



[image: ]









[image: ]






The Publishers would like to thank the following for permission to reproduce copyright material.


Photo credits


p.1 © Dawn Gilfillan/Shutterstock; p.4 © nd3000/Shutterstock; p.10 Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu; p.28 l, r © Used with permission from Microsoft; p.72 © Vintage Tone/Shutterstock; p.83 © photon_photo/stock.adobe.com; p.86 © Atlaspix/Shutterstock; p.83 © photon_photo/stock.adobe.com; p.89 © Titima Ongkantong/Shutterstock; p.96 t © Sashkin/Shutterstock; p.96 b © Nor Gal/Shutterstock; p.97 © Iaroslav Neliubov/Shutterstock; p.100 © sdecoret/Shutterstock; p.101 © Elnur/stock.adobe.com; p.102 © Blend Images/Alamy; p.103 © Joe Techapanupreeda/Shutterstock; p.106 © Crown Copyright; p.108 © Used with permission from Microsoft; p.111 © Wright Studio./Shutterstock; p.114 © arka38/Shutterstock; p.117 © Rawpixel.com/Shutterstock; p.119 © 2010 Future Publishing/Getty Images; p.124 © lubashka/stock.adobe.com; p.125 © REDPIXEL.PL/Shutterstock; p.136 © ShendArt./Shutterstock.


t = top, b = bottom, c = centre, l = left, r = right


Every effort has been made to trace all copyright holders, but if any have been inadvertently overlooked, the Publishers will be pleased to make the necessary arrangements at the first opportunity.


Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Gibson cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of the home page for a website in the URL window of your browser.


Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in sustainable forests. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.


Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton Park, Abingdon, Oxon OX14 4SE. Telephone: (44) 01235 827720. Fax: (44) 01235 400401. Email education@bookpoint.co.uk. Lines are open from 9 a.m. to 5 p.m., Monday to Saturday, with a 24-hour message answering service. Visit our website at www.hoddereducation.co.uk. Hodder Gibson can also be contacted direct at hoddergibson@hodder.co.uk


© David Alford 2018, © Frank Frame 2013


First published in 2018 by


Hodder Gibson, an imprint of Hodder Education


An Hachette UK Company


211 St Vincent Street


Glasgow, G2 5QY






	Impression number  

	5


	4


	3


	2


	1







	Year

	2022


	2021


	2020


	2019


	2018








All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk


Cover photo © Hellen Sergeyeva/stock.adobe.com


Illustrations by Aptara, Inc.


Typeset in Cronos Pro by Aptara, Inc.
Printed in Spain
A catalogue record for this title is available from the British Library.
ISBN: 978 1 5104 2088 5
eISBN: 978 1 5104 1950 6





Introduction



The National 5 Computing Science course has been designed to build upon and extend the skills, knowledge and understanding gained in National 4 Computing Science. Of course, some candidates will embark on this course having previously followed the broad general education.


While the course includes many facts about aspects of computing science, the focus is on applying knowledge and understanding within the context of a problem. The aim of the course is to give the candidate both ability and confidence to tackle a range of problems in both familiar and unfamiliar situations.



Course structure


The course consists of four areas of study.


Software design and development


This unit covers the basics of the development process for computer programs. You will learn how to analyse a problem, design a solution, implement that design as a program, test your program and evaluate the success of your program. You will develop your problem-solving skills and you will also learn to interpret existing designs and programs.


Computer systems


You will gain knowledge of the inside of the computer, including the basic layout and workings of the processor and memory, called computer architecture. You will learn how computers can affect the environment and you will learn about how to counter some of the threats to a computer system.


Database design and development


This unit covers the basics of the development process of databases. You will learn how to analyse the requirements of a database problem, design a solution, implement that design as a database, test your database queries and evaluate the success of your database solution. You will learn how to develop a database and how to implement SQL to interact with the data contained within your database. You will also learn the implications of the Data Protection Act 1998 for database development.


Web design and development


This unit covers the basics of the development process of websites. You will learn how to analyse the requirements of a web-based problem, design a solution, implement that design as a website, test that your website functions as expected and evaluate the success of your web-based solution. You will learn how to implement both HTML and CSS to produce web pages, and you will learn the implications of the Copyright Designs and Patents Act 1988 for web development.


Course assessment


The course assessment involves a total of 160 marks; 110 marks are assessed through the question paper and 50 marks are assessed through the assignment.


The question paper


The question paper in the May examination period is worth 110 marks. It will be a two-hour closed-book examination with printed questions to which you will have to write your answers. Questions will be set within a context so that you must exhibit your skills in problem-solving as well as the knowledge and understanding that you have gained throughout the course.


The question paper has two sections. Section 1 consists of 25 marks of short-answer questions; Section 2 consists of 85 marks of context-based questions which will be longer with many parts.


Across the paper, the four areas of study will have a different number of marks allocated to them.





•  Software design and development: 34–44 marks, approximately 40% of the marks in the paper.



•  Computer systems: 12–20 marks, approximately 10% of the marks in the paper.



•  Database design and development: 20–35 marks, approximately 25% of the marks in the paper.



•  Web design and development: 20–35 marks, approximately 25% of the marks in the paper.





You will also see the different stages of the development process will have a different number of marks allocated to them.





•  Analysis: 0–6 marks, approximately 5% of the marks in the paper.



•  Design: 35–51 marks, approximately 30% of the marks in the paper.



•  Implementation: 26–42 marks, approximately 40% of the marks in the paper.



•  Testing: 7–15 marks, approximately 10% of the marks in the paper.



•  Evaluation: 0–6 marks, approximately 5% of the marks in the paper.



•  Computer systems: 12–20 marks, approximately 10% of the marks in the paper.





The assignment


The assignment will have 50 marks available. It will feature a task on database design and development, a task on software design and development, and a task on web design and development.


The assignment is an open-book assessment.


There is a new assignment released each year, valid only for that year. You are allowed a total of eight hours to complete the assignment. The assignment is sent away to the SQA to be marked. It will not be reviewed by your teacher and returned to you for improvement. There is no word limit or page limit.


The tasks will have marks assigned as follows.





•  Software design and development: 25 marks, 50% of the marks in the assignment.



•  Database design and development: 10–15 marks, approximately 25% of the marks in the assignment.



•  Web design and development: 10–15 marks, approximately 25% of the marks in the assignment.





You will also see the different stages of the development process will have a different number of marks allocated to them.





•  Analysis: 5 marks, 10% of the marks in the assignment.



•  Design: 5 marks, 10% of the marks in the assignment.



•  Implementation: 30 marks, 60% of the marks in the assignment.



•  Testing: 5 marks, 10% of the marks in the assignment.



•  Evaluation: 5 marks, 10% of the marks in the assignment.







[image: ]


Hints & tips





[image: ]  Draw up a revision plan well ahead of the exam. Make sure you create a schedule that lets you cover all of the topics, without leaving everything to the last minute.



[image: ]  Use a checklist to make sure you cover all of the course content.



[image: ]  Make sure you know all the important definitions in this book (the Glossary will help you to with this).



[image: ]  Check that your knowledge is up to exam standards by answering all of the questions in this book (suggested answers are at the back).



[image: ]  Look on the SQA website for the specimen assignment, specimen examination paper, past papers and marking instructions.



[image: ]  Consider buying Practice Papers for National 5 Computing Science published by Hodder Gibson, details can be found at www.hoddereducation.co.uk.





[image: ]








Section 1 Software Design and Development



Chapter 1


Analysis and design (software)




[image: ]


What you should know


By the end of this chapter you should know and understand:





•  that the development methodology used in National 5 is an iterative development process with six stages – analysis, design, implementation, testing, documentation and evaluation



•  that in the analysis stage you must identify the purpose and functional requirements of a problem, in terms of inputs, processes and outputs



•  the five data types in use at National 5 level – character, string, numeric (integer and real) and Boolean



•  the two data structures in use at National 5 level – variable and one-dimensional array



•  how to create or interpret the three design notations in use at National 5 level – structure diagrams, flowcharts and pseudocode



•  how to design a user interface using a wireframe, showing input and output.





[image: ]





The software development process


The approach that programmers take to solving a problem is known as the development methodology.


At National 5 level, the development methodology used is a development process with six stages:





1  analysis



2  design



3  implementation



4  testing



5  documentation



6  evaluation.







[image: ]




This process is an iterative process, because it is repetitive. This means that earlier stages in the process often have to be revisited as a result of information gained at later stages in the process.


Below is one scenario in which we see the iterative nature of the software development process.




[image: ]


Example


Sandeep has written a program to count how many pupils in an S4 class are old enough to leave school should they wish. You have to be 16 years old to leave school. At the testing stage, one test run uses the following data as input to the program:






	Name

	Age






	Wiktor

	15






	Alan

	15






	Karen

	16






	Lucy

	16






	Dean

	16







The output from the program is this:




[image: ]




[image: ]




[image: ]





Sandeep notices that this output is incorrect. There is a logic error in the program. Sandeep must return to the design stage in order to correct the error, and then revisit the implementation stage, before returning to the testing stage once more.


[image: ]





The analysis stage


The analysis stage is where the programmers look at the problem and decide exactly what must be included within the program in order to solve the problem.


If you are given a problem you will have to be able to produce an analysis as a document which includes:





•  the purpose of the program



•  what features the program must have in order to fully solve the problem (these are the functional requirements)



•  the range and type of data to be entered into the program (inputs) with any relevant input validation to be included



•  what the program will do with the data entered (processes)



•  what the program must produce as it runs (outputs).





Input validation


Validation is including code in your program so that data entered is repeatedly checked to ensure that it is sensible. If data entered as an input is not within the acceptable limits, the user should be shown a useful message to help them understand why the input wasn’t accepted. The program should then allow the user to re-enter the data. However, the program should continue to check the data that has been input until the entry is acceptable, that is, until the data is valid.


Below is an example problem with corresponding analysis to help you.




[image: ]


Example


The distance to walk from Glasgow to Edinburgh is 71 133 metres. However, it has been estimated that the average person walks 798 metres in a normal day. At that rate it would take over 89 days to walk from Glasgow to Edinburgh. The pupils at Muirshiel Primary school have decided that they will all wear devices to measure how many metres that they walk in one month. On the last day of the month they will type in to a program the number of metres that they have walked (for example 72 434.75), and the program should tell them whether or not they have successfully walked the distance between Glasgow and Edinburgh. The number of metres entered must be more than or equal to zero. You are to write this program.


Analysis


I have to write a program that will tell users whether they have walked the distance in metres between Glasgow and Edinburgh.


The program must accept and validate a positive number of metres, check if the number of metres is greater than or equal to 71 133 and show a relevant message on the screen.


Inputs: distance – a real number variable that must be validated to be zero or more.


Process: check if the distance is more than or equal to 71 133.


Outputs: a message indicating if the pupil walked enough miles to travel between Glasgow and Edinburgh or not.


[image: ]





The completed statement like the one above of exactly what the problem involves is often called the software specification. It is a clear statement of the problem to be solved.


Assumptions


In some cases it may also be necessary to state assumptions as part of your analysis. This is where the problem given is unclear on one or more specific parts of the program to be created. You would then make your own sensible decision and include it in the assumptions section of the analysis. A possible assumption for the above program might be: ‘the program will be run once for each pupil, so it is not necessary to ask for the total number of pupils and include a loop’.




[image: ]


Questions





1  Complete a full analysis for this problem.


Speed bumps and other traffic-calming measures can protect children who are playing, but can feel like a nuisance to drivers. A program is required that can be used at a community meeting to help a housing estate decide whether they want speed bumps installed or not. When the program is run, the user should be asked how many homes are in the estate and then the program should ask each homeowner to enter ‘yes’ or ‘no’ to whether they want speed bumps or not. The program should then tell the residents how many voted ‘yes’, and whether or not speed bumps will be brought in. The estate will have new speed bumps installed if more than half of the residents voted for them.







[image: ]







2  What is a development methodology?








3  a)  What is an iterative process?


    b)  How could the software development process be said to be an iterative process?








4  What is the software specification?





[image: ]





The design stage


In the design stage, the programming team will plan how they are going to solve the problem given.


In the design phase the problem is broken down into ‘chunks’ and each chunk is then broken down further and further until the little bits are easy to solve in any programming language. The solution to the problem is called the ‘algorithm’, a fancy word for a plan.


Often at this stage, it is decided what data types and data structures will be used for each item of data used within the program.


Data structures


A variable can be used to hold one item of data. Often when a variable is declared it is given a name and a data type.


An array can be used to hold a number of related items of data. In National 5, you will only encounter one-dimensional arrays. When a one-dimensional array is declared, it is given a name, a data type and a size (the number of items, or elements, it can hold). This means that each element in the array must be of the same data type.



Data types


In National 5, there are five data types that you must be able to use.






	Data type

	Description

	Examples






	Character

	Any one punctuation symbol, letter or number that can be typed from the keyboard

	A, z, &






	String

	A sequence of characters

	Hello there, John, 08001111






	Integer

	A numeric data type, for whole numbers

	35, 2017, 0






	Real

	A numeric data type, for numbers with a fractional part

	0.2, 1.5, 3.14159265359






	Boolean

	True or false only

	true, false







Design notations


The programmer(s) will write a detailed plan of steps to be taken to solve the problem. The way that they choose to write this plan down is called the design notation. There are three design notations that you must be able to read and understand: structure diagrams, flowcharts and pseudocode.




[image: ]


Key point


Structure diagram


A structure diagram begins with the problem in a box at the top. It is broken down into sub-problems which are contained within one of four possible symbols according to the key shown below. It is possible for a sub-problem to be further broken down as appropriate, until it can be solved in one line of code. In a structure diagram, sub-problems are shown from left to right according to the order they would be completed in, first at the left, last at the right.






	Structure diagram key






	[image: ]

	A process: any action or collection of actions that doesn’t fit into the three categories below this.






	
[image: ]
or
[image: ]


	A loop: actions listed below this will be repeated. The symbol should contain the number of times to be repeated (if showing a fixed loop) or the conditions for the repeating to continue or end (if showing a conditional loop).






	[image: ]

	Selection: this should contain a question about some data from the program. Branches coming down from this should be labelled to show which branch is taken for each possible answer to the question.






	[image: ]

	A pre-defined process: this should be used if the function to be used is already part of the programming language, for example, rounding a number.







[image: ]




OEBPS/OEBPS/images/1-1.jpg





OEBPS/OEBPS/images/tp.gif
z

@
ja)

Sundwod

5 jeuone

wv
m
(@)
o
Z
&)
m
O
=
o
P4

.
Computing
Science

David Alford

HODDER
‘7 GIBSON
AN HACHETTE UK COMPANY





OEBPS/OEBPS/images/check.jpg





OEBPS/OEBPS/images/cover.jpg
How to Pass

.
Computing
Science

/ Fully updated for the new
course arrangements

/ Top tipsand hints for
exam success

/ Refreshand test your
learning in all topic areas

David Alford

HODDER
G Honoe

LEARN MORE





OEBPS/OEBPS/images/5-6.jpg





OEBPS/OEBPS/images/5-5.jpg





OEBPS/OEBPS/images/5-4.jpg





OEBPS/OEBPS/images/5-3.jpg





OEBPS/OEBPS/images/rules.jpg





OEBPS/OEBPS/images/5-2.jpg





OEBPS/OEBPS/images/4-1.jpg
TN
Sl \d\





OEBPS/OEBPS/images/2-1.gif
The number of pupils old enough to leave school
P





