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Editor’s Foreword

Addison-Wesley’s Frontiers in Physics series has, since 1961, made it possible for leading physicists to communicate in coherent fashion their views of recent developments in the most exciting and active fields of physics—without having to devote the time and energy required to prepare a formal review or monograph. Indeed, throughout its nearly fortyyear existence, the series has emphasized informality in both style and content, as well as pedagogical clarity. Over time, it was expected that these informal accounts would be replaced by more formal counterparts—textbooks or monographs—as the cutting-edge topics they treated gradually became integrated into the body of physics knowledge and reader interest dwindled. However, this has not proven to be the case for a number of the volumes in the series: Many works have remained in print on an on-demand basis, while others have such intrinsic value that the physics community has urged us to extend their life span.

The Advanced Book Classics series has been designed to meet this demand. It will keep in print those volumes in Frontiers in Physics or its sister series, Lecture Notes and Supplements in Physics, that continue to provide a unique account of a topic of lasting interest. And through a sizable printing, these classics will be made available at a comparatively modest cost to the reader.

Although the informal monograph Theory of Interacting Fermi Systems was written some thirty-five years ago, when the distinguished French theoretical physicist and Wolf Prize-winner Philippe Nozières was a  young man giving his first lectures on this topic, it continues to be the authoritative account of the way in which Landau Fermi liquid theory emerges from a field-theoretic description of interacting fermions. Written with unusual clarity and attention to detail, it is must-reading for anyone interested in applying field-theoretic techniques to problems in condensed matter or nuclear physics. It gives me great pleasure to see this book back in print, and to welcome Professor Nozières to the Advanced Book Classics series.
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Introduction

Before 1950 there was practically no many-body problem. Only some precursors had touched on the study of condensed systems. Their efforts remained isolated and elicited little response from the main body of physicists. In ten years this subject has been developed to such a point that it is now involved in every area of physics.

The first efforts in this direction were quite disconnected. Several approximate theories were proposed, each of which treated a very specialized subject. This diversity is manifest in the courses offered at the 1958 session of the Summer School of Theoretical Physics at Les Houches. The essential step has been to set up a unified formalism, based on the methods of quantum field theory. The same “language” now allows us to treat nuclear matter, liquid helium, or superconductors.

These new methods also possess a great virtue—they can be generalized to systems at finite temperatures; the many-body problem thus becomes allied with quantum statistical mechanics, representing the latter’s low-temperature limit. These new paths seem extremely promising.

There is no question of covering so vast a subject within the framework of this study; a severe limitation is imposed. A priori it seems natural to illustrate these theories by a sufficiently large selection of practical examples without being too concerned with details. By placing the methods within the framework of ordinary physics, one undoubtedly facilitates their immediate application. In spite of these advantages I have prefered to take a “vertical” section, thoroughly treating a restricted subject. The goal sought is not to exhaust “the” many-body problem, but to demonstrate its power in a simple case. This choice answers a very subjective need. It makes the presentation quite dry and neglects certain important aspects of the subject (in particular, finite temperature properties). On the other hand, such an analysis usefully complements the more descriptive treatments.

The work is devoted to the general properties of infinite systems of fermions at zero temperature. A double objective is pursued: to analyze the mechanism of correlations and to set forth a solid formalism that can be directly generalized to the most complex cases. With few exceptions the nature of these fermions is not specified; the results therefore apply to nuclear matter, to He3, and to electrons in solids.

Since this subject is at present enjoying great popularity, there exist a large number of presentations of it (indicated, in part, in the bibliography). These theories are equivalent; in principle, a “dictionary” would be sufficient to go from the diagrams proposed by X to those favored by Y. Because this variety leads to confusion, I have worked uniquely with the formalism of the Soviet school, which seems to me to be the clearest and simplest. At this time I would like to pay homage to the great physicist L. D. Landau; his phenomenological theory of Fermi liquids (Chapter 1) has brilliantly clarified this whole area of physics. This book, inspired by his work, must pay him tribute.

In spite of the formal aspect of this book, no pretense as to mathematical rigor is attempted in the proofs; in particular, questions of convergence have been treated very lightly. A foreign colleague further characterizes certain proofs as “wishful thinking.” In my opinion an incomplete but simple argument often clarifies the physical phenomenon better than a rigorous proof. I excuse myself in advance for these gaps.

The presentation assumes a thorough knowledge of elementary quantum mechanics, such as is taught in the first year of graduate studies. With this as a basis, the formalism is developed point by point; in particular, perturbation techniques are analyzed in great detail. Since this book is supposed to be selfcontained, references to the original articles have been collected at the end and grouped by subject. I have, nevertheless, tried to attribute the origins of the principal results to their respective authors. I have certainly forgotten some of them; in advance I beg the pardon of those whom I have involuntarily ignored.

The organization of the work reflects the various aspects of the fermion gas. The first chapter is devoted to the theory of “normal” Fermi liquids proposed by Landau. This phenomenological introduction already deals with most important concepts. Chapter 2 establishes contact with the principal experimental techniques: response to an external field and scattering of a beam of incident particles. In Chapter 3 we enter into the heart of the subject by formally introducing Green’s functions. The physical meaning of the latter is discussed in Chapter 4, first for “normal” systems, then for “superfluids.” Chapters 5 and 6 are devoted to the development, then to the exploitation, of perturbation techniques; among other things, this allows us to justify the Landau theory. Finally, Chapter 7 generalizes perturbation methods to superfluid systems.

This book is a product of a course taught in 1959—1960 at the University of Paris in the “Troisième Cycle” of Theoretical and Solid-State Physics.

I must thank all those who have assisted or encouraged me in this task. By assigning me a course, Professors M. Levy and J. Friedel gave me the opportunity to explore this subject. The pertinent criticism of E. Abrahams, D. Pines, and P. R. Weiss has been valuable to me. A part of Chapter 6 was  worked out in collaboration with J. M. Luttinger and J. Gavoret; Miss O. Betbeder-Matibet assisted in the correction of proof. Finally, J. Giraud assumed the thankless task of preparing the manuscript. May all of them find here the expression, of my recognition.

At the time of publication of this book I find many defects in it. Is it really worthwhile to perfect a tool without making use of it? It will be up to the reader to judge.

P. NOZIÈRES

 



 




Paris, France 
May 1962
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P. NOZIÈRES

 



 




Paris, France 
July 1963






Chapter 1

The Landau Theory




1. The Notion of a Quasi Particle 

Let us consider a uniform gas of fermions, containing N particles in a volume Ω which we assume to be very large. In this chapter we propose to study the macroscopic properties of this system by means of a semipheno-menological method due to Landau. For the moment we shall use an intuitive approach, reserving the proof of the validity of our assertions for Chap. 6. It is from this point of view that Landau attacked this problem. His hypotheses having since been shown to be rigorously exact, we can only pay him homage.

The study of the macroscopic properties of a system at zero temperature requires knowledge of the ground state and the low-lying excited states. Let us first consider the very simple case of an “ideal” gas—that is, a gas of noninteracting particles. The eigenstates of such a system are well known: they are antisymmetric combinations of plane waves, one for each particle. Each plane wave is characterized by its wave vector k. To define an eigenstate of the whole system, it is sufficient to indicate which plane waves are occupied by means of a distribution function n(k). The ground state of the system corresponds to an isotropic distribution n0(k), of the form indicated in Fig. 1. The cutoff level kF is called the Fermi level. It is given by[image: 002]

(1—1)

account being taken of spin degeneracy. If the distribution function is changed by an infinitesimal quantity δn(k), the total energy of the system  changes by an amount[image: 003]

We thus see that the energy h2k2/2m of a particle of wave vector k can be defined as the functional derivative δE/δn(k)—that is to say, the variation δE when δn(k‘) is equal to the Kronecker δ function δkk’. Let us point out that δn is necessarily positive for k > kF and negative for k < kF.


These considerations are trivial for an ideal gas. They become much less obvious when one tries to extend them to a real gas. We shall try to pass from one case to the other by introducing the interaction progressively, in an adiabatic manner. We shall assume that the states of the ideal system are gradually transformed into states of the real system as the interaction increases; we can then study the time development of each state by means of a perturbation treatment. Note that this hypothesis does not exclude the possibility of other elementary excitations of the real system which disappear when the interaction is reduced to zero. Some “new” states of this type always appear; this is the case, for instance, for sound waves.

The hypothesis which we have just made is very restrictive. There are cases where one knows in advance that it is false. If there is an attraction between particles, however weak, the ground state of the real system is radically different from that of the ideal gas. We are thus limited to repulsive forces, with the further condition that they not be too strong. Even in this restricted case the situation is far from clear. We shall see that the states of the real system are in general unstable and are damped out after a certain time τ. If the adiabatic switching on of the interaction requires a time ≳ τ, the original state will have decayed even before the full interaction has been turned on; the result manifestly makes no sense.

[image: 004]

Figure 1

On the other hand, if one proceeds too fast, the final state is no longer an eigenstate. This dilemma disappears only if the lifetime τ is very long. We shall see in Chap. 4 that this limits us to low-lying excited states, very close to the ground state.

All these difficulties will arise in Chap. 5, where we shall try to connect the formalism of this chapter to the general theory of the many-body problem. For the moment, we content ourselves with asserting the continuity of the states as a function of the coupling constant. We furthermore assume that the ground state of the ideal system gives rise to the ground state of the real system.

Let us add an additional particle of wave vector k (k > kF) to the “ideal” ground state, and then switch on the interaction. In this way we obtain an eigenstate of the real system; we shall say that we have added a quasi particle of wave vector k to the real ground state. We shall see later that the lifetime of the state thus defined is long only in the immediate neighborhood of k = kF. The concept of a quasi particle is therefore valid only near the Fermi surface; this is an essential aspect of the problem which is important always to keep in mind.

Similarly, we define a quasi hole of wave vector k (k < kF) by referring to the state of the ideal system in which we have removed a particle of wave vector k. This definition is easily extended to states containing several quasi particles or quasi holes, on condition, however, that these be all in the neighborhood of the Fermi surface. The same function n(k) which characterizes the states of the ideal system thus allows us to characterize the real states; it now gives the distribution of quasi particles, no longer that of bare particles.

Note that quasi particles correspond to k > kF, quasi holes to k < kF; the distribution of quasi particles in the ground state, n0(k), is still given by Fig. 1. The notion of a Fermi surface remains. The excitation of the system is measured by

[image: 005]

For the notion of the quasi particle to make sense, δn must be alapreciable only in the neighborhood of k = kF. [n0(k) is defined only in this region.] It is tempting to assert that the ground state is made up of N quasi particles located in the interior of the Fermi surface; this makes no sense, since most of these quasi particles are poorly defined. In summary, a quasi particle is just an elementary excitation in the neighborhood of k = kF; it gives no information about the ground state.

The energy of the real system is a “functional” of n(k), which we write E[n(k)]. For an ideal gas, this functional reduces to the sum of the energies of each particle. In the real case it is, in general, extremely  complex. If we alter n0(k) by an amount δn(k), the variation of the energy, to the first order in δn, is given by[image: 006]

(1—2)

where e = δE/δn(k) is the first functional derivative of E with respect to n(k). For k > kF, εk is the variation in the energy when a quasi particle of wave vector k is added. εk is thus the energy of the quasi particle. Let us at once make a fundamental observation: εk is defined as a derivative oi the energy with respect to the distribution function. This in no way predicts the value of the total energy. In particular, the energy of the whole system is not equal to the sum of the energies of the quasi particles.

For k = kF, εk is the energy acquired in adding one particle at the Fermi surface. The state thus obtained is just the ground state of the (N + 1)-particle system. We can therefore write

[image: 007]

The quantity μ = ∂E0/∂N is usually called the “chemical potential.” We shall return later to this theorem.

Equation (1—2) implies that the energy of the quasi particles is an additive quantity. This result is only approximate and is valid if terms of order (δn)2 can be neglected—that is to say, if the number of quasf particles added or removed is small compared with N. Actually, this conclusion is physically obvious; if there are few quasi particles, there is a large probability that they will be far from one another and thus that they will not interact; their energies simply add. In this argument we have set aside the possibility of bound states (such as the exciton, made up of an electron and a “hole” revolving around one another); in any case such bound states have no equivalent in the ideal gas and, as a consequence, remain beyond the scope of the present discussion. In practice, we shall see that at low temperatures there are always few quasi particles. (1-2) is thus generally valid, and the definition of εk is unambiguous.

There exists a whole class of gross phenomena for which the knowledge of εk is sufficient. But, in general, we need more precise details—for example, the variation of εk with the distribution function. We must then push (1—2) one step further by writing[image: 008]

(1—3)

f(k,k‘) is the second functional derivative of E. By construction we have[image: 009]

[image: 010] is the energy of the quasi particle k when it alone is present. When it is surrounded by a gas of other quasi particles of density δn(k‘), its energy becomes[image: 011]

(1—4)

f(k,k‘) thus characterizes the variation of εk with the distribution function n(k). Note that since the summation over k introduces a factor Ω, f(k,k’) must be of order 1/Ω.

It is evident that the quasi particles are fermions, since only one can be put into a given level. This single hypothesis is sufficient for applying the classical methods of statistical mechanics (for example, for calculating the number W of possible configurations, the entropy S = x log Wmax). We thus find that the probability f(ε) of the existence of a quasi particle of energy ε is equal to[image: 012]

(1—5)

where μ is the chemical potential, which is adjusted so as to normalize the total number of quasi particles to N. When T → 0, f(ε) tends toward the step function of Fig. 1. Note that at appreciable temperatures ε begins to depend on T, through the distribution function n(k). The relation (1—5) then becomes much less trivial.

Until now we have ignored the spin of the particles. It is very easy to include it in our formulation. In fact, spin plays the same role as momentum in the classification of the levels of the ideal gas. A quasi particle is therefore characterized by its wave vector k and its spin σ. Hereafter we shall often simplify the notation by replacing the pair (k, σ) by the single symbol k. The state of the system is characterized by a distribution function n(k), the energy being given by

[image: 013]

(1—6)

Let us assume the system to be isotropic (in particular, without a magnetic field). For reasons of symmetry, the energy ε(k) then cannot depend on the spin σ. Similarly, the interaction between two quasi particles depends only on the relative orientation of their spins σ and σ‘. 


We can therefore write

[image: 014]

(1—7)

The term fe, which appears only when the spins are parallel, expresses the exchange interaction between the two quasi particles.




2. The Properties of Quasi Particles. Macroscopic Applications 


a. Velocity; effective mass; specific heat 

Until now we have defined a quasi particle by its momentum ħk, its spin σ, and its energy εk. In order to find its velocity vk, we form a wave packet, and we calculate the corresponding group velocity. The standard result is:[image: 015]

(1—8)

(the index α refers to one of the three components of the vector vk). For an isotropic system, vk and k are collinear; we can then write[image: 016]

(1—9)

m* is the effective mass of the quasi particle. In principle m* depends on k; we shall be interested only in its value at k = kF.


Starting with m*, we can easily calculate the density of quasi-particle states per unit energy in the neighborhood of μ. The result is the same as for an ideal gas, with the sole difference that m is replaced by m*,


[image: 017]

(1—10)

Let us turn now to the calculation of the specific heat Cv. By definition we have

[image: 018]

The variation δ T has the effect of modifying n(k) by an amount δn which can be deduced from (1—5). Rigorously it would be necessary to take account of the fact that εk depends on n and therefore on T; this effect  is negligible at low temperatures. Knowing δn, we can find δE by means of the relation

[image: 019]

The calculations cause no difficulties. If we limit ourselves to terms linear in T, we find that the specific heat is given by[image: 020]

(1—11)

(where we recall that κ is the Boltzmann constant).

The specific heat [Eq. (1—11)] takes into account only the thermal excitation of quasi particles. To be complete, we must add to it the corrections arising from the thermal excitation of more complex levels, which have no equivalents in the ideal gas (phonons, bound states, etc.). In general, the contribution from these “pathological” states to the specific heat is negligible at low temperatures. (We know, for example, that the phonons contribute a T3 term.) It is therefore reasonable to use measurements of the specific heat to calculate m*.



b. Compressibility of the fermion gas 

The ground-state energy of the system E0, is a function of the particle number N and the volume Ω. For a macroscopic system, we can write[image: 021]

(1—12)

where N/Ω = ρ is the particle density. The pressure can be found from E0 by the relation[image: 022]

(1—13)



The compressibility of the system is then defined as

[image: 023]

An elementary calculation shows that

[image: 024]

(1—14)

On the other hand, we have seen that the chemical potential μ is related to E0 by

[image: 025]

(1—15)

Comparing (1—14) and (1—15), we see that

[image: 026]

(1—16)

The calculation of the compressibility is thus found to reduce to that of dμ/∂N.


The compressibility χ is directly related to the velocity of sound propagation at low frequency (by “low frequency” we mean a period much longer than the collision time of the quasi particles). Under these conditions, the restoring force can be obtained from χ by a purely macroscopic argument. It is found that the velocity of sound, C, is given by

[image: 027]

(1—17)

Let us now turn to the calculation of dμ/∂N. A variation δN in the number of particles is equivalent to a variation δkF in the Fermi wave vector, deduced from (1—1),

[image: 028]

(1—18)

The corresponding variation δn(k) in the distribution function thus takes the following form (assuming δN > 0):

[image: 029]

(1—19)



Note: To generalize this calculation to an anisotropic system, it is preferable to proceed in the opposite direction and to take μ as the independent variable. In each direction, kF is a function of μ; if dkF/dμ is known in all directions, we can follow the deformation of the Fermi surface as a function of μ. Since N is proportional to the volume enclosed by this surface, we can derive Nd/dμ. and then the compressibility.



When kF varies, μ changes for two reasons:

Because εk depends on k, resulting in a correction (∂ε/∂|k|)∂kF.

Because εk depends on the distribution function, which itself changes when kF varies.

Adding these two contributions, we find

[image: 030]

(1—20)

Let us use (1-19) and transform the sum over k‘ into an integral. For an isotropic system, f(k,k’) depends only on the angle θ between the directions k and k‘ (let us recall that k and k’ are both on the Fermi surface). We thus obtain[image: 031]

(1—21)

where dγ‘ is the element of solid angle. From this we find[image: 032]

(1—22)



The velocity of sound is given by

[image: 033]

(1—23)

This result is rigorous. If the interaction between quasi particles were neglected, the second term would disappear and we should have an erroneous result.

Here we see the first example of an important phenomenon: although in the expansion (1—6) the interaction term seems to be negligible, in practice it gives a contribution as important as the linear term. The latter, apparently of first order, actually gives a total contribution which is of second order. It is to the great credit of Landau that he noted that, as a consequence, it was necessary to carry the expansion one step further.

In the weak coupling limit, f → 0, and m* → m. The velocity of sound then tends to ħkF/m[image: 034]. This is a well-known result.


c. Current carried by a quasi particle 

During the adiabatic switching on of the interaction, the total number of particles remains constant. As a consequence, a quasi particle contains one bare particle, distributed among a large number of  configurations. If these particles are electrons, we shall say that the quasi particle has a charge e (we shall see in the following that the effect of screening is to push this charge to the boundaries of the system; the charge of a quasi particle is not localized).

Let Jk be the current carried by the quasi particle k. Jk is a particle current (for electrons, the electric current is eJk). It is tempting to say that Jk is equal to the velocity vk of the quasi particle; this is false for a system of interacting particles. In fact, we then neglect the “backflow” of the medium around the quasi particles. This effect is illustrated in Fig. 2; the quasi particle moves forward with a velocity vk; the neighboring particles move away from it, which produces a current in the reverse direction, with a roughly dipolar distribution. The current Jk is the sum of two terms: the current vk of the quasi particle and the backflow of the medium.

To calculate Jk, we first need a precise definition of the current. In an arbitrary state |ϕ〉 the current J is given by[image: 035]

(1—24)

where pi is the momentum of the ith particle and m its mass (bare, of course). To measure J, we put ourselves in a reference frame moving with respect to the system with the uniform velocity ħq/m. Let us emphasize that we are in no way deforming our system; we are simply looking at it from a moving reference frame. The Hamiltonian in the rest frame can be written

[image: 036]

(1—25)

Let us assume that V depends only on the positions and the relative velocities of the particles; it is not modified by a translation. In the moving   system only the kinetic energy changes; the apparent Hamiltonian becomes

[image: 037]

Figure 2

[image: 038]

(1—26)

Let us take the average value of (1-26) in the state |ϕ〉, and let Eq be the energy of the system as seen from the moving reference frame. When q tends to 0, we find[image: 039]

(1—27)

(where α refers to one of the three coordinates). (1—27) will constitute our definition of current.

The ground state is invariant with respect to reflection; ∂Eq/∂qα is then zero, as well as Jα. Let us now consider the state containing a quasi particle k; according to (1—27), the current Jk carried by the quasi particle is given by[image: 040]

(1—28)

∂εk/∂qα expresses the variation in the energy εk, when the coordinate system is displaced with the velocity ħq/m, or, what is equivalent, when all the particles are displaced with the velocity—ħqlm. This amounts to displacing the distribution in reciprocal space by an amount—q. The situation is illustrated by Fig. 3, where the equilibrium distribution is indicated by a solid line and the distribution after translation by a dotted line.

εk varies for two reasons:a. Because the wave vector k varies by an amount—q. 

b. Because the distribution of the quasi particles has changed, with creation in region A and destruction in region B. 



Let δn(k‘) be the corresponding variation in the distribution function. The total change in εk is[image: 041]

(1—29)

 [image: 042]

Figure 3



We finally obtain

[image: 043]

(1—30)

The second term of (1—30) is precisely the backflow that we sought to determine.

Let us now calculate δn(k) for a fixed direction of k, making an angle θ with q. δn(k) is given by Fig. 4. All the properties of interest are continuous functions of |k|. We can therefore replace δn by a Dirac δ function and write[image: 044]

(1—31)

(1—30) can now be written as[image: 045]

(1—32)

which we can put in the form[image: 046]

(1—33)

 [image: 047]

Figure 4

(1—33) is a very formal expression, since the Dirac δ function makes sense only when we go over to the integral (1—32).

(1—33) is a rigorous and very general result which remains valid for anisotropic systems and even for real solids (with a periodic potential). The phenomenon of backflow manifests itself very clearly. We cannot overemphasize its importance.

Let us now concern ourselves with the particular case of a translationally invariant system. In this case the total current is a constant of the motion, which commutes with the interaction V and which, as a consequence, does not change when V is switched on adiabatically. Let us consider, in particular, the state containing one quasi particle k; the total current Jk is the same as for the ideal system.

[image: 048]

(1—34)

This result is a direct consequence of Galilean invariance. Comparing (1—34) with the general result (1—32), we obtain an identity which, for an isotropic system, takes the very simple form[image: 049]

(1—35)

(where θ is the angle between k and k‘). (1—35) should be compared with (1—22). Both are valuable for determining f.


(1-35) was first established by Landau, using a slightly different  approach. Landau assumes that the total current J is given by[image: 050]

(1—36)

where n(k) is the quasi particle distribution function. In the ground state n = n0 and J = 0. If n0 is varied by an amount δn, J is given, to first order in δn, by[image: 051]

(1—37)



Integrating the second term of J by parts, we obtain

[image: 052]

(1—38)

If we note that[image: 053]

(1—39)

we see that[image: 054]

(1—40)

(1-40) is equivalent to (1-33), since to first order in δn the quasi particle currents are additive.

Landau’s approach thus gives the correct result. However, it has the inconvenience of involving the distribution function n(k), which makes no sense; only ∂n(k) is defined unambiguously. Still, his approach remains very suggestive.


d. Spin-dependent properties: Pauli paramagnetism 

In the presence of a magnetic field H, a free particle has its energy displaced by βσzH, where β = eℏ/mc, σz = ± [image: 055] is the component of spin along H. In the case of a real gas, we must add to this displacement a correction, arising from the fact that the magnetic field modifies the distribution function n(k), and therefore the quasi particle energies. Let  δn(k) be the variation in n caused by the magnetic field. The variation in the energy of the quasi particle k can then be written

[image: 056]

(1—41)

We shall see that δε(k) has the following form,[image: 057]

(1—42)

where η is a positive constant. This expression is odd in σz. It follows that the distribution function takes the form indicated in Fig. 5, where δkF is given by.

[image: 058]

(1—43)

Note that the average value of kF remains constant to the order considered (in other words, the variation δμ in the chemical potential is of order H2 and therefore negligible).

By using (1-42) and (1-43), we can write Eq. (1-41) in the form

[image: 059]

(1—44)

Let us now refer to the expression (1-7) for f. We see that only the second term contributes. The relation (1-44) finally reduces to[image: 060]

(1—45)

which gives η directly.

Let us now turn to the calculation of the magnetic moment M, and thus of the susceptibility per unit volume, χM. We have[image: 061]

(1—46)

from which we find, referring to Fig. 5,

[image: 062]

(1—47)

[image: 063]

Figure 5

Combining (1-45) and (1-47), we finally obtain[image: 064]

(1—48)

which allows us to express the magnetic susceptibility as a function of m* and fe.

Before leaving this question, let us point out that, in the absence of an exchange interaction (fe = 0), χM can be very simply expressed as a function of the coefficient α in the specific heat

[image: 065]

Namely, we have

[image: 066]

In practice, the exchange interaction is always present for a real gas, so that the above equation is not valid.



e. Stability of the ground state 

We assumed, at the beginning of this chapter, that the distribution of the ground state was the same as that of an ideal gas—that is to say, an isotropic step function. This assertion will be valid only if the state so defined is stable, corresponding to a minimum of the free energy,

[image: 067]

This leads us to study the stability of the Fermi surface. Let us define a direction in k space by its polar angles θ and ϕ, and let us displace the Fermi surface of spin σ in this direction by an infinitesimal amount u(θ, ϕ, σ). According to (1-3), the resulting variation in free energy is given by

[image: 068]

(1-49)

Note that the first term in (1-49) is actually of order u2, since (εk—μ) is zero for k = kF. The integration over k and k‘ is easy; it leads to[image: 069]

(1—50)

where ξ is the angle between the directions (θ,ϕ) and (θ‘,ϕ’).

In order to analyze this expression, we decompose u and f into spherical harmonics. For simplicity we assume u and f to be independent of the spin variables; thus we set

[image: 070]

(1—51a)

The coefficients fl are obtained by the well-known formula

[image: 071]

(1—51b)

Inserting these expansions into the expression for δF and using the orthonormality relations for the spherical harmonics, we obtain the relation

[image: 072]

(1—52)

For δF to be always positive, it is necessary and sufficient that all of the following conditions be satisfied:

[image: 073]

(1—53)

(For l = 0 and l = 1 these conditions imply, respectively, that C2 and m are positive.) If f(k,k‘) depends on spin, we must also concern ourselves with the separation of the Fermi surfaces of the two spins; this brings in a new set of stability conditions, analogous to (1-53). The first of these conditions (l = 0) ensures that the magnetic susceptibility is positive —that is to say, that the system is not ferromagnetic.




3. Transport Properties of the Quasi Particles: Collective Modes 


a. Nonuniform distributions of quasi particles 

Until now we have been interested only in homogeneous systems, whose wave functions are translationally invariant; the state is completely characterized by the distribution function δn(k). Let us now consider an inhomogeneous excited state; the properties of the system vary from point to point. We shall assume that this deformation occurs on a macroscopic scale; in other words, the state remains homogeneous over a microscopic distance, such as the average interparticle spacing or the range of the forces. We can then define a local distribution function δn(k,r), giving the quasi-particle distribution in a unit volume centered at the point r. (The discrete values of k refer to this same unit volume.)

Again the energy is a functional of the distribution function δn(k,r). By analogy with (1—3), we shall write[image: 074]

(1—54)

where f is now defined for unit volume. The ground state being translationally invariant, the energy ε0(k,r) is independent of r, equal to ε[image: 075], whereas the interaction f(k,r; k‘,r’) depends only on the distance (r - r‘).

At this stage, we must distinguish between two cases. Let us first consider short-ranged forces; the interaction f decreases rapidly as soon as |r—r‘| is greater than the range. In the interval where f is appreciable,  δn(k,r) and δn(k,r’) are practically equal. We can then write

[image: 076]

(1-55)

If a is the range of the interaction and Δr the scale of the inhomogeneities, (1-55) involves an error of order a/Δr. For macroscopic phenomena, this error is negligible.

(1-55) can be written in the form

[image: 077]

(1—56)

At each point the system is thus quasi-homogeneous and is described by Eq. (1-3), with a local distribution function δn(k,r). We can define an energy density δE(r), the total energy being obtained by integrating δE over all space. Note that any two different regions of the system are completely independent.

The situation is different for long-range forces, such as the Coulomb interaction. In this case very widely separated quasi particles can interact, and we can no longer reduce (1—54) to (1-55). In order to avoid this difficulty, Silin has proposed the following device. We decompose the Coulomb interaction into two parts:1. Electrostatic interaction between the average densities at the points r and r‘. The corresponding contribution to (1-54) can be written as[image: 078]

(1—57)

(where e is the charge of the particles). This term is of infinite range; we shall treat it explicitly by introducing an electric field due to space charge, ℰH, given by[image: 079]

(1—58)

We shall consider ℰH as an external force, tending to drive the quasi particles. We are thus led to solve simultaneously the transport equation (see the following paragraphs) and Poisson’s equation (1-58).



2. To the “Hartree” contribution (1-57), we must add corrections expressing the correlations between particles. These correlation corrections are short-range, the range being of the order of the screening length. We can thus treat them by Landau’s method and express them in the form of an interaction f(k,k‘). In other words, density fluctuations are negligible when viewed from a distance; at large separations only the interactions between the average space charges remain. At short distances fluctuations give rise to important corrections, described by f(k,k’).



The Landau theory thus applies to any inhomogeneous system, whatever the nature of the forces may be, on condition that the deformtion occur on a macroscopic scale.


b. Boltzmann equation and applications 

Let us consider a quasi particle k located at the point r. It has an energy

[image: 080]

(1-59)

In order to study the scattering of these particles, Landau proposed considering ε(k,r) as the classical Hamiltonian of a quasi particle, thereby neglecting the interaction between several quasi particles. In this scheme the interaction has only an average effect on the energy which is absorbed into the definition (1-59) of ε(k,r). This is a very bold hypothesis. We shall see in Chap. 6 that it is rigorously correct; on a macroscopic scale, fluctuations are negligible.

Hereafter, each quasi particle is an isolated entity, analogous to the molecule of a dilute gas. Its velocity v has components

[image: 081]

Furthermore, the variation of ε with r is equivalent to a force ℱ of components[image: 082]

(1—60)

ℱ is a diffusion force which tends to push particles towards regions of minimum energy.

To study the time development of the distribution function n(k,r), we count the number of particles which enter and the number which leave an element of volume in phase space (k,r). The calculation is a standard one and leads to the well-known result[image: 083]

(1—61)

(1-61) is the Boltzmann equation, which regulates the “flow” of quasi particles in phase space.

In the form (1-61), our description of transport phenomena still lacks an essential element—collisions between quasi particles. In fact, the Landau theory systematically ignores the existence of real transitions from one state to another. In certain cases, such as thermal conductivity and viscosity, the collisions play a fundamental role, since they limit the response of the system to the external excitation. We must therefore take them into account. We shall rewrite (1-61) in the form[image: 084]

(1—62)

where I(n) is the “collision integral.”

At low temperatures, collisions are rare (this is what justifies the use of the Landau theory). The system of quasi particles thus has all the properties of a dilute gas, with, however, a new feature: the diffusion force—∂ε/∂r.

Let us now assume the system to be subjected to an external force. This force acts on the quasi particles and, as a consequence, modifies the Boltzmann equation. In general, the real force on the quasi particle is different from that on the bare particle and remains unknown (this is a manifestation of more or less complicated screening.) Fortunately, electromagnetic forces do not have this problem. Let us consider a gas of particles of charge e and apply an external field ℰ. According to the discussion given above, we must add to ℰ the space-charge field ℰH. The local field is thus

[image: 085]

(1—63)

The force applied to each quasi particle is[image: 086]

(1—64)

(let us recall that the charge of a quasi particle is e, identical to that of a  bare particle). The effect of screening is contained in the space-charge field ℰH and does not enter into (1-64). This argument remains very qualitative; we shall prove (1-64) rigorously in Chap. 6. In any case, we must add to the Boltzmann equation the driving term due to the external force ℱ.

(1-62) is a very general equation, which allows rigorous treatment of any inhomogeneity on a macroscopic scale. In general, we are restricted by our ignorance of the collision integral I(n). In the following paragraphs, we shall treat some applications for which I(n) does not appear. Let us point out, without going into more detail, that Abrikosov and Khalatnikov have analyzed the problem of collisions and have calculated the thermal conductivity and the viscosity of a Fermi liquid (He3, in their case).

In its present form (1-62) suffers from the inconvenience already mentioned above; it involves the distribution function n(k) throughout k space, including regions in which it makes no sense. Actually this difficulty is only an apparent one. Let us write[image: 087]

and consider first an isolated system, without external forces. Only δn depends on the time t and the position r. To first order in δn Eq. (1-62) can then be written as[image: 088]

(1—65)



According to (1—59) we have

[image: 089]

(1—66)

The linearized Boltzmann equation then takes the final form

[image: 090]

(1—67)

Only the quantities δn and δ(εk—μ) are involved. We are automatically limited to the immediate neighborhood of the Fermi surface. This conclusion remains true if we introduce an external force ℱext (the driving term due to ℱext contains a factor ∂n0/∂kα).


c. Definition of fluxes—continuity equation 

At each point the quasi particle density varies by

[image: 091]

(1-68)

The density of bare particles varies according to the same law, since the quasi particles and the bare particles have the same Fermi surface—that is to say, the same density. Furthermore, the total current density is given by (1-40) and (1-33),

[image: 092]

(1—69)

Conservation of the total number of particles implies the continuity equation,

[image: 093]

(1-70)

We are going to verify this relation.

In order to do this, let us sum (1-67) over all values of k. The collision integral gives no contribution, since each collision conserves the total number of particles. Let us interchange the indices k and k‘ in the interaction term. We thus obtain

[image: 094]

(1—71)

Comparing this with (1—69), we see that (1-71) is just the desired continuity equation.

Let us now consider the energy density E, or, more exactly, the variation δE from the ground-state energy E0. To first order we have

[image: 095]

Energy flows within the system; at each point one can define an energy  flux Q(r), related to δE by the continuity equation

[image: 096]

(1—72)

We propose to find an expression for Q. In order to do this, let us multiply (1-67) by ε[image: 097] and sum over k. The collision integral gives no contribution, since collisions conserve energy. We thus obtain

[image: 098]

(1—73)

The energy flux can then be written[image: 099]

(1—74)

where the flux Qk of a single quasi particle is given by[image: 100]

(1-75)



In principle, Qk is different from Jkε[image: 101]. If, however, we remain in the immediate vicinity of the Fermi surface, we have ε[image: 102] ≈ μ, so that[image: 103]

(1-76)

which seems quite obvious. It would be interesting to make a more careful analysis and to study the transport of free energy, F = E—μN. This is difficult when one is in the vicinity of the Fermi surface; we shall therefore put this problem aside.

An analogous method allows us to calculate the “momentum-flux” tensor. We leave to the reader the problem of finding an expression for it.


d.* Response of an electron gas to an electric field 

Let ℰ be the external field applied to the system. The local field ℰL is given by (1-63). We shall assume, for simplicity, that ℰ is periodic in space and time, having the form

[image: 104]

The deformation δn(k,r) varies according to the same law. For Landau’s theory to be applicable, the wave vector q must be much less than kF and the frequency ω much less than μ—in other words, we limit ourselves to macroscopic perturbations. We shall assume, in addition, that the frequency ω is much greater than the collision frequency ν, so that we can neglect the collision integral I(n). At low temperatures, ν varies as T2; it is therefore perfectly possible to realize the conditions

[image: 105]

(1-77)

In this restricted region, the Boltzmann equation (1-62) becomes (after linearization)[image: 106]

(1-78)

(1-78) is an integral equation whose solution is in general difficult. This is a new feature, arising from the interaction term f(k,k‘), which does not appear in the usual treatments of the Boltzmann equation.

Let us assume that the solution δn(k) is known. The electric current density I(r,t) is then given by[image: 107]

(1—79)

I is related to ℰL by an equation of the form[image: 108]

where σαβ(q,ω) is the conductivity tensor. In principle, (1-78) and (1-79) allow us to calculate σ for small values of q and ω, whatever the ratio qvF/ω may be. We shall discuss this question in detail in Chap. 6. For the moment, we treat only some simple cases.

Let us first assume that q = 0—the perturbation is uniform throughout the system. The solution of (1-78) is then trivial,

[image: 109]

(1—80)

Inserting this into (1-79), and assuming that Jk = ℏk/m (true for translationally invariant systems), we obtain the conductivity,

[image: 110]

(1—81)

Note that it is m, and not m*, which enters (1-81). This result is well known and can be proved directly. It is a direct consequence of translational invariance.

Let us now consider the other limit, ω/q → 0. A prior, (1-78) does not seem to have a simple solution. However, let us define

[image: 111]

(1—82)

The transport equation becomes

[image: 112]

(1—83)

On the other hand, expression (1-33) for Jk allows us to write

[image: 113]

(1—84)

The total current density I can then be put into the form

[image: 114]

(1—85)

Thus, to obtain I, we can work directly with δn; we have a choice between the two expressions (1-79) and (1—85).

When ω → 0, Eqs. (1—83) and (1-85) are required. From (1-83) we obtain

[image: 115]

(1—86)

When ℰ is parallel to q (longitudinal field), (1-86) takes the very simple form

[image: 116]

For reasons of symmetry, I is zero. Physically, the field ℰ is equivalent to a static space charge. The gas polarizes so as to screen this external charge. In equilibrium the charge density is fixed, and the current I is therefore zero.

When ℰ is perpendicular to q, the situation is altogether different. In this case the second member of (1-86) is singular when q·vk = 0; there is then a resonance between ℰ and the system and hence real transitions and dissipation of energy. To avoid this problem, we must switch on the field adiabatically, introducing into ℰ a factor eηt, where η is a positive infinitesimal (see Chap. 2). This has the effect of modifying the denominator of (1-86), which becomes

[image: 117]

(1—87)

Again, the principal part gives no contribution to the current, for reasons of symmetry. Only the δ function enters, giving a conductivity

[image: 118]

(1—88)

This result is real, and therefore purely dissipative. Physically, these conditions are realized in the anomalous skin effect. Note that the mass does not enter (1-88); the skin effect is therefore the same, whether or not the Coulomb interaction between electrons is taken into account. This is a result of great practical importance.

Let us emphasize that these results are rigorous, to within an error of order q/kF or ω/EF. These examples demonstrate the power of the Landau theory, which, with a very simple formalism, describes a large number of phenomena.

Before leaving this problem, let us point out that δn and δn have a very simple physical interpretation. These two quantities always contain a factor δ(εk—μ). We can therefore set

[image: 119]

(1—89)

Actually, δ(εk—μ) is just a convenient approximation for a unit step function (see Fig. 4). The correction δn(k) reduces to a deformation of the Fermi surface, n always remaining equal to either 0 or 1. Let S[image: 120] be the Fermi surface at equilibrium, characterized by the relation[image: 121]

and SF the Fermi surface in the presence of the perturbation δn(k). It is clear from (1-89) that u(k) is just the displacement of the Fermi surface of spin σ in the direction k with respect to S[image: 122].

It remains to interpret ū. For this purpose we note that the quasi-particle energy is actually

[image: 123]

(1—90)

For each spin direction, let us define a local Fermi surface S[image: 124] by the condition

[image: 125]

In any direction k, the displacement uL(k) which takes S[image: 126] into S[image: 127] is of magnitude

[image: 128]

(1-91)

[image: 129]

Figure 6

Comparing Eqs. (1-82), (1-89), (1-90), and (1-91), we can easily see that[image: 130]

(1—92)

ū(k) is thus the displacement of the Fermi surface of spin σ with respect to its local equilibrium position.

This very ingenious argument is due to Heine, who emphasizes, moreover, that Eq. (1-83) then becomes very natural; the diffusion terms are affected only by the local energy and therefore bring in δn instead of δn.


e. Collective oscillations 

Let us now consider a neutral Fermi liquid—He3, for example—in the absence of any external force. Let δn(k) be the deformation of the gas of quasi particles; we assume it to be periodic, of wave vector q and frequency ω. We again choose ω much greater than the collision frequency ν of the quasi particles. The transport equation is then obtained by suppressing the driving field in (1-78),



 

 
	 
		 
	

	 
		 
	

	 
		 
	

	 
		 
	

	 
		 
	    		 
	   		 
	    		 
		
	



 
	 










































































































































































































































































