She then recorded the set of data shown in Table 2.1 for the oscillation of her trolley, as she varied its mass.
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Plot a graph of T2 against m.




    a) Discuss whether or not your graph is consistent with the formula quoted in part 1.


    b) Determine the gradient of your graph. Comment on this result.
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ACTIVITY


Other systems that might show SHM


Figure 2.12 shows two systems to investigate. It is suggested that both are simple harmonic oscillators.
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1 A U-tube is partly filled with water, as shown in (a). The total length of the water in the tube is L.







    a) Investigate whether or not the amplitude of the oscillations affects their time period.


    b) Check to see if the time period of the oscillations agrees with the formula:





[image: ]





2 A weighted boiling tube is allowed to oscillate up and down in a large beaker of water (b). In its equilibrium position, a length L of the tube is submerged.







    a) Investigate whether or not the amplitude of the oscillations affects their time period.


    b) Check to see if the time period of the oscillations agrees with the formula:





[image: ]




         (Both formulae for the time periods are derived in the on-line material.)


         Note: Make sure to wash your hands after handling lead shot
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TEST YOURSELF





5  A pendulum has a length of 2 m. Calculate its time period of oscillation in each of these places:







    a)  on Earth


    b)  on the Moon, where g = 1.6 N kg−1



    c)  on a comet, where g = 0.0006 N kg−1.








6  A ‘baby bouncer’ is a harness that can be used to amuse and exercise a baby before the baby can walk. Figure 2.13 shows a baby enjoying this experience. This is a simplified model, in fact, the baby’s feet will touch the floor.







[image: ]






    The suspension ropes for a bouncer are 1.30 m long and stretch to 1.48 m when a baby of mass 9.5 kg is put in it.







    a)  i) Determine the spring constant for the baby bouncer.


        ii)  Determine the time period of the baby’s simple harmonic motion.


        iii) Determine the baby’s maximum speed, when released from 10 cm above the equilibrium position.







    b)  When the baby was bouncing three months later, the baby’s father noticed that the time period of the oscillations had increased to 1.0 s. He is delighted that his baby has put on weight (or mass, as baby’s mother correctly points out). What is baby’s mass now?


    c)  Explain what is meant by the terms







        i)   weight


        ii)  mass.








7  Figure 2.14 shows a graph of displacement against time for a mass of 0.5 kg oscillating on a spring.
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    a)  Use the graph to estimate the speed of the mass between points A and B.


    b)  Use your knowledge of SHM equations to calculate the theoretical maximum speed from the graph, using the information shown on the axes.


    c)  Calculate the spring constant of the spring.
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Energy in simple harmonic motion


Figure 2.15 shows a pendulum swinging backwards and forwards from A to B to C, and then back to B and A. As the pendulum moves, there is a continuing transfer of energy from one form to another.





•  At A, the velocity of the pendulum bob is zero. Here the kinetic energy, Ek, is zero, but the bob has its maximum potential energy, Ep.



•  At B, the velocity of the pendulum is at its maximum value, and the bob is at its lowest height. Therefore, Ek is at its maximum, and Ep is at its minimum value. This can be defined as the system’s zero point of potential energy.



•  At C, the velocity is once more zero. So the bob has zero kinetic energy and its maximum value of potential energy.
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The potential energy can be calculated as follows. The force acting on the pendulum along its line of motion is −kx when it has been displaced by x (where k is the force per unit displacement).


The work done to take the mass to x is


[image: ]


or the potential energy is given by


[image: ]


So the maximum potential energy of any simple harmonic oscillator is [image: ], where A is the amplitude of the displacement.


The kinetic energy of the oscillator at a velocity v is


[image: ]


Figure 2.16 shows how the potential energy Ep and the kinetic energy Ek change with displacement for a simple harmonic oscillator. The total energy of the system remains constant (assuming there are no energy transfers out of the system.)
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Figure 2.17 shows how the potential, kinetic and total energies change with time as the pendulum oscillates. In one oscillation, the potential energy and the kinetic energy both reach a maximum twice. The total energy remains constant.
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We can now write an equation to link these three energies at a displacement x:


[image: ]


So


[image: ]


and


[image: ]


(Remember that when you take the square root of a function, there is a positive and a negative root.) But
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or
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and so
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When equation (xvii) is substituted into equation (xvi), we get the familiar equation for velocity:
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or
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TEST YOURSELF





8  A simple model of a diatomic gas molecule treats the two atoms as small masses, which are connected by an atomic bond that behaves like a tiny spring. The atoms in a particular molecule vibrate with SHM at a frequency of 1013 Hz and amplitude 2 × 10−12 m. The mass of each atom is about 10−25 kg.







    a)  What fraction of a typical atomic separation does this amplitude represent?


    b)  Calculate the approximate force constant of the interatomic bond.


    c)  Calculate the total energy of vibration of the two atoms:







        i)   in joules (J)


        ii)  in electronvolts (eV).








9  Draw a sketch to show how the potential energy, kinetic energy and total energy of a particle, oscillating with SHM, vary with the particle’s displacement.



10 A pendulum with a mass of 0.1 kg oscillates with an amplitude of 0.2 m. When the displacement of the pendulum is at its maximum from the equilibrium point, the pendulum has a potential energy of 0.08 J, and when the displacement is 0.1 m, the potential energy is 0.02 J.







    a)  Calculate the speed of the pendulum at displacements of







        i)   0


        ii)  0.1 m.


    b) i)  Use the maximum speed of the pendulum and the amplitude of the swing to calculate the time period of the pendulum.


        ii)  Now calculate the length of the pendulum.
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Free, clamped and forced oscillations


So far, we have only dealt with free oscillations. These are oscillations that (in theory) carry on indefinitely because there are no forces acting to stop the oscillation. A close approximation to a free oscillator is a very heavy pendulum supported by a very fine wire, which is attached to a rigid support. Under these circumstances, the energy transfers from the pendulum are very low, and the pendulum keeps swinging for a long time. Of course, in the end any pendulum stops swinging because frictional forces transfer the pendulum’s energy to the surroundings as heat. A pendulum clock can run for a week, because energy from a slowly falling weight gives the pendulum a little energy every time it swings.


In practice, all mechanical oscillations are damped oscillations. In such oscillations, the oscillator transfers energy to the surroundings. When the damping is light, energy is transferred slowly. When the damping is heavy, energy is transferred more quickly and the oscillations stop after a few swings. The best way for you to investigate the effects of damping on an oscillator is to use a motion sensor and a data logger. In this way, small changes in amplitude can be recorded, which you could not do by eye.




[image: ]




Figure 2.18 shows experimental set-ups to investigate damping in two oscillating systems. In Figure 2.18(a) the motion sensor records the displacement against time for a mass on a spring. The card on the bottom has two functions: first, to act as a good reflector for the motion sensor; second, to act as a ‘damper’. It causes drag to dampen the oscillations. Increasing the size of the card will increase the damping of the oscillator.


In Figure 2.18(b) a rotary sensor records the motion of a pendulum. The computer records how the angle of rotation varies with time. By attaching cards to the pendulum, the motion of the pendulum can be damped. Figure 2.19 shows how the angular displacement of a pendulum varies with time, for different amounts of damping.
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You may be able to use data logging equipment to investigate damping for yourself.
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ACTIVITY


A damped oscillator


A teacher suggests that the amplitude of a damped oscillator decays exponentially with time. This means that the amplitude can be described by the following equation:


[image: ]


where A is the amplitude at time t and A0 is the amplitude at t = 0 (the start of the swings).





1 Investigate this relationship, using the graphs in Figure 2.19. Work in teams of three, so that each person can analyse one of the graphs. Rather than working in seconds, work in ‘swings’. Then copy and complete Table 2.2. Measure the amplitude after each complete swing.







[image: ]







2 To investigate if the amplitude decays exponentially, we can plot a graph of the natural logarithm of the amplitude against the number of swings. Since it is suggested that the amplitude obeys the law


[image: ]







    then
    ln A = ln A0 − λt








    a) Using your data, plot a graph of In A against the number of swings.


    b) Discuss whether or not your data follows an exponential law.


    c) Determine the ‘half-life’ [image: ] for your pendulum using the expression





[image: ]




         where you determine λ from your graph. (You will find a similar expression derived in Chapter 11.) Here [image: ] is the number of swings it takes your pendulum’s amplitude to reduce by a half.
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Forced oscillations


When you let a pendulum swing freely, it swings at its natural frequency, which is determined by its length. Gradually the pendulum transfers its energy and slows down. It is also possible to force a pendulum to oscillate at a different frequency by pushing it at regular time intervals. This is demonstrated in Figure 2.20. In Figure 2.20(a) a pendulum is driven by hand at a frequency below its natural frequency. The amplitude of the oscillations is low, and the pendulum bob moves in phase with the hand. In Figure 2.20(b) the hand moves backwards and forwards at a high frequency, above the natural frequency of the pendulum. Now the pendulum bob moves out of phase with the hand, and the amplitude of the oscillations is still small. In Figure 2.20(c) the pendulum is given a push at its natural frequency. Just as the pendulum stops moving, the hand gives it a small nudge. Now the oscillations of the pendulum become very large. The pendulum is said to be driven at its resonant frequency. When you push a child on a swing, you push at the resonant frequency. Just as the child reaches the maximum displacement from the centre, the swing momentarily stops. After that point, you give the swing a push and the amplitude of the swing builds up.




[image: ]




The idea of resonance is demonstrated by Barton’s pendulums (see Figure 2.21). Here, a number of light pendulums (A–E) are suspended from a string. Also attached to the string is one heavy pendulum (X), which is the ‘driving’ pendulum. When the driving pendulum is released, it pushes the string as it swings. These pushes then begin to drive the other pendulums. Most of them swing with low amplitude, but the pendulum that has the same length (L) as the driver swings with a large amplitude. This is because its natural frequency is the same as the driving frequency.




[image: ]
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ACTIVITY


Investigating resonance


You can use the apparatus in Figure 2.22 to help you understand how the amplitude of a driven oscillator changes with the driving frequency. The oscillator pulls the string up and down. The string is attached to a mass on a spring, which oscillates up and down at the same frequency as the driving oscillator.




[image: ]




Proceed as follows.





•  Choose a spring (or springs) and masses so that the natural frequency of the system is about 1–2 Hz. Measure this frequency.



•  Vary the frequency of the oscillator in small steps from about a third of the natural frequency to about three times the natural frequency. Record the amplitude of the oscillations in each case. (This can be difficult because the oscillations do not always settle into a steady pattern.)



•  Plot a graph of the amplitude of the oscillations against frequency.



•  Repeat the experiment with a piece of card attached to the masses to increase damping.





[image: ]





Figure 2.23 shows an idealised resonance curve that you might get when you try the activity. The amplitude of the driven oscillations peaks sharply at the natural frequency of the system. The sharpness of the peak depends on the amount of damping. When a system is heavily damped, the peak is not so sharp because energy is being lost from the system and the amplitude does not build up so far.
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Figure 2.24 shows the effect of increasing damping on a resonance curve:





•  the peak of the amplitude is lower



•  the peak is broader



•  the peak of the amplitude occurs at a frequency slightly lower than the natural frequency of the system.
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Examples of resonance


Musical instruments provide a good example of resonance. If the air in a wind instrument oscillates at the natural frequency of the instrument, a loud note is produced. In a stringed instrument, when a string is plucked it vibrates at its natural frequency.


Figure 2.25 shows how you can demonstrate resonance in the laboratory. Here a tuning fork is held above a column of air. The length of the column can be adjusted by moving the reservoir of water, on the right, up or down. When the tuning fork is made to vibrate, the column of air vibrates. However, the amplitude of the oscillations is small when the driving frequency does not match the natural frequency of oscillations in the air column. When the length of the column is adjusted so that its natural frequency is the same as the tuning fork’s frequency, a loud sound is heard as the air resonates.
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A microwave oven takes advantage of the resonance of water molecules. The frequency of the microwaves is matched to the natural frequency of oscillation of water molecules. So when something is cooked in the microwave oven, water molecules absorb energy from the microwaves. The water molecules start to vibrate. This energy is then dissipated as random vibrational energy among all the molecules in the food. Random vibrational energy is heat energy.


Resonance can cause serious problems in any mechanical structure, because all structures have a natural frequency of oscillation. Even a large structure such as a chimney or a bridge can be set oscillating by eddies of wind. And if the wind causes vortices of just the right frequency, large oscillations can build up. Famous examples of bridges being made to oscillate by the wind include the Millennium Bridge in London in 2000, and the Tacoma Narrows Bridge in the USA in 1940. The decks of large boats can also be made to oscillate if the boat hits waves with the same frequency as the natural frequency of part of the deck. The Broughton Suspension Bridge was an iron suspension bridge built in 1826 to span the River Irwell in Manchester. In 1831, the bridge collapsed due to the mechanical resonance caused by a troop of soldiers marching in step. Unfortunately for them, the frequency of their steps caused the bridge to oscillate so much that it collapsed. As a result of the accident, the British Army issued an order that troops should ‘break step’ when crossing any bridge.


Reducing resonance


The best way to avoid resonance in structures is to design them so that their natural frequencies lie well outside the range of frequencies likely to be caused by wind blowing across them. However, if that is not possible then the amplitude of oscillations can be reduced by damping the motion. In the case of the Millennium Bridge, the oscillations were reduced by applying fluid dampers (see Figure 2.26).




[image: ]




Pistons are able to move inside a cylinder containing fluid and this causes the energy to be dissipated rapidly. Car suspension systems use the same idea. A car uses springs and shock absorbers to make the ride more comfortable for passengers. When a car goes into a pothole (for example) a strong spring allows the wheel to drop into the hole. With no shock absorber, the car would then oscillate up and down. But the shock absorber removes the energy. It consists of a piston that moves inside an oil-filled cylinder. The shock absorbers are critically damped. This means that the wheel only oscillates once before returning to its normal position relative to the car (see Figure 2.27).
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TEST YOURSELF





11 Figure 2.28 shows a system of pendulums suspended from a string. A heavy pendulum on the right is set in motion, which then sets the other pendulums in motion too. These light pendulums are made using small paper cones.







[image: ]






    a)  Describe the motions of the eight light pendulums.


    b)  The small cones are replaced by larger paper cones. Describe the changes you see in the motion of the pendulums.





OEBPS/OEBPS/images/17-1.jpg
v=12nfVA

1
—+21x0.55 0,047 -0.02%)* m

—+ms” x0.035m






OEBPS/OEBPS/images/17-2.jpg
A
Figure 2.7





OEBPS/OEBPS/images/18-10.jpg
1 mg

F
Figure 2.10(b)





OEBPS/OEBPS/images/17-3.jpg
xm

time ¢

Figure 2.8





OEBPS/OEBPS/images/title.jpg
Physics

Nick England
Carol Davenport
Jeremy Pollard

Nicky Thomas

‘Approval message from AQA

The corecorent of s Gt fextok s been approved by ADAfocusewith o
Quaificaton.This mears tratwe have checked tat t o coes th speicaton g
hat e are satsied it the ceral qulty. We Paveaso apprve the prted verson o s
DOOK. Ve 00 ot e check o apxoe an ks o any fnctonaly. Full et of o
approval proces canbefound ancur vebsie

We appovepritand it txtboos becauss we know how importan s for teachers
and students o hevethe igh resources 10 upport te teaching and kaing. Howewer, the
pubishr i kinately resonsil for te edoal cunirl and gualtyof s il book.
Pease et when taching e ADAArevel Pysics curse, st lr

QA speoficaton s your e s ofFman, Wi i gl bok s boen it
mch e speciicaton, it oot proyie compite coverageof eery apect o e oourse.
Avide range of e usflresouros ca befoun o e relevant sbjctpages of o
Wbtz w200 k.

HODDER
pvame | €
CEARNING 7 EDUCATION

AN HACHETTE UK COMPANY






OEBPS/OEBPS/images/2-9.jpg
»=

120s
“01mr=02Trad <"





OEBPS/OEBPS/images/13-1.jpg
clamped rule

oscillations

pendulum

mass on
spring

oscillations

oscillations






OEBPS/OEBPS/images/2-8.jpg





OEBPS/OEBPS/images/13-2.jpg





OEBPS/OEBPS/images/2-7.jpg





OEBPS/OEBPS/images/13-3.jpg





OEBPS/OEBPS/images/15-11.jpg
a =-2nf)*x

W)





OEBPS/OEBPS/images/2-6.jpg
®






OEBPS/OEBPS/images/13-4.jpg
-

11

I
5 |7
=

()





OEBPS/OEBPS/images/15-10.jpg
a= 7(2nf)2A cos(2nft) (iv)





OEBPS/OEBPS/images/2-5.jpg





OEBPS/OEBPS/images/6-1.jpg
rubber bung
of mass m

thin string
plastic tube

Mg

Figure 1.9





OEBPS/OEBPS/images/15-13.jpg
(vii)
= 2nfA
Vmax





OEBPS/OEBPS/images/2-4.jpg





OEBPS/OEBPS/images/15-12.jpg
max —

(v1)





OEBPS/OEBPS/images/15-15.jpg
v=+2r f A2 — x?

(ix)





OEBPS/OEBPS/images/2-2.jpg





OEBPS/OEBPS/images/15-14.jpg
a .= 2nf)*A (viii)





OEBPS/OEBPS/images/2-1.jpg
Figure 1.2
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Figure 2.26 Fluid dampers were used to reduce the lateral
oscillations of the Millennium Bridge.
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Figure 2.19 Graphs of the angular displacement of a pendulum against time for different levels of damping:
(a) light damping, (b] medium damping and (c] heavier damping. Data provided by Data Harvest Group Ltd.
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Figure 1.7 Views of a ball suspended
from the back of the train carriage
looking forwards. (a) When the train
moves along a straight track, the ball
hangs straight down. [b] When the train
moves around the curved track, as in
Figure 1.6, the ballis displaced to the
right. [c) There is a resultant unbalanced
force R acting on the ball.
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Figure 2.11 A tethered trolley oscillates with SHM. Each
spring has a spring constant k.
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Figure 1.6 A train carriage
turns a corner, but a ball on
the floor of the carriage keeps
on moving in a straight line.
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Figure 2.21 Barton’'s pendulums.
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Figure 2.2 A mass on a spring is a simple harmonic oscillator.
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Figure 1.4 A particle moving round a
circular path with a constant speed is
always accelerating.
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