

SQA Higher Computing Science: Boost eBook

Boost eBooks are interactive, accessible and flexible. They use the latest research and technology to provide the very best experience for students and teachers.

• Personalise. Easily navigate the eBook with search, zoom and an image gallery. Make it your own with notes, bookmarks and highlights.

• Revise. Select key facts and definitions in the text and save them as flash cards for revision.

• Listen. Use text-to-speech to make the content more accessible to students and to improve comprehension and pronunciation.

• Switch. Seamlessly move between the printed view for front-of-class teaching and the interactive view for independent study.

To subscribe or register for a free trial, visit

www.hoddergibson.co.uk/higher-computing-science

Publisher’s note: Course assessment specifications for national courses may be updated from time to time. We make every effort to update books as soon as possible when this happens, but – especially if you’re using an old copy of this book – it’s always worth checking with your teacher or lecturer whether there have been any alterations since this book was printed. Alternatively, check the SQA website (www.sqa.org.uk) for current course assessment specifications. We also make every effort to ensure accuracy of content, but if you discover any mistakes, please let us know as soon as possible.

The Publishers would like to thank the following for permission to reproduce copyright material.

Photo credits

Images reproduced by permission of: p.43 © Stefan Szeider, used under a CC-BY-SA 4.0 licence; p.265 Newscast/Getty Images; p.295 © Carlos Jones, used under a CC BY 4.0 licence; p.302 t SamJonah/Alamy Stock Photo, tr Iconic Cornwall/ Alamy Stock Photo, b PhotoEdit/Alamy Stock Photo; p.303 bl Jeffrey Blackler/Alamy Stock Photo, br dpa picture alliance/ Alamy Stock Photo; p.305 Dawson Images/Alamy Stock Photo; p.307 Finbarr Webster/Alamy Stock Photo.

Dilbert cartoons on pp. 3, 7, 78, 255, 323 used by permission of ANDREWS MCMEEL SYNDICATION. All rights reserved.

Acknowledgements

To Craig and Laura.

To Helen, Peter John, Mary, Sarah, Siobhan, Cecilia, Orla, Poppy, Michelle and Erin.

Every effort has been made to trace-all copyright holders, but if any have been inadvertently overlooked, the Publishers will be pleased to make the necessary arrangements at the first opportunity.

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Education cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of the home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests and other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Hachette UK Distribution, Hely Hutchinson Centre, Milton Road, Didcot, Oxfordshire, OX11 7HH. Telephone: +44 (0)1235 827827. Email education@hachette.co.uk Lines are open from 9 a.m. to 5 p.m., Monday to Friday. You can also order through our website: www.hoddereducation.co.uk.

ISBN: 978 1 5104 8381 1

eISBN: 978 1 5104 8427 6

© Jane Paterson and John Walsh 2021

First published in 2021 by

Hodder Gibson, an imprint of Hodder Education

An Hachette UK Company

211 St Vincent Street

Glasgow, G2 5QY

www.hoddereducation.co.uk

Impression number  5 4 3 2 1

Year   2025 2024 2023 2022 2021

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo ©phonlamaiphoto - stock.adobe.com

Illustrations by Integra Software Services Pvt. Ltd., Pondicherry, India

Typeset by Integra Software Services Pvt. Ltd., Pondicherry, India

Printed in Italy

A catalogue record for this title is available from the British Library.

Unit 1 Software design and development

Chapter 1 Development methodologies

This chapter looks at and compares two different software development methodologies.

The following topics are covered:

	Describe and compare the development methodologies:

	iterative development process.

	agile methodologies.

Development methodologies

When creating new programs or applications (apps), software developers follow a development methodology to design the software from start to finish.

The first of these is the iterative development process.

The iterative development process

The iterative development process is better known as the Waterfall development methodology, Waterfall life-cycle or Waterfall model and follows a traditional, linear approach which consists of seven stages as shown in Figure 1.1 on the next page. This sequence of steps, beginning with analysis, is known as the software development process. It is iterative in nature, meaning that steps can be revisited at any point in the life-cycle of the development process (multiple times if necessary) if new information becomes available and changes need to be made or errors discovered.

Looking at and understanding a problem is called ‘analysis’. In the Waterfall model, the software developers need to know up front and in detail exactly what the client wants the software to do. The design phase involves working out a detailed series of steps to solve the problem. Once a solution to a problem has been worked out, it needs to be turned into instructions for the computer (a program). This is implementation. The program must then be tested to make sure that it does not contain any mistakes which would prevent it from working properly. A description of what each part of the program does, i.e. documentation, should also be included. Evaluation is the process which measures how well the solution fulfils the original requirements. Maintenance involves changing the program, often quite some time after it has been written.

Figure 1.1 An iterative development process (the Waterfall model)

Documentation is needed at each stage of the iterative development process.

	Analysis: the documentation at this stage consists of the software specification. This is important because it is the basis of all of the remaining stages of the software development process. It is usually a legally binding document (see Chapter 2 for more information).

	Design: the documentation consists of the description of the program design in an appropriate design notation and the design of the user interface. This description is important because it is the ‘bridge’ between the software specification and the code.

	Implementation: the documentation at this stage is the program listing(s), complete with internal commentary. This is important because it explains the purpose of each part of the code, and therefore eases the process of maintenance.

	Testing: the documentation at this stage includes the test plan and the results of testing. This is important because it demonstrates whether or not the program does what it was designed to do.

	Documentation: this stage has the technical guide and the user guide. These are important because they explain how to install and operate the software.

	Evaluation: the acceptance test report, the results of evaluation against suitable criteria. This is important because it means that the program has been written to the satisfaction of the client and therefore the software company can be paid for their work.

	Maintenance: documentation at this stage is a log of changes made to the program code, together with the date and the new version number of the program. This is important because it will be updated constantly throughout the life of the software in order to inform programmers about earlier changes that have been made. Maintenance is beyond the scope of Higher Computing Science but is included here for completeness.

Agile methodologies

Agile methodologies belong to a wider category of rapid application development methodologies. The process of designing a program using Agile development is to produce working software quickly so that the client can test it and then give feedback, at which point it can be altered and refined as required. It works on the principal of delivering the software in small increments instead of all at once.

Figure 1.2 Agile methodology

Each project is broken down into what the client needs, otherwise known as ‘user stories’. Each of these user stories is part of the overall Agile plan and encourages the software developers to talk to their clients about what they would like to see in their software. The plan should include an idea of how long each of these stories will take to develop. These are prioritised in conjunction with the client (so that the important requirements are delivered first) and included in the plan for the development of the software.

Teams will normally work in short ‘sprints’ to produce working prototypes which can be tested by the client. A sprint is a short, fixed time period (typically two weeks) during which planning, analysis, design, implementation and testing are completed. At the end of the sprint, the prototype is ready to be tested by the client (acceptance testing). The client will then be able to give regular feedback and alterations can be made when required. The plan itself can be updated when and where required.

Figure 1.3 User stories

Often by the time the project comes to an end, all the client’s requirements may not have been built, and there will be one of two outcomes. Either the client may opt for software which has fewer features or the software development team may ask for more money to complete the software as originally required.

The development of software using Agile methodology is a constant process of analysis, design, implementation and testing. This means it is iterative as each of the stages will be visited multiple times as the software is refined. When what can be delivered differs from was originally requested, Agile allows plans to be changed. This is known as ‘adaptive planning’.

Agile methodology vs. Waterfall model

The Waterfall model is an older approach to developing software and is based on the idea that each of the phases of the development life-cycle are discrete parts which should be completed in turn. It gives both client and developer a clear path as to how each project should progress.

The main emphasis of Agile development is speed. Project goals are determined quickly and all phases are iterated continuously rather than individually, so that the software is developed and adapted quickly as shown in Figure 1.4.

Figure 1.4 Agile methodology vs. Waterfall model

Advantages of the Waterfall model

The Waterfall model is best suited to larger projects and large teams of developers with a long lead time. As the client is usually less involved during development, they need to know exactly what they want at the start of the process because it forms part of the legally binding agreement. Due to its tendency to focus on quality of software over speed of development, the software is tested more fully and the software produced tends to have less bugs. Projects that follow the Waterfall model are generally finished on time and within the set budget. Milestones set at the start of the project give both developer and client an easy way to track its progress.

Disadvantages of the Waterfall model

The linear setup of the Waterfall model is its main failing as there can be no deviation from the plan once it has commenced. Because requirements are only sought at the start of the project, clients are not continuously involved. So, if a client does not have a clear idea about what the software should do and their needs change over the course of the project, there is a strong possibility that the software delivered will not then meet their requirements.

Once the software has reached the testing phase, changes can be difficult to make. If changes then do need to be made, this can take more time and will cost more money.

To try to mitigate this, client feedback can be built in to the phases of the life-cycle so that changes can be made.

Advantages of Agile methodology

Agile methodology is best suited to smaller projects, like creating (or frequently updating) apps, with smaller teams of developers. The client is involved at all stages of the development of the software and feedback is sought constantly. This means that the software developed is more likely to be exactly what the client wants even if they were not completely certain of the requirements at the start of the project. It also allows the client an element of flexibility in that, if they change their minds or would like other features included, adding them does not present too much of a challenge to the developers. Because of the constant iterative nature of Agile methodology, improvements to the software can be incorporated after each cycle.

The main focus of Agile development is to deliver software at speed, which makes it perfect for projects which are required quickly.

Disadvantages of Agile methodology

At the start of the Agile process, there tends not to be a legally binding agreement due to the changing nature of client’s requirements. It is also not suited to large projects and large teams. The client needs to be prepared to spend a large amount of time being involved with the project as their involvement is required throughout.

Strict sprint deadlines can be a huge disadvantage and can result in a project not being completed. Either the customer pays more for the project to be completed, or they simply have to accept what has been developed, however much reduced in scope. The frequent updates can be difficult to track and need strict control over the version numbers given to each iteration or update.

CHECK YOUR LEARNING

Now answer questions 1–10 below

QUESTIONS

	State what is meant by the term ‘iteration’.

	State why a development stage might need to be revisited.

	Describe each stage in the software development life-cycle.

	Analysis

	Design

	Implementation

	Testing

	Documentation

	Evaluation

	State the category of methodologies to which Agile belongs.

	Describe what is meant by the term ‘user story’.

	How does the developer prioritise the order in which to develop the user stories?

	Describe how working prototypes are produced by the developers.

	

	Describe a situation where a client’s requirements may not have been met.

	What two options may the client have if the requirements have not been met?

	State what is meant by ‘adaptive planning’.

	Complete the table of iterative (Waterfall method) vs. Agile methodology. The first line has been completed for you.

	Iterative
	Agile

	Suited to large software projects
	Suited to small software projects

	
	

	
	

	
	

	
	

KEY POINTS

	Two types of development methodologies are iterative (Waterfall) and Agile.

	The Waterfall model follows a traditional, linear approach.

	The iterative methodology means that steps can be revisited at any point in the life-cycle.

	Analysis is looking at and understanding a problem.

	Design is working out a series of steps to solve a problem.

	Implementation is turning a design into a computer program.

	Testing makes sure that a computer program does not contain any mistakes.

	Documentation is a description of what each part of the program does.

	Evaluation ensures that the software fulfils the original software specification.

	Agile methodologies belong to a wider category of rapid application development methodologies.

	Agile works on the principal of delivering the software in small increments instead of all at once.

	Each project is broken down into user stories.

	User stories are prioritised by the client and developer, so that the important requirements are delivered first.

	Teams work in short sprints to produce working prototypes which are tested by the client.

	A sprint is a short, fixed time period typically lasting two weeks.

	The development of software using Agile methodology is a constant process of analysis, design, implementation and testing.

	Adaptive planning allows the requirements to be changed on request.

	Iterative is best suited to large projects which require a large team of developers.

	Analysis in the iterative process produces a legally binding contract.

	Software produced using an iterative method is usually high quality and bug free.

	Iterative projects tend to finish on time and within budget.

	The client has limited involvement during the entire iterative process.

	Changes can become more difficult and expensive as the project progresses in iterative projects.

	Agile is best suited to small software projects and requires a small team of developers.

	There is no legally binding contract in the Agile process.

	The client is involved throughout the Agile process.

	Changes can be easily made as the Agile process progresses.

	Agile projects can run over time, are not always completed and can cost more money to finish.

	Version control is important to keep track of updates.

Chapter 2 Analysis

This chapter considers how to analyse a problem to help create the software specification.

The following topics are covered:

	Identify the:

	purpose

	scope

	boundaries and functional requirements of a problem that relates to the design and implementation at this level, in terms of:

	inputs

	processes

	outputs.

Analysis

Analysis first of all involves reading and understanding a problem. If you are set a problem in class, you should read the problem several times and think about it carefully. It often helps to write out the problem in your own words. Sometimes the problem contains parts which are not very clear, and you will have to make some assumptions about what you think is meant by these parts of the problem.

Eventually you will get to the stage where you will be able to create a precise software specification. The software specification should contain what the software is supposed to do but does not indicate how this is to be achieved.

It is very important that the software specification is correct, since mistakes at this stage can be very costly to put right later on in the software development process. The software specification is a clear unambiguous statement of the problem and forms the basis of a legal contract.

Here is an example of what could happen if a software specification is not correct:

A farmer, as can be seen in commissioned a software company to write a database program to store details of his herd of cattle. The maximum size was to be 1000 records. Cow number 1000 had a calf. The farmer entered the new calf’s details into the program and the program crashed. Who was to blame? Was it the software company for not anticipating that the herd of cattle would increase in size or was it the farmer’s fault for agreeing to the maximum size of 1000 records? In any case, if the program matched the software specification correctly, then the software company would still be entitled to be paid for their work.

Figure 2.1 The software specification forms the basis of a legal contract between the client and the software company

The analysis phase can be broken down into a series of discrete sections.

Purpose

The purpose of the problem is stating what the software should do once completed. The detail for this is written in the scope, boundaries and functional requirements.

Figure 2.2 Numbers

Scope

The scope should state clearly and concisely what the software must do, i.e. specific project goals. It should also state the start and end dates, cost, deliverables (including but not limited to, the design of the software, the software itself, results of testing and the test plan), milestones and deadlines. A milestone is a completed step in a software development project. It means that developers know what work is due and by which date.

If the project is poorly managed and changes are constantly made, then scope creep can occur. This usually happens if the scope is not properly defined or documented. It is also known as ‘requirement creep’, ‘function creep’ or ‘kitchen sink syndrome’.

The scope should also define the boundaries of the software.

Figure 2.3 Scope creep

Boundaries

Boundaries help to clarify what the software should and should not do. They should also state any assumptions that are being made about what the client requires.

WORKED EXAMPLE

Consider the following simple problem outline:

Average problem: Write a program which calculates and displays the average of a set of numbers.

This could hardly be described as a precise software specification. If you, as a programmer, were given this task you would need to ask some questions before you could begin to design a solution.

Questions you may ask about the Average problem:

	How many numbers are in the set?

	What is the maximum value of a number?

	Are numbers to be whole numbers (integers) or numbers with a fractional part (real numbers)?

	To how many significant figures should the average value be displayed?

	How are numbers to be obtained as input to the program (i.e should the program ask the user to enter each number every time the program is run)?

	Are any of the numbers entered to be stored after the program is complete?

	What output device(s) are to be used (i.e. display on screen or hard copy to printer)?

If there is no one available to ask for clarification of a problem, then you should examine the problem carefully and write down some assumptions.

For the Average problem, these assumptions might be:

	The maximum amount of numbers is 10.

	The minimum value of a number is 1.

	The maximum value of a number is 100.

	All the numbers are whole numbers, apart from the average, which has to be displayed correct to two decimal places.

Putting these assumptions together with the original Average problem, would give a more precise description of the scope and boundaries.

Functional requirements

The functional requirements describe how the software should function or perform. They involve identifying the problem inputs, the process(es) and the problem outputs. The best way to do this is to create a table with the three headings: Input, Process and Output and use the information given in the problem as shown in Table 2.1.

Table 2.1 Example table for the Average problem

CHECK YOUR LEARNING

Now answer questions 1–3 below

QUESTIONS

	Why does the software specification have the status of a legal contract?

	Give an example of what could happen if the software specification was not correct.

	Analyse the following problem outlines and produce a precise software specification by reporting on:

	the purpose of the software.

	scope and boundaries of the software.

	functional requirements of the software.

You should ensure that you include any assumptions that need to be made and identify the problem inputs, process(es) and outputs as part of the functional requirements.

	Write a program which will ask the user for two numbers and give their sum (+), product (*) and quotient (/).

	Write a program which will take in a word of up to 15 letters and display it on the screen backwards.

	Write a program which will only allow the user to enter words consisting of five letters and display them on the screen.

	Write a program which will calculate how fast a cyclist is travelling if you input their time taken to travel 100 metres.

	Write a program which will accept a temperature in degrees Celsius and output the temperature in either degrees Fahrenheit or degrees Kelvin as required by the user. (Kelvin = Celsius + 273.15; deg F = 9/5 Celsius + 32)

	Write a program which will capitalise the first character of a word entered by the user (i.e. john to John).

	Write a program which will calculate the length of one side of a right-angled triangle if the lengths of the other two sides is input (Pythagoras).

	Write a program which will change a student’s percentage test mark into a letter grade (A–E).

	Write a program which will calculate the area of a triangle if you enter its base and height. (area = 1/2 base × height)

	Write a program which will take in a message and display it on the centre of the screen.

KEY POINTS

	Analysis involves reading and understanding a problem.

	The purpose of the problem is what the software should do once completed.

	The software specification should contain what the software is supposed to do but does not indicate how this is to be achieved.

	The scope should state clearly and concisely what the software must do.

	Boundaries help to clarify what the software should and should not do.

	Boundaries should also state any assumptions that are being made about what the client requires.

	The functional requirements describe how the software should function or perform.

	The functional requirements should define inputs, processes and outputs to the program.

	Inputs should clearly state what data must be provided for the program to function.

	Processes should determine what has to be done with the data entered.

	Outputs should show the results of the program when it is run.

Chapter 3 Design

This chapter considers how to turn the software specification created at the analysis stage into a design for a program.

The following topics are covered:

	Identify the data types and structures required for a problem that relates to the implementation at this level.

	Read and understand designs of solutions to problems at this level, using the following design techniques:

	pseudocode

	structure diagrams.

	Exemplify and implement efficient design solutions to a problem, using a recognised design technique, showing:

	top-level design

	the data flow

	refinements.

	Describe, exemplify and implement user-interface design, in terms of input and output, using a wireframe.

Simple data types and structures

When designing the solution to a problem, the data types and structures to be used in the solution should be identified so that the software developer knows the type of data each variable will store.

The data types stored by a program may be a number, a character, a string, a date, an array, a sound sample, a video clip or indeed, any kind of data. Some high-level languages, such as C++, allow programmers to specify their own data types; these are called user-defined data types.

Some of the more important data types are listed below:

	
Alphanumeric data: may include letters, digits and punctuation. It includes both the character and string data types. Character data is a single character represented by the character set code, e.g. ASCII (American Standard Code for Information Interchange). String data is a list of characters, e.g. a word in a sentence.

	
Numeric data: may consist of real data or integer data. Real or float data includes all numbers, both whole and fractional. Integer data is a subset of real data which includes only whole numbers, either positive or negative.

	
Date data: is data in a form representing a valid date, e.g. 29/2/2020 is valid date data, 30/2/2020 is not.

	
Boolean or logical data: may only have two values, true or false. Boolean data is used in a program’s control structures.

	
Sample data: consists of digitally recorded sound data (e.g. MP3) and video data (e.g. a video clip MPEG). These are complex data types which contain enough data to allow a subprogram or application to reproduce the original data.

One factor which may influence a programmer’s choice of software development environment is the range of data types available. For example, C++ has at least six different numeric data types, whereas some versions of the BASIC language may only have the two numeric data types described above.

Data structures include arrays, records and arrays of records. More detailed information on data structures can be found in Chapter 4.

WORKED EXAMPLE 1

Take the Average problem we discussed in Chapter 2 and Table 2.1 from the Functional Requirements. We would need to consider which data types and structures would be suitable for storing the data in this problem.

We know from the input part of the functional requirements that 10 numbers are required. If we assume that those 10 numbers are whole numbers, then we could say that the data type for input is integer.

A running total would be required total the numbers and since the input is an integer so too must be the total.

Output for the program is a little easier as it would always be a real (float) number unless the output is a multiple of 10.

Data types and structures

number, total: integer

average: real (float)

Designing the solution to a problem

Once you have a precise software specification, then you can begin to design your solution to the problem.

In a normal problem-solving situation, you should always ask these questions:

	Is writing a program the best way to solve this problem?

	Can it be solved more easily another way?

Returning to the Average problem again, if the average is to be found for only one set of numbers, i.e. as a one-off, then it would probably be much more efficient to use a calculator and work out the average that way, rather than entering the numbers into a computer. However, if you have to work out many different averages for lots of sets of numbers, then it would be worthwhile using a computer software solution.

If you decide to use a computer to solve the problem, then you should begin by looking at the highest level of software you have available.

For instance, would it be possible to solve this problem using a general-purpose application package such as a spreadsheet or a database rather than by writing a program in a high-level language?

How could you use a spreadsheet to solve the Average Problem?

Answer: create a new spreadsheet document; enter the set of numbers into a column or a row and enter the formula =AVERAGE(cell range) into an unused cell.

However, in this unit on software design and development, you are concerned with producing a computer solution to a problem using some kind of programming language. Your approach to problem solving should therefore take account of this.

Program design is the process of planning the solution. The design of the program is very important for its success. Time spent at this stage is very worthwhile and can reduce the chance of errors appearing later on in the solution.

Consider the many home improvement, DIY and gardening make-over programs which appear on television. Their success appears magical as a team of ‘experts’ descends on a person’s home and completes the conversion in two or three days. Despite how casual it may appear, all these transformations are planned out to the last detail. The ‘experts’ have all visited the homes weeks, if not months, in advance, and have gone away and drawn up detailed plans for the conversion.

Figure 3.1 Garden plans and room plans

It is just the same with programming: the more time you spend thinking about and planning the design of the program, the less time you will spend wondering why your program does not work as it should.

Modular design

NOTE

It is not within the scope of this textbook (nor Higher Level Unit) to cover all the possible methods of program analysis and design which may be used as part of the software development process.

Modular design is a method of organising a large computer program into self-contained parts called modules, which can be developed simultaneously by different programmers or programming teams. Modules are specially constructed so that they can be designed, coded and maintained independently of one another. Some modules may be linked to other modules and some may be separate programs. Top-down design and bottom-up design are both forms of modular design.

Top-down design

Top-down design involves looking at the whole problem (top) and breaking it down into smaller, easier to solve, sub-problems. Each sub-problem may be further sub-divided into smaller and simpler sub-problems (modules). This process of breaking down sub-problems into yet smaller steps is called stepwise refinement. Eventually the stage is reached where each sub-problem can no longer be broken down and the refinement process comes to a halt. At this point each small step can be translated into a single line of program code.

When stepwise refinement is complete, then you have created an algorithm, which is a sequence of instructions that can be used to solve a problem.

Figure 3.2 Breaking down a problem …

Bottom-up design

The bottom-up method of designing a solution to a problem begins with the lowest levels of detail and works upwards to the highest level of the idea. It seems strange to think that it is sensible to work towards something without really knowing what that something is before you begin. However, using a bottom-up design approach means writing modules or procedures first. This approach is sometimes called ‘prototyping’, where you construct a procedure separately before joining it together with the rest of a program.

Design techniques

The way of representing the program design or algorithm is called the design technique (or design notation). The programmer has a choice of design techniques. Common design techniques include drawing a flow chart, a structure diagram or writing pseudocode. Some design techniques use graphical objects such as icons to represent the design of a program. However, in Higher Computing Science, we look only at pseudocode and structure diagrams.

Pseudocode

Pseudocode is the name given to the language used to define problems and sub-problems before they are changed into code in a high-level computer language. Pseudocode uses ordinary English terms rather than the special keywords used in high-level languages. Pseudocode is therefore language independent.

Here is some pseudocode showing part of the design of one possible solution to the Average problem. This pseudocode shows the top-level design with stepwise refinements.

Algorithm

1 initialise
2 take in numbers
3 calculate average value
4 display average value
Refine sub-problem 2:
2.1 loop REPEAT
2.2 add one to counter
2.3 ask user for a number
2.4 take in a number
2.5 UNTIL counter equals amount required
Refine sub-problem 2.4:
2.4.1 loop REPEAT
2.4.2 get number from user
2.4.3 IF number is outwith range THEN display error message
2.4.4 UNTIL number is within range

Pseudocode is very useful when you are programming in languages like LiveCode or Python, because it fits in neatly with the structure of the code. The main steps in the algorithm relate directly to (in fact, become) the main program, the refinements of each sub-problem become the code in the procedures. (See Chapter 6 for more examples of pseudocode.)

WORKED EXAMPLE 2

Implementation

Suppose that your chosen software development environment is a high-level programming language such as Python. Let’s look at how you might choose to implement part of the solution to the Average problem in Python.

Design (Pseudocode)

2.1 loop WHILE not equal to amount required
2.2 add one to counter
2.3 ask user for a number between 1 and 100
2.4 take in a number between 1 and 100

Python (actual program code)

def takeInNumbers():
while counter != amount_required:
counter= counter+1
print(‘Please enter a number between 1 and 100’)
number=checkInput(number)

Pseudocode is useful for representing the design of the types of problem that you are likely to face in this unit.

In a more complex professional programming situation, or in a much larger project, structure diagrams may be more appropriate.

Structure diagrams

Structure diagrams use linked boxes to represent the different sub-problems within a program. The boxes in a structure diagram are organised to show the level or hierarchy of each sub-problem within the solution. In general, structure diagrams follow a left to right sequence.

Table 3.1 shows the function of each symbol in a structure diagram.

Table 3.1 Structure diagram symbols

Figure 3.3 shows one possible design for the Average problem from Chapter 2.

Figure 3.3 Structure diagram

Data flow

Giving some indication of the flow of data between modules of your program is important. Some design techniques allow data flow to be shown clearly. Pseudocode uses the terms in:, out: and in-out: to represent the flow of data used in subprograms. For Higher, we will only use in: and out:. Structure diagrams use up and down arrows to indicate data flow into and out of subprograms.

Describing the data flow

Pseudocode

It is necessary to describe the data flow in the design in order to work out how the data should be passed between the main program and any subprograms and between the subprograms themselves.

Consider the following algorithm and refinement, which describe a solution to the problem:

Count the number of five letter words in a list.

Top level

Algorithm

1 initialise
2 take in list of words and count number of five letter words
3 display result

Data flow

(out: noFiveLetterWords)
(in: noFiveLetterWords; out: noFiveLetterWords)
(in: noFiveLetterWords)

Refinement

1.1 set number of five letter words to zero
2.1 loop REPEAT
2.2 take in a word
2.3 IF the word has five letters THEN add one to the number of five letter words
2.4 UNTIL the word “stop” is entered
3.1 display number of words with five letters

The data being passed in the above example is the variable noFiveLetterWords, which, at the end of the program, will contain the value representing the number of words found to have five letters.

Remember: ‘in’ and ‘out’ when referring to data flow within a program are between procedures; they do not correspond to program inputs and outputs.

Structure diagrams

The structure diagram in Figure 3.3 below shows a solution to the same problem. Notice how the in and out data flow is indicated. Data flowing into a procedure or function is indicated with an upward facing arrow. Data flowing out of a procedure or function is indicated with a downward facing arrow.

Top level

Refinements

Figure 3.4 Top-level design with refinements and data flow

When indicating data flow for arrays, empty brackets should be included after the name of the array in both pseudocode and structure diagrams.

WORKED EXAMPLE 3

Consider the following problem for both design techniques.

Find all the qualifying bakers in a baking contest. Each baker can score a maximum of 70 marks. Bakers must score over 70% to qualify.

Data types and structures required

	bakerName – array of type string

	score – array of type integer

	percent – array of type real (float)

Example of arrays in pseudocode

	Get baker’s name and score (out: bakerName(), score())

	Calculate and store percentage (in:score(); out:percent())

	Search for and display qualifiers (in:bakerName(), percent())

Data flow in tables

In tabular format, the data flow for the baking competition would look like that shown in Table 3.2.

Table 3.2 Data flow

Arrays in structure diagram

Figure 3.5 Data flow – arrays

NOTE

An array has a square bracket when data flow is written in this way.

User-interface design

When designing the program, it is also important to design how the user will interact with the program. To do this, either a hand- or computer-drawn wireframe should be created to show how this will happen. In programming, a wireframe is a diagram or sketch of the input and output screens. The wireframe design for programs is designed in a similar fashion to that of a wireframe for a website and should contain placeholders where data is to be input and output. The wireframe should also include prompts and labels next to where data is to be displayed and any buttons that may be required.

This is especially useful for Agile methodologies and is important as it allows the client to see how they will interact with the program. It means that any changes can be made at this early stage before the software is prototyped.

Figure 3.6 shows a simple example of a wireframe for the Average program.

Figure 3.6 Wireframe example

CHECK YOUR LEARNING

Answer questions 1–9 below

QUESTIONS

	State two forms of modular design.

	Which modular design begins with writing modules or procedures?

	Name and describe one design technique with which you are familiar.

	Why is pseudocode said to be language independent?

	Name one graphical design technique and draw a diagram of it.

	What terms does pseudocode use to indicate the flow of data between program modules?

	Why is it helpful to describe the data flow in a program alongside your chosen design technique?

	Design solutions to the following problems using the technique indicated next to the problem. Your solution should include data types and structures, data flow at the top level and refinements as appropriate.

	Structure diagram: Design a program which will ask the user for two whole numbers between 1 and 10 inclusive and give their sum (+), product (*) and quotient (/).

	Pseudocode: Design a program which will accept a temperature in degrees Celsius and output the temperature in either degrees Fahrenheit or degrees Kelvin as required by the user. (Kelvin = Celsius + 273.15; deg F = 9/5 Celsius + 32).

	Structure diagram: Design a program which will ask for and store 10 song names and their chart positions and will then display only the top five song names and positions. Chart positions should be validated to be between 1 and 10.

	Pseudocode: Design a program which will read 100 holiday destinations from a file and the number of visitors per year. The output should display the number of destinations whose visitor numbers are in excess of 10,000 per year (counting occurrences algorithm, see Chapter 6).

	Design algorithms for the following problem outlines using either pseudocode or structure diagrams, showing data types and structures, data flow and refinements as appropriate.

	Take in a first name and a second name and display them.

	Calculate the area of a circle given the radius as input (πr2).

	Take in ten test marks and calculate the average mark.

	Take in a sentence and display it 50 times.

	Take in a name and ask the user how many times the name is to be displayed and then display the name.

	Take in five names using a loop with a terminating value.

	A pass or fail algorithm for up to 20 pupils’ marks.

	Input validation for months 1–12 with a suitable message.

	A quiz with 10 questions and a score at the end.

	Calculate the result of doubling a number 10 times. The number should start at 1.

	The number of weeds on a football pitch doubles every month. If there are 200 weeds today, how many weeds will there be in a year?

	You have a bank account with £100 in it. How much money will you have in ten years if the annual interest is 5%?

	Design a suitable user interface for one of the problems in question 9.

KEY POINTS

	Program design is the process of planning the solution.

	The data types stored by a program may be a number, a character, a string, a date, a file, an array, a sound sample, a video clip or indeed, any kind of data.

	Numeric data may consist of real type data or integer type data.

	Real type data includes ALL numbers, both whole and fractional.

	Integer type data is a subset of real type data which includes only whole numbers, either positive or negative.

	Boolean or Logical data may only have two values, true or false. Boolean data is used in a program’s control structures.

	Data structures include arrays, records and arrays of records.

	The way of representing the program design or algorithm is called the design notation.

	Pseudocode is the name given to the language used to define problems and sub-problems before they are changed into code in a high-level computer language.

	Pseudocode fits neatly with the structure of the code.

	Structure diagrams, like flow charts, use linked boxes to represent the different sub-problems within a program.

	The boxes in a structure diagram are organised to show the level of each sub-problem within the solution.

	The main steps in the algorithm become the main program and the refinements of each sub-problem become the code in the procedures.

	Data flow indicates how data will be passed between sub-problems in a program.

	Data flow in pseudocode is shown by using the words in: and out: with the associated variable.

	Data flow in a structure diagram is indicated using arrows.

	A wireframe is a diagram or sketch used to represent the appearance and function of the input and output screens within a program.

Chapter 4 Implementation (data types and structures)

This chapter describes the basic data types and structures used for programming in any language.

The following topics are covered:

	Describe, exemplify and implement appropriately the following structures:

	parallel 1D arrays

	records

	arrays of records.

Data types and structures

Variables

Data is stored in a computer’s memory in storage locations. Each storage location in the computer’s memory has a unique address. A variable is the name that a programmer uses to identify a storage location. (This is much more convenient than using a memory address; compare ‘number’ with 90987325.) By using a variable name, a programmer can store, retrieve and handle data without knowing what the data will be. Variable names, procedure and function names are sometimes also called identifiers, because they are used to identify that particular item. (See Chapter 5 for more information on procedures and functions.)

Simple data types

Simple data types stored by a program may be a number (real [or float] and integer), a character, a string, a date, a Boolean value, a sound sample, a video clip or indeed, any kind of data. (See Chapter 3 for more information on simple data types.)

Structured data types

Structured data types include (1D) arrays, parallel 1D arrays, records and arrays of records.

1D arrays

A set of data items of the same type grouped together using a single variable name is called an array. Each part of an array is called an element. Each element in an array is identified by the variable name and a subscript (element number or index).

An array of names might look like this:

name (1) – John

name (2) – Helen

name (3) – Peter

name (4) – Mary

This array has four parts. Element number 3 of this array is the name ‘Peter’. Arrays which have one number as their subscript are called one-dimensional (1D) arrays. Arrays may have more than one dimension, and, in that case, would have a separate subscript number for each dimension, e.g. point (x,y) would refer to a two-dimensional array of points. When programming using arrays, it is necessary to declare the name of the array and its size at the start of the program, so that the computer may set aside the correct amount of memory space for the array. For example, this declaration sets aside space for an array called ‘apples’ with a size of 15 in Python, LiveCode and C:

apples=[0]*15
local arrayApples
int apples [15];

Arrays are a particularly useful way of storing data as each individual element can be easily referred to using the subscript. As we will see in Chapter 5, they are easier to parameter pass than multiple, individual variables.

When a number of separate 1D arrays are used to store a set of related data using the same element number or index, these are known as parallel one-dimensional arrays.

If we need to store individual pieces of data on one person such as forename, surname, age and height there are two possible ways to do this. Either as individual parallel 1D arrays or as an array of records.

An example of such data could be:

	Forename
	Alison {string}

	Surname
	Burns {string}

	Age
	55 {integer}

	Height
	1.62 {float/real}

	Student
	false {Boolean}

Parallel 1D arrays

Each individual array will store one type of data and should be declared individually so that there are four parallel arrays.

Setting up four parallel arrays to store four elements of data in SQA Reference Language would look like the this:

DECLARE forename AS ARRAY OF STRING INITIALLY [] *4
DECLARE surname AS ARRAY OF STRING INITIALLY [] *4
DECLARE age AS ARRAY OF INTEGER INITIALLY [] *4
DECLARE height AS ARRAY OF REAL INITIALLY [] *4
DECLARE student AS ARRAY OF BOOLEAN INITIALLY [] *4

And then, storing the information above would look like this:

SET forename[0] TO “Alison”
SET surname[0] TO “Burns”
SET age[0] TO 55
SET height[0] TO 1.62
SET student[0] TO false

More realistically, we would need to store more data than this to make the arrays viable, because one person’s data could simply be stored in four variables.

Table 4.1 shows four sets of data to be stored in the four parallel arrays. As you can see, the same index can be used to view the information stored at the same point in each array.

Table 4.1 Personal information

This would be stored as follows:

SET forename TO [“Alison”,“Michael”,“Campbell”,“Andrew”]
SET surname TO [“Campbell”, “Burns”,“Macdonald “,“ Francis ”]
SET age TO [55,52,20,18]
SET height TO [1.62,2.00,1.97,1.98]
SET student TO [False, False, True, False]

Using arrays in Python and LiveCode

Python

Python does not have an array type but instead makes use of lists. However, for ease of reference, in this book, we will refer to these as arrays rather than lists.

Structured data can be stored in different ways in Python. Your teacher will show you the method they would prefer you to use.

forename=[“”]*4
surname=[“”]*4
age=[0]*4
height=[0.0]*4
student=[False]*4

NOTE

You can find out more about using lists in Python here: www.digitalocean.com/community/tutorials/understanding-lists-in-python-3

LiveCode

LiveCode has an array type but it is declared in the same way as any normal variable.

local arrayForename, arraySurname
local arrayAge
local arrayHeight
local arrayStudent

Some languages like LiveCode require that the array be initialised before it is used, that is, the contents set to zero or empty.

repeat with counter=0 to 3
put “” into arrayForename[counter]
put “” into arraySurname[counter]
put 0 into arrayAge[counter]
put 0.0 into arrayHeight[counter]
put false into arrayStudent[counter]
end repeat

Writing to and reading from the arrays involves using a counter as the array index, which will allow the array to be traversed. Traversing the array is where we access each element in the array using the subscript, in this case the loop counter, so that the contents can be checked or used as part of a comparison or calculation.

Python

for counter in range(0,4):
print(“Enter your forename”)
forename[counter]=input()
print(“Enter your surname”)
surname[counter]=input()
print(forename[counter],”enter your age”)
age[counter]=int(input())
print(forename[counter],”enter your height”)
height[counter]=float(input())
print(“Are you a student”,forename[counter],”?”)
answer=input()
if answer==”y” or answer==”Y”:
student[counter]=True
…
for counter in range(0,4):
if student[counter]:
print(forename[counter],surname[counter],”is”, age[counter],“years of age and is”,height[counter],“metres in height and is a student”)

LiveCode

repeat with counter = 0 to 3
ask “Enter your forename”
if the result=cancel then exit to top
put it into arrayForename[counter]
ask “Enter your surname”
if the result=cancel then exit to top
put it into arraySurname[counter]
ask arrayForename[counter] && “enter your age”
if the result=cancel then exit to top
put it into arrayAge[counter]
ask arrayForename[counter] && “enter your height”
if the result=cancel then exit to top
put it into arrayHeight[counter]
ask “Are you a student” && arrayForename[counter] && ”?”
if the result=cancel then exit to top
put it into ans
if ans=”y” or ans=”y” then
put true into arrayStudent[counter]
end if
end repeat
…
repeat with counter = 0 to 3
if arrayStudent[counter] then
put arrayForename[counter] && arraySurname [counter] && ”is” && arrayAge[counter] && “years of age and is” && arrayHeight[counter] && “metres in height and is a student” & return after field “output”
end if
end repeat

Here is an example of an algorithm which makes use of parallel arrays for data storage:

algorithm to read names and marks into two arrays
1 set array counter to zero
2 set aside space for ten pupils’ names in the array name []
3 set aside space for ten pupils’ marks in the array mark []
4 loop REPEAT
5add one to array counter
6READ value into name array [counter]
7READ value into mark array [counter]
8 UNTIL end of data is reached

NOTE

On the above algorithm

‘End of data’ is a useful feature, present in some high-level languages. When there is no more data to be read, ‘end of data’ is set to true, causing the loop to stop. ‘End of file’ is a similar feature. If you know in advance the number of data items to be read, a terminating condition such as ‘counter equals ten’ may be used. If the data contains a terminating value, such as –1, then ‘mark equals –1’ may be used as the terminating condition for the loop.

Records

An alternative to storing related data in parallel arrays is a record structure. This means that all the related data can be stored together regardless of data type. This is the same principal as storing records in a database.

Using SQA Reference Language, it is relatively straightforward to set up a record structure with the same attributes as that stored in the parallel arrays. For example:

RECORD personalDetails IS {STRING forename, STRING surname, INTEGER age, REAL height}

To store one piece of data on one person, a suitable variable would have to be declared. For example:

DECLARE person INITIALLY personalDetails

This will declare one empty record in which we can store one individual piece of data. We can now give a value to this record.

SET person TO {forename= “Alison”, surname= “Campbell”, age=55, height=1.62}

Python

Python does not contain the data structure for a record but one way this can be set up is using class. For example:

class personalDetails:
forename:str =””
surname:str =””
age:int=0
height:float=0.0
student:bool=False

NOTE

Python has several different approaches to records, including dictionaries, and it may also depend on the version being used. Your teacher will show you the way they would like you to program a record.

LiveCode

LiveCode does not contain the data structure for a record but one way this can be set up is by creating an array with a keyed (by word) index. For example:

local personalRecordDetails
…
put “” into personalRecordDetails[0][“forename”]
put “” into personalRecordDetails[0][“surname”]
put 0 into personalRecordDetails[0][“age”]
put 0.0 into personalRecordDetails[0][“height”]
put false into personalRecordDetails[0][“student”]

Arrays of records

Obviously, it would make no sense to only declare one record and only store one piece of data. To allow us to store more than one piece of data, we make use of arrays. However, this time we declare an array of records. Using an array of records makes it possible to access a complete record’s worth of data with a single reference.

Table 4.2 below shows the data that our array of records will store.

Table 4.2 Personal data

You should notice that an array of records looks like a database and is the programming equivalent of one.

Using SQA Reference Language, an array of records can store four elements, which can be represented as follows:

DECLARE arrayPerson AS ARRAY OF personalDetails INITIALLY []*4
DECLARE arrayPerson [10] AS ARRAY OF personalDetails
DECLARE arrayPerson [0..9] AS ARRAY OF personalDetails

To assign the data in Table 4.1 to each record in the array, we could use the following:

SET arrayPerson[0] TO {forename=”Alison”, surname= “Campbell”, age=55, height=1.62}
SET arrayPerson[1] TO {forename=”Michael”, surname= “Burns”, age=52, height=2.00}
SET arrayPerson[2] TO {forename=”Campbell”, surname= “Macdonald”, age=20, height=1.97}
SET arrayPerson[3] TO {forename=”Andrew”, surname= “Francis”, age=18, height=1.98}

Python

In Python, we make use of the class already declared earlier in the program (personalDetails) and set up an array of that class (arrayPerson). Entering data is done by referring to the array of records as required throughout the program.

class personalDetails():
forename:str=“”
surname:str=“”
age:int=0
height:float=0.0
student:bool=False
def initialise():
arrayPerson=[personalDetails() for x in range(4)]
return arrayPerson
def getData():
for counter in range(0,4):
print(“Enter your forename”)
arrayPerson[counter].forename=input()
print(“Enter your surname”)
arrayPerson[counter].surname=input()
print(arrayPerson[counter].forename,”enter your age”)
arrayPerson[counter].age=int(input())
print(arrayPerson[counter].forename,”enter your height”)
arrayPerson[counter].height=float(input())
answer=input()
if answer==“y” or answer==“Y”:
arrayPerson[counter].student=True
return arrayPerson
def displayData():
for counter in range(0,4):
if arrayPerson[counter].student:
print(arrayPerson[counter].forename,arrayPerson[counter].surname,“is”,arrayPerson[counter].age,“years of age and is”,arrayPerson[counter].height,“metres in height and is a student”)
#Main program
arrayPerson=initialise()
arrayPerson=getData()
displayData()

LiveCode

In LiveCode, we make use of the array local personalRecordDetails declared earlier in the program. It can then be used as an array of records, first initialising it with the keyed index in on initialise and then later using it to store data as if it were an array of records (on getData).

on mouseUp
put empty into field “output”
local personalRecordDetails
initialise
getData personalRecordDetails
displayData personalRecordDetails
end mouseUp
on initialise
local counter
put 0 into counter
repeat with counter = 0 to 3
put “” into personalRecordDetails[counter][“forename”]
put “” into personalRecordDetails[counter][“surname”]
put 0 into personalRecordDetails[counter][“age”]
put 0.0 into personalRecordDetails[counter][“height”]
put false into personalRecordDetails[counter][“student”]
 end repeat
end initialise
on getData @personalRecordDetails
local counter
put 0 into counter
repeat with counter = 0 to 3
ask “Enter your forename”
if the result=cancel then exit to top
put it into personalRecordDetails[counter][“forename”]
ask “Enter your surname”
if the result=cancel then exit to top
put it into personalRecordDetails[counter][“surname”]
ask personalRecordDetails[counter][“forename”] && “enter your age”
if the result=cancel then exit to top
put it into personalRecordDetails[counter][“age”]
ask personalRecordDetails[counter][“forename”] && “enter your height”
if the result=cancel then exit to top
put it into personalRecordDetails[counter][“height”]
ask “Are you a student” && personalRecordDetails[counter][“forename”]&“?”
if the result=cancel then exit to top
put it into ans
if ans=“y” or ans=” Y” then
put true into personalRecordDetails[counter][“student”]
end if
end repeat
end getData
on displayData @personalRecordDetails
local counter
put 0 into counter
repeat with counter = 0 to 3
if personalRecordDetails[counter][“student”] then
put personalRecordDetails[counter][“forename”] && personalRecordDetails[counter] [“surname” && “is” && personalRecordDetails[counter][“age”] && “years of age and is” && personalRecordDetails[counter][“height”] && “metres in height and is a student”& return after field “output”
end if
end repeat
end displayData

CHECK YOUR LEARNING

Now answer questions 1–5 below

QUESTIONS

	

	State what is meant by the term ‘variable’.

	State five simple data types.

	Which structured data type uses elements and subscripts?

	State one advantage of using an array rather than unique variable names when programming.

	Globally, solar energy production has increased in recent years. The data on each region in the world, its code, the year and solar generation in TWh (terawatt hours) has been recorded in a csv file since 1965 and currently stores 5092 items of data. Part of the file is shown below.

Kuwait, KWT, 2018, 0.088143148

Philippines, PHL, 2005, 0.001517

United Kingdom, GBR, 2009, 0.020000206

The data is to be stored in parallel 1D arrays.

Using either SQA Reference Language or a programming language of your choice, declare parallel 1D arrays that can store the data for the 5092 items of data.

	There are currently 270 weather stations located all around the British Isles that record data every day about current weather situations. A sample of some of the data recorded is shown below.

	Weather data
	Sample data

	Location
	Machrihanish

	Windspeed (mph)
	48

	Temperature (ºC)
	11.5

	Rainfall (mm)
	13

	Hours of sunshine
	2

Using either SQA Reference Language or a programming language of your choice define:

	a suitable record data structure for the data above.

	the variable which can store the details of the 270 readings. Your answer should use the record data structure created in part a).

KEY POINTS

	A variable is the name that a programmer uses to identify a storage location.

	Simple data types may be a number (real (or float) and integer), a character, a string, a date, a Boolean value, a sound sample or a video clip.

	Structured data types include (1D) arrays, parallel 1D arrays, records and arrays of records.

	Arrays which have one number as their subscript are called one-dimensional arrays.

	Each part of an array is called an element.

	Each element in an array is identified by the variable name and a subscript.

	Parallel 1D arrays store a set of related data using the same element number or index.

	A record structure stores all related data together regardless of data type.

	Using an array of records makes it possible to access a complete record’s worth of data with a single reference.

Chapter 5 Implementation (computational constructs)

This chapter describes a wide range of the computational constructs required for programming in any language.

The following topics are covered:

	Describe, exemplify and implement the appropriate constructs in a procedural high-level (textual) language:

	subprograms/routines, defined by their name and arguments (inputs and outputs):

	procedures

	functions

	parameter passing (formal and actual)

	the scope of local and global variables

	pre-defined functions (with parameters):

	to create substrings

	to convert from character to ASCII and vice versa

	to convert floating-point numbers to integers

	modulus

	file handling:

	sequential CSV and txt files (open, create, read, write, close).

	Read and explain code that makes use of the above constructs.

Computational contstructs

Modularity

Modularity means that when a program is designed and written, it is divided into smaller sections called subprograms or subroutines. Subprograms may be called in any order in a program and they may be reused many times over. Each subprogram performs a particular task within the program. Subprograms may be written at the same time as the rest of the program or they may be prewritten. Prewritten subprograms are known as library modules.

High-level procedural languages use two types of modules or subprograms. These are procedures and functions.

Procedures

Before a procedure may be used in a program, it must be defined. Defining a procedure gives it a name, and also allows the programmer to state which data the procedure requires to have sent to it from the program. Data is passed to a procedure using parameters (see page 29 in this chapter). When a procedure receives data, it carries out an operation using the data and makes results available to the program. These results may simply be displayed on screen from within the procedure, or they may be passed back out of the procedure to another procedure, again using parameters. A procedure is said to produce an effect.

Python

In Python, procedures use the keyword def.

Procedure definitions are at the top of the program.

def sum (numberOne, numberTwo):
total= numberOne + numberTwo #note formal parameters print(total)

Procedure calls are at the bottom of the program (after the definitions).

sum (firstNumber, secondNumber)#note actual parameters

LiveCode

In LiveCode, procedures use the keywords on and end to start and finish the procedure definition.

Procedure calls are at the top of the program.

getNum numberOne, numberTwo
sumNum numberOne, numberTwo,
total//note actual parameters

Procedure definitions are at the bottom of the program (after the calls).

on getNum @numberOne, @numberTwo
ask “Enter your first number”
if the result=cancel then exit to top
put it into numberOne
ask”Enter your second number”
if the result=cancel then exit to top

Function definition

def areaOfCircle(radius): #note the parameter in a
area = math.pi * radius * radius #function is sometimes
return area #called the argument

Function call

area= areaOfCircle (number)
 put it into numberTwo
end getNum
on sumNum firstNumber, secondNumber, @total //note formal parameters
put 0 into total
put firstNumber+secondNumber into total
end sumNum

Functions

A function is similar to a procedure but returns one or more values to a program. Like a procedure, a function must be defined and given a name before it can be used in a program. The name of the function is used to represent a variable containing the value to be returned.

Python

In Python, functions also use the keyword def.

DID YOU KNOW

Python has a number of external modules that can be imported to increase the functionality of the language. The ‘math’ module allows Python programs to use mathematical functions.

LiveCode

In LiveCode, functions use the keywords function and end to start and finish the function.

Function call

put areaOfCircle(radius) into area

Function definition

function areaOfCircle radius
put 6 into radius
put pi*radius*radius into area
return area
end areaOfCircle

Parameters

The movement of data (or the data flow) between subprograms is implemented using parameters. Data structures (such as variables, arrays, records, lists and classes) which are passed into subprograms are known as in parameters. Variables which are passed out of subprograms are known as out parameters.

A parameter is information about a data item being supplied to a subprogram (function or procedure) when it is called into use. When the subprogram is used, the calling program must pass parameters to it. This is called parameter passing. Parameter passing relates directly to the data flow explained in Chapter 3 (see page 13). So, when the data flow on the top-level design is shown as in: it is an in parameter and when it is shown as out: , it is an out parameter.

Let’s take as an example a validation procedure which checks that a number is within a certain range. The procedure is called ‘validate’ and the variable we wish to pass to this procedure is ‘test’, which has a value input by the user.

begin program
ask for test mark
take in test markThis is the calling program
validate (test)(or main program)
end program
begin procedure validate (number)
loop WHILE number is outwith range
prompt to re-enter numberThis is the subprogram
take in the number(procedure)
end loop
end procedure

Actual and formal parameters

The parameter test contains the value that is being passed into the procedure validate – the parameter test is called the actual parameter. Number is the name of the parameter which is used in the procedure definition, so number is called the formal parameter.

Remember: parameters which are passed into a procedure (or function) when it is called from any other part of the program are called the actual parameters. Parameters used in the procedure or function are the formal parameters.

When writing programming code, the parameters must be written in both the calling program and the subprogram in lists that are known as arguments. Care must be taken when listing the arguments to make sure that they are in the same order in the subprogram call and the subprogram itself. If they are in the wrong order, then the wrong values will be passed to the arguments in the subprogram.

 WORKED EXAMPLE 1

Python

def initialise():
test=0
minimum=1
maximum=10
return test, minimum, maximum
def askForMark(minm,maxm):
print(“Enter a number between”,minm, ”and”,maxm,”to check”)
def getMark(fnum):
fnum=int(input())
return fnum
def validate(fnum,minm,maxm):
fnum, minm and maxm are formal parameters as they are listed as arguments in the declaration of the procedure and functions
while fnum<minm or fnum>maxm:
print(“Number is out of range”)
print(“Please re-enter between”, minm,”and”, maxm)
fnum=int(input())
return fnum
def inRange(fnum):
print(“The number”,fnum,”is within range”)
#Main program
test, minimum, maximum=initialise()
askForMark(minimum,maximum)
test=getMark(test)
test=validate(test,minimum,maximum)
test, minimum and maximum are actual parameters as they are listed as arguments in the procedure and function calls
inRange(test)test=0

WORKED EXAMPLE 2

LiveCode

on mouseUp
put empty into field “output”
initialise
askForMark test, minimum, maximum
put validate(test,minimum,maximum) into test
test, minimum and maximum are actual parameters as they are listed as arguments in the procedure and function calls
inRange test
end mouseUp
on initialise
local test
local minimum, maximum
put 0 into test
end initialise
on askForMark @fnum @minm, @maxm
fnum, minm and maxm are formal parameters as they are listed as arguments in the declaration of the procedure and functions
put 1 into minm
put 10 into maxm
put 0 into fnum
ask “Enter a number between”&&minm&&”and”&&maxm&&”to check”
if the result = cancel then exit to top
put it into fnum
end askForMark
function validate fnum, minm, maxm
repeat until fnum>=minm and fnum<=maxm and fnum is an integer
put “Number is out of range” &return after field “output”
ask “Please re-enter between”&&minm&&”and”&&maxm
if the result =cancel then exit to top
put it into fnum
end repeat
return fnum
end validate
on inRange fnum
put “The number”&&fnum&&”is within range” &return after field “output”
end inRange

Local and global variables

Two types of variables are global variables and local variables. Global variables may be used anywhere in a program, but local variables are defined only for use in one part of a program (a subprogram – normally a function or a procedure). Local variables only come into existence when that procedure is entered and the data that they contain is lost when the processing of that procedure is complete. Using local variables reduces the unplanned effects of the same variable name being used in another part of the program and accidentally being changed. Global variables should only be used for data that needs to be shared between different procedures within a program, because they are accessible to any part of the whole program. It is good practice to declare global variables at the start of a program. Look further on in this chapter for the implementation of an algorithm which shows the difference between local and global variables. The algorithm for this example is not shown here because looking at the algorithm on its own is not particularly helpful. In order to understand this properly, you need to look at the implementation and the sample output. The sample output shows that the values of the local variables (sum and product) within the calculate procedure have no effect on the values of the global variables (also called sum and product) outside the calculate procedure, i.e. throughout the rest of the program.

NOTE

It is not necessary to give the parameters different names in the arguments in the calling program and the subprogram. This means that any of these subprograms can be reused when required, with no change, in another program.

Scope of variables

The scope of a variable is the range of statements for which a variable is valid. So, the scope of a local variable is the subprogram it is used in. This means that in a large programming project, where a number of programmers are writing separate subprograms, there is no need to be concerned about using different (or similar) local variable names, since they cannot have any effect outside their scope.

User-defined functions

The function areaOfCircle described earlier in this chapter, is known as a user-defined function. A user-defined function is a function which is created within a program rather than being already present or pre-defined as part of the normal syntax of a programming language.

WORKED EXAMPLE 3

A pre-defined function

The sqrt function returns the square root of a number.

Python

import math
number=4
root=(math.sqrt(number))
print(root)
The square root of 4 is 2.0

LiveCode

on mouseUp
put empty into field “output”
local sqnum
local root
put 4 into sqnum
put sqrt(sqnum) into root
put root &return after field “output”
end mouseUp

Figure 5.1 LiveCode square root output

We will take a look at four pre-defined functions with parameters using both Python and LiveCode languages:

	String operations – create substrings

	Convert from character to ASCII and ASCII to character

	Convert floating-point numbers to integers

	Modulus

NOTE

In this book the terms procedures/subroutines/ subprograms and modules are interchangeable.

String operations

String operations can process string data. A string is a list of characters, i.e. a letter, a number or a symbol. String operations include joining strings, known as concatenation, and selecting parts of strings, known as substrings. Individual characters can also be converted into ASCII and ASCII characters can be converted into individual characters. Strings can also be thought of as a list of characters.

Creating substrings

Python

In Python, a string is recognised as anything that is between either single or double quotation marks, i.e. ‘ ‘ or “ “.

WORKED EXAMPLES 4 AND 5

Display substrings

word=“Saint Matthew’s Academy”
print(word[0]) #display first character
print(word[0:1]) #display first character
print(word[0:3]) #display first three characters
print(word[:3]) #display first three characters
print(word[-3:]) #display last three characters
print(word[3:]) #display all but the first three characters
print(word[:-3]) #display all but the last three characters

Create a username

import random #random is an imported module
forename=”Lucy”
surname=”Locket”
number=random.randint(1,100)
num = str(number)
userName=forename[0:4]+surname[0:5]+num #this is a combination of substrings and concatenation.
print(userName)
print (len(userName)) # produces the length of the string stored in userName

LiveCode

In LiveCode, a string is recognised as anything that is between double quotation marks, i.e. “ “ and also as any part of an external text file.

In LiveCode, the pre-defined functions char, word, line and item are used. These are known as ‘chunk expressions’. A chunk allows the programmer to specify a portion of text and also allows it to be edited. For the purposes of these notes we will only consider char.

NOTE

Further reading and some practical exercises may be on found LiveCode’s website: https://livecode.com/docs/9-5-0/core-concepts/processing-text-and-data/

WORKED EXAMPLES 6 AND 7

Examples of substring operations: char

on mouseUp
put empty into field “output”
local origWord
put “Saint Matthew’s Academy” into origWord
put(char 1 of origWord) into newWord1 //display first character
put newWord1 &return after field “output”
put(char 1 to 3 of origWord) into newWord2 //display first three characters
put newWord2 &return after field “output”
put(char -3 to -1 of origWord) into newWord3 //display last three characters
put newWord3 &return after field “output”
put(char 4 to -1 of origWord) into newWord4 //display all but the first three characters
putnewWord4 &return after field “output”
put(char 1 to -4 of origWord) into newWord5 //display all but the last three characters
put newWord5 &return after field “output”
end mouseUp

Create a username

on mouseUp
put empty into field “output”
local forename, surname
local rnum
local username
put “Lucy” into forename
put “Locket” into surname
put random(100) into rnum
put (char 1 to 4 of forename) & (char 1 to 5 of surname) &rnum into username
put username &return after field “output”
put the length of username &return after field “output”
end mouseUp

Convert from character to ASCII and ASCII to character

Take in a character and convert it to its ASCII equivalent and vice versa.

Python

Python makes use of the pre-defined functions ord() and chr() to convert from a character to ASCII and ASCII to a character. chr() will convert ASCII characters in the range 0 to 255. Both ord() and chr() require a parameter in the brackets.

asciiNumber=ord(character)
character=chr(asciiNumber)

For example:

asciiNumber=ord(“q”) #produces the output 113
character=chr(63) #produces the output ?

LiveCode

The pre-defined functions charToNum() and numToChar() are used to convert characters into their corresponding ASCII code and vice versa. numToChar() converts in the ASCII range 0 to 255. Both of these pre-defined functions will require a parameter to be supplied in the brackets.

put charToNum(“Character”) into field “ASCII”
put numToChar(it) into field “Character”

For example:

put charToNum(“q”) into field “ASCII”
put numToChar(63) into field “Character”

Figure 5.2 LiveCode ASCII to character and vice versa

Some other string operations include:

	changing strings to numbers and numbers to strings.

	changing case: ‘j’ to ‘J’ and vice versa.

	removing blank spaces from a string.

NOTE

Some languages may not contain specific keywords for all of these operations.

Convert floating-point numbers to integers

Remove the decimal part from a number and store it as an integer.

Python

Python uses the pre-defined function int() to convert from floating point numbers to integer numbers by removing the decimal portion, for example:

num1=126.357
num2=1387.964
print(int(num1))#produces the output 126
print(int(num2)) #produces the output 1387

It is also possible and sometimes more desirable to round to the nearest whole number, in which case, the pre-defined function round() should be used.

print(round(num1))#produces the output 126
print(round(num2))#produces the output 1388

LiveCode

The pre-defined function trunc displays only the integer part of a number and removes the decimal part. The code shown below gives two examples to produce the integer part.

on mouseUp
local num1, num2
local integer1, integer2
put empty into field “intNo”
put 126.357 into num1
put 1387.964 into num2
//assigns the integer value straight to the output window
put the trunc of num1 &return after field “intNo”
put the trunc of num2 &return after field “intNo”
//assigns the integer value to a variable
put trunc(num1) into integer1
put trunc(num2) into integer2
put integer1 &return after field “intNo”
put integer2 &return after field “intNo”
end mouseUp

OEBPS/nav.xhtml

Contents

		Cover

		Title Page

		Copyright

		Contents

		1 Software design and development

		Chapter 1 Development methodologies

		Chapter 2 Analysis

		Chapter 3 Design

		Chapter 4 Implementation (data types and structures)

		Chapter 5 Implementation (computational constructs)

		Chapter 6 Implementation (algorithm specification)

		Chapter 7 Testing

		Chapter 8 Evaluation

		2 Database design and development

		Chapter 9 Database analysis

		Chapter 10 Database design

		Chapter 11 Database implementation

		Chapter 12 Database testing

		Chapter 13 Evaluation

		3 Web design and development

		Chapter 14 Analysis

		Chapter 15 Design

		Chapter 16 Implementation (HTML)

		Chapter 17 Implementation (CSS)

		Chapter 18 Implementation (JavaScript)

		Chapter 19 Testing

		Chapter 20 Evaluation

		4 Computer systems

		Chapter 21 Data representation

		Chapter 22 Computer structure

		Chapter 23 Environmental impact

		Chapter 24 Security risks and precautions

		Glossary

Guide

		Cover

		Copyright

		Contents

		1 Software design and development

Pages

		cover

		fm1

		fm2

		i

		ii

		iii

		iv

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		220

		221

		222

		223

		224

		225

		226

		227

		228

		229

		230

		231

		232

		233

		234

		235

		236

		237

		238

		239

		240

		241

		242

		243

		244

		245

		246

		247

		248

		249

		250

		251

		252

		253

		254

		255

		256

		257

		258

		259

		260

		261

		262

		263

		264

		265

		266

		267

		268

		269

		270

		271

		272

		273

		274

		275

		276

		277

		278

		279

		280

		281

		282

		283

		284

		285

		286

		287

		288

		289

		290

		291

		292

		293

		294

		295

		296

		297

		298

		299

		300

		301

		302

		303

		304

		305

		306

		307

		308

		309

		310

		311

		312

		313

		314

		315

		316

		317

		318

		319

		320

		321

		322

		323

		324

		325

		326

		327

		328

		329

		330

		331

		332

		333

		334

		335

		336

		337

		338

		339

		340

		341

		342

		343

		344

		345

		346

		347

		348

		backcover

