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Introduction



This Study and Revision Guide has the following characteristics:





1.  The content is in the same order as the official IB Physics syllabus wherever possible. All the ‘Understandings’ and ‘Applications and skills’ in the syllabus have been used among the headings. All equations and data in the IB Physics Data booklet have been highlighted (in bold green font) in the guide.



2.  Essential knowledge has been included as Key Concepts (mostly) on the right hand side of the pages.



3.  All other important items for revision have been included as bullet points.



4.  Also included are Common mistakes and Expert tips (helpful knowledge on the ‘edge’ of the syllabus, that may not be essential in a first revision).



5.  When scientific terms have been introduced, they have been stressed in bold orange font and are included in a glossary, which is in the online resources.



6.  This guide contains a large number of questions within the revision material. These are designed to be a straightforward check of understanding of the concepts covered. Detailed answers are included in the online resources.



7.  Preparing for the IB Physics Diploma examination has been included as an appendix in the online resources.



8.  All revision material for the Options is to be found online.








How to use this revision guide



Preparing for an examination is not anybody’s idea of fun. But it has to be done, and the process needs to be made as manageable as possible.


Everybody is different, and every student needs to develop their own best working habits. However, teachers will mostly agree on the following advice.





1.  Know the syllabus. The headings within this study and revision guide are a close representation of the syllabus.



2.  Identify the parts of the syllabus in which you feel less confident. Don’t waste time revising things you already know well. Concentrate on your weaknesses, not your strengths.



3.  Make a schedule. Be realistic. Do not attempt to work too long at any one time. Work at regular times.



4.  Make revision an active process. Answering questions, writing, asking; not just reading or watching.



5.  Understanding is much more important than remembering. If you understand a topic well, you will not need to make much effort to remember it.



6.  Know the exam. Good exam technique is important (see online advice). Practice under examination conditions is always useful.



7.  Final revision. This may be best as a simple review of the Key Concepts and equations highlighted in this Guide.








1 Measurement and uncertainties



1.1 Measurements in physics


Essential idea: Since 1948, the Système International d’Unités (SI) has been used as the preferred language of science and technology across the globe and reflects current best measurement practice.


Fundamental units





•  The following are the fundamental units of the SI system of measurement:







    •  mass: kilogram (kg)


    •  length: metre (m)


    •  time: second (s)


    •  electric current: ampere (amp) (A)


    •  amount of substance: mole (mol)


    •  absolute temperature: kelvin (K)


    •  (A seventh fundamental unit, the candela, used for light intensity, is not used in this course.)








•  The fundamental units are all completely independent of each other, and all scientific measurements can be expressed in terms of these units (only). (Fundamental units are sometimes called base units.)



•  Since all scientific measurement is based on these units, they require very precise definitions. These definitions are not part of the IB Physics course, except for the mole and the kelvin, which are explained in Chapter 3.







[image: ]


Expert tip


As physics has developed and measurements have become more accurate and precise, the definitions of fundamental units have evolved. The metre was originally defined as one ten-millionth of the distance from the North Pole to the equator, but that is certainly not precise enough for modern science. The metre is now defined as the length of the path travelled by light in vacuum during a time interval of [image: ] of a second. (Neither of these definitions need to be remembered!)
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Derived units





•  Derived units are combinations of fundamental units. For example the derived unit of density is kg m–3. Some derived units have their own name, for example, the unit of pressure, N m–2, is called the pascal, Pa. These units are explained whenever they are introduced.



•  Sometimes physicists use units that are not part of the SI system, for example years (y), electron volts (eV) or kilowatt-hours (kWh). When such non-SI units are used it is important to be able to convert between the units and the SI units for the same quantity. For example, 1 kWh = 3.6 × 106 J.



•  The accepted format for writing derived units is, for example, W m–2 for watts per square metre, and not W/m2.





Scientific notation and metric multipliers





•  Physics calculations can vary in scale from everyday life, to the incredibly small (atoms), to the astronomically large (distant galaxies).



•  A consistent way of presenting data (a scientific notation) is needed which can cope with such enormous variations.





Using scientific notation and metric multipliers





•  Values in science are commonly expressed using scientific notation, for example 3.9820 × 104, rather than 39 820.



•  There should always be one (non-zero) digit before the decimal point. Zero(s) placed at the end of the number should have the same importance as any other digit.



•  In everyday conversation we use words like thousand and million to help represent large numbers. Science uses a wide range of multipliers and the metric multipliers that may be used in the course are shown in Table 1.1.




Table 1.1






	Prefix

	Abbreviation

	Value






	peta

	P

	1015







	tera

	T

	1012







	giga

	G

	109







	mega

	M

	106







	kilo

	k

	103







	deca

	da

	101







	deci

	d

	10−1







	centi

	c

	10−2







	milli

	m

	10−3







	micro

	μ

	10−6







	nano

	n

	10−9







	pico

	p

	10−12







	femto

	f

	10−15














Significant figures





•  Significant figures are all the digits (including zeros) used in numerical data to have meaning.



•  All the digits used in scientific notation are significant figures. For example 3.48 × 106 has three significant figures.



•  The number of significant figures used in data should represent the precision of that data.
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Common mistakes


When data is not presented in scientific notation, the significance of zeros is often unclear.
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Using SI units in the correct format for all required measurements, final answers to calculations and presentation of raw and processed data
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QUESTIONS TO CHECK UNDERSTANDING





1  Express the following derived units in terms of fundamental units:







    a  the newton


    b  the coulomb


    c  the volt


    d  the radian.








2  Write the following numbers in standard notation:







    a  823.79


    b  0.0002840


    c  2








3  Convert the following into SI units:







    a  23 °C


    b  19.3 kWh


    c  38 eV


    d  50 km h−1



    e  1 year.



4  a  Express 2.4 × 1012 W in i kW, ii MW, iii GW.


    b  Express in amps: i 347 mA, ii 78.4 nA.








5  Express 3.826 to:







    a  3 significant figures


    b  2 significant figures


    c  1 significant figure.
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Estimation



Estimating quantities to an appropriate number of significant figures





•  It is an important skill to be able to make reasonable estimates of various quantities (and give them to a sensible number of significant figures), and to use such estimates to make comparisons between quantities to the nearest order of magnitude.






Orders of magnitude





•  When quantities are quoted to the nearest power of 10, it is called giving them an order of magnitude.
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Expert tip


Consider, as examples, the numbers 279, 579 and 379. The number 279 to the nearest order of magnitude is 100 (102) and 579 to the nearest order of magnitude is 1000 (103). The number 379 is closer to 100 than 1000, so it may seem sensible to say that its nearest order of magnitude is 100 (102). However, since log 379 = 2.58, the nearest order of magnitude is 103.
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Quoting and comparing ratios, values and approximations to the nearest order of magnitude
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QUESTIONS TO CHECK UNDERSTANDING





6  Without making any calculations, estimate order of magnitude values for the following:







    a  the mass of a chicken egg


    b  the thickness of a page in a book


    c  the temperature of a flame used in cooking.








7  Estimate the volume of water in the volcanic lake shown in Figure 1.1.
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8  Make calculations to estimate:







    a  the pressure underneath the wheel of family car


    b  the time it takes a light photon to travel across a room


    c  the electrical resistance of a domestic iron.








9  Give order of magnitude ratios for the following:







    a  mass of a family car / mass of a small coin


    b  power provided by a large power station / power provided by a torch battery


    c  the period of a long pendulum / the period of the sound from a referee’s whistle.
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NATURE OF SCIENCE


Common terminology


Scientific and technological information is now quickly and easily transferred around the world, mostly using SI units and internationally agreed mathematical and scientific symbols. In earlier centuries things were very different and communication in different languages, using inconsistent symbols and units were significant problems inhibiting scientific progress.


Improvement in instrumentation


No matter how precise and accurate a measurement may be, there is always the possibility that future developments in instrumentation and technique will result in even greater precision. Because of this, the definitions of fundamental units have been improved in the past and this may well continue in the future.


Certainty


Many people believe that science deals with facts, truth and certainty. In practice, most scientists will readily admit to the opposite: they are 100% certain of very little, and all measurements have a measure of uncertainty.
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1.2 Uncertainties and errors


Essential idea: Scientists aim towards designing experiments that can give a ‘true value’ from their measurements, but due to the limited precision in measuring devices, they often quote their results with some form of uncertainty.


Errors, accuracy and precision





•  It is an aim of good experimental techniques and apparatus to keep errors and uncertainties as small as possible.



•  We will assume that errors in measurement are due to limitations of equipment or the techniques used, and not due to mistakes made by the person carrying out the experiment.



•  A single measurement which has only a small error is described as being accurate. If a set of repeated measurements of the same quantity has an average which is close to the ‘true’ value, then it is described as accurate, even if individual readings are not.



•  In scientific research ‘true’ values will not usually be known and this means that the errors are also unknown. The accuracy of results may then be judged partly from the uncertainty in measurements.



•  Accuracy and precision should not be confused with each other. It is possible for measurements to be precise but not accurate (or accurate but not precise). The difference is represented in Figure 1.2. Good experimental results are both accurate and precise.
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Key concepts


An error occurs in a measurement when it is not exactly the same as the ‘true’ value.


A single measurement which has only a small error is described as being accurate.


The uncertainty of a measurement is the range of values within which we would expect any repeated readings to occur.


A measurement is described as precise if a similar result would be obtained if the measurement was repeated. Readings with small (random) uncertainties are precise.
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Random and systematic errors






•  Random errors occur in all experiments for a variety of different reasons, but especially because of the limitations of the apparatus being used. Random errors result in measurements which are scattered (randomly) around the ‘true’ value.



•  If the same error occurs in every measurement made using the same instrument and technique, it is called a systematic error. For example, this may be because a measuring instrument has a zero offset error. Figure 1.3 shows a zero offset error on a disconnected voltmeter.
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Explaining how random and systematic errors can be identified and reduced





•  The curved line in Figure 1.4 shows how the theoretical time for an object to reach the floor varies when it is dropped from different heights.
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•  In an actual experiment (with heavy steel spheres), student A measured the times for a height of 1.0 m. These results show accuracy because the errors are small (they are close to the theoretical value), and they are precise (repeated results are close to each other). Because the results are scattered around the ‘true’ result, they are described as random errors.



•  The results of student B’s experiment for a height of 1.6 m also show random variations, and they are precise, but not accurate. All the readings have times which are too small compared to the theoretical value. There is a systematic error in all these measurements.



•  The effects of random errors can also be reduced by taking measurements under different circumstances, so that a graph can be drawn. Drawing a best-fit line is a way of reducing random errors in patterns of results.



•  Systematic errors are not reduced by simply repeating readings. Sometimes systematic errors can be identified from the pattern of results. For example, Figure 1.5 shows the results of an experiment measuring the speed of a trolley rolling down a hill from rest. The results have produced the expected straight-line graph, but unexpectedly it does not pass through the origin, so that a systematic error is probable.
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•  If a systematic error is a result of a zero offset error (see above), the measurements can be adjusted by adding or subtracting the error from all measurements.
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Key concepts


The effects of random errors can be reduced by taking an average of repeated measurements.


Systematic errors result in measurements which are always too high or too low. They are produced by faulty apparatus or repeating poor experimental technique. Systematic errors can often be identified from graphs of results.
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QUESTIONS TO CHECK UNDERSTANDING





10  The diameter of a ball was measured five times. If the actual diameter was 19.2 cm, suggest a set of five measurements which could be described as accurate but not precise.



11  If the voltmeter shown in Figure 1.3 recorded a voltage of 5.7 V in an experiment, what was the true value of the p.d. being measured?



12  Consider the experimental results represented in Figure 1.5. Suggest a possible reason why there is a systematic error in the measurements.



13  The melting point of pure ice was measured six times with the same thermometer: 0.3 °C, 0.2 °C, 2.1 °C, 0.1 °C, 0.2 °C, 0.1 °C. Discuss the errors in these measurements.





[image: ]





Uncertainties





•  All experimental and observational data should have their uncertainties made clear to the reader, although this is often omitted for the sake of brevity and simplicity.






Collecting data that include absolute and/or fractional uncertainties and stating these as an uncertainty range (expressed as: best estimate ± uncertainty range)





•  Values for experimental uncertainty depend on the smallest division of the scale of the measuring instrument and any limitations of the apparatus or experimental techniques being used. For example, the precision produced by an electronic stopwatch should be good, but when used by hand, the uncertainty in the results may be large because of the problems of starting and stopping the stopwatch at the right instants.



•  Determining the uncertainty of a measurement often involves considering the pattern of results from repeated measurements, but it is common to see the uncertainty of a single measurement quoted, equal to the smallest division of the scale of the measuring instrument.



•  The number of significant figures used in data should represent their uncertainty (precision), but not necessarily their accuracy. For example, a result of 2.792 appears to be more precise and less uncertain than a result of 2.8 (but it could be wrong).



•  If a measurement is stated to be, for example, 5.83 (rather than 5.8 or 5.831) and no uncertainty is given, it suggests that the uncertainty may be 0.01.





Absolute, fractional and percentage uncertainties





•  A length measurement may be recorded as 4.3 cm ± 0.1 cm, meaning that repeated measurements would be expected to fall within the range 4.2–4.4 cm, with an average of 4.3 cm.



•  Sometimes it may be appropriate to express uncertainties as fractional uncertainties or percentage uncertainties. For example if a current was measured to be 3.62 A ± 0.2 A, the fractional uncertainty is [image: ] = 0.055, which is equivalent to 5.5%.



•  Uncertainties in trigonometric or logarithmic functions are not required in the IB Physics course.
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Key concepts


Uncertainties are usually quoted as absolute uncertainties in the unit of measurement, with one significant digit.


Fractional uncertainties (or percentage uncertainties) are usually needed when propagating uncertainties through calculations.


[image: ]







[image: ]


QUESTIONS TO CHECK UNDERSTANDING





14  The thickness of 80 sheets of paper was measured to be 0.93 cm.







      a  If the smallest division on the measuring instrument was 0.1 mm, what was the percentage uncertainty in the measurement?


      b  What was the thickness of one sheet and its absolute uncertainty?








15  A time measurement was recorded as 4.32 s ± 2%. Calculate:







      a  the fractional uncertainty


      b  the absolute uncertainty.








16  Standard laboratory 100 g masses were weighed on an electronic balance and their masses were found to be 99.5 g, 100.1 g, 99.7 g, 100.0 g and 100.2 g.







      a  What was i the maximum absolute uncertainty in the nominal mass, ii the percentage uncertainty in nominal mass?


      b  Determine the average mass.


      c  Suggest how the manufacturers should describe their masses.
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Propagating uncertainties through calculations involving addition, subtraction, multiplication, division and raising to a power





•  In general, a calculated result should not have more significant figures than the least precise data used in the calculation. For example: a power could be calculated from [image: ] = 1.838299791 W, using all the figures displayed on the calculator. However, the value 5.1, having two significant figures, is the least precise measurement used, so the calculated answer should also have only two significant figures (1.8 W).



•  When making calculations based on experimental measurements (raw data) with known uncertainties, we need to know how to propagate (transfer) those uncertainties through to the final answer.
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Key concepts


The uncertainties in results of calculations involving additions and/or subtractions are determined by adding absolute uncertainties.


The uncertainties in results of calculations involving multiplications and/or divisions are determined by adding fractional uncertainties.


[image: ]








•  Addition and subtraction of similar quantities: the absolute uncertainties are simply added: If y = a ± b, then the uncertainty in y, Δ y = Δ a + Δ b.







    •  For example, if a = 3.8 cm ± 0.1 cm and b = 12.3 cm ± 0.5 cm, then the uncertainty in (a + b) or (a − b) is ±(0.1 + 0.5) = ±0.6. y = a + b = 16.1 ± 0.6 cm or y = b − a = 8.5 ± 0.6 cm.








•  Multiplication or division of various quantities: The fractional (or percentage) uncertainties are added to determine the fractional (or percentage) uncertainty in the result: If [image: ], then the fractional uncertainty in y, [image: ].







    •  For example, if resistance [image: ] with ρ = (2.83 ± 0.01) × 10–8 m, L = 0.98 ± 0.01 m and A = (6.78 ± 0.05) × 10–7 m2. The fractional uncertainty in R is equal to the sum of the other three uncertainties: 0.0035 + 0.0102 + 0.0074 = ±0.0211 (or 2.11%).


    •  Usually the fractional uncertainty in a calculated answer will be converted back to an absolute uncertainty. In the previous example the resistance can be calculated to be 0.04090560472Ω (using all the digits from the calculator display). Using three significant figures, the absolute uncertainty = 0.0211 × 0.0409 = ±0.000 863Ω.


    •  The length (0.98 m) used in the calculation only has two significant figures and this then limits the final result, which can be expressed as 0.041Ω ± 0.001Ω. Note that the result and the uncertainty have the same number of decimal places.








•  Quantities raised to a power: The fractional (or percentage) uncertainty in the result equals the fractional uncertainty in the value multiplied by the power:


    If: y = an, then [image: ] (The modulus symbol is needed because a power could be negative.)







    •  For example, if y = a3, and the fractional uncertainty in a is 0.06 (6%), then the fractional uncertainty in a calculated value of y is [image: ] = 3 × 0.06 = ±0.18 (18%) (the same as when using the rule for a × a × a).


    •  If y = √a (= a½) and the fractional uncertainty in a is 0.12 (12%), then the fractional uncertainty in a calculated value of y is ±0.06 (6%).
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QUESTIONS TO CHECK UNDERSTANDING





17  What is the overall uncertainty in mass when masses of 2.5 kg ± 0.05 kg and 900 g ± 10 g are used together in an experiment?



18  The specific heat capacity of a metal can be calculated from c = [image: ].


      Determine a value for c and its absolute uncertainty if Q = 5.4 × 103 J ± 9.2 × 102 J; m = 1.000 kg ± 0.005 kg; ΔT = 19 K ± 0.5 K.



19  The volume of a cube was measured to be 3.0 ± 0.5 cm3. What was the length of one side and its absolute uncertainty?



20  The time period of a mass-spring oscillating system can be calculated from


      [image: ]. Calculate a value and uncertainty for T when m = 240 g ± 5 g and k = 120 N m−1 ± 2 N m−1.



21  Explain why the percentage uncertainty of measurements often decreases with larger values.
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Representing uncertainties on graphs






•  Most physics investigations involve identifying two variables, and observing how they are inter-connected. The results are then plotted on a graph so that any pattern can be seen and conclusions can be reached. Figure 1.6 shows an example representing data about the motion of a train.



•  Looking at this pattern of measurements, it seems obvious that there were uncertainties in the measurements, but there is no way of knowing from Figure 1.6 how large they were.







[image: ]




Error bars





•  Absolute uncertainties in measurements are represented on graphs by error bars (perhaps they would be better called ‘uncertainty bars’). Figure 1.7 shows the same data as Figure 1.6, but with error bars included. A best-fit line has been drawn which passes through all the rectangles formed by the error bars. A best-fit line like this is a way of reducing uncertainties in a pattern of results.
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•  The error bars for a certain quantity may all be the same, or they can sometimes vary in length. Sometimes uncertainties are too small to be represented by error bars.
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Key concept


Error bars are vertical and horizontal lines drawn through data points to represent the magnitude of uncertainties.
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Obtaining information from graphs





•  Gradients and intercepts of best-fit graphs can provide important information. Figure 1.8 shows a simple example: a best-fit straight line representing the variation of the total mass of a beaker and water as the volume of water was increased from 50 cm3 to 150 cm3.
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Key concept


The uncertainty in the values of gradients and intercepts calculated from straight line graphs can be determined by comparing the lines of maximum and minimum gradient that can pass through the error bars with a line of best fit.
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Uncertainty of gradient and intercepts





•  A line midway between the lines of maximum and minimum gradient is often, but not always, the line of best fit, from which best estimates of the gradient and intercept can be determined. Figure 1.9 shows an example in which, for simplicity, the error bars are not shown.
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Determining the uncertainty in gradients and intercepts
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QUESTIONS TO CHECK UNDERSTANDING





22  What are the values of the uncertainties shown in Figure 1.7?



23  Give an example of measurements of a quantity in an experiment which have variable absolute uncertainties. Explain your answer.



24  Consider Figure 1.9.







      a  Estimate the gradient of the best-fit line and its uncertainty.


      b  Estimate the intercept on the time axis and its uncertainty.
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NATURE OF SCIENCE


Uncertainties


Apart from the uncertainty in all measurements, to some extent all scientific knowledge should also be considered as uncertain. Scientists understand that there is always the possibility (perhaps small) that what is accepted knowledge today may later be found to be wrong, or a simplification of a more fundamental principle. To many, this uncertainty is a motivation and a challenge.
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1.3 Vectors and scalars


Essential idea: Some quantities have direction and magnitude, others have magnitude only, and this understanding is the key to correct manipulation of quantities. This sub-topic will have broad applications across multiple fields within physics and other sciences.


Vector and scalar quantities





•  The size of any quantity is often called its magnitude.



•  A vector quantity is represented in a diagram by a straight line in the correct direction, with a length proportional to the magnitude.



•  A vector −P has the same magnitude as the vector +P, but in the opposite direction.



•  Examples of vectors include force, momentum and gravitational field strength.



•  Examples of scalar quantities include mass, energy and time.



•  If a vector, P, is multiplied or divided by a scalar, k, the result is simply kP or P/k.
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Key concepts


A vector is a quantity that has both magnitude and direction.


A scalar is a quantity that has only magnitude (no direction).
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Combination and resolution of vectors
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Key concept


The resultant of adding two vectors can be determined in magnitude and direction from the diagonal of a parallelogram drawn to scale, as shown by the example of two forces in Figure 1.10.
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•  If the angle between two vectors is 90°, the resultant can be determined algebraically.



•  The difference between two vectors can be determined by adding the first to the negative of the second, as shown in Figure 1.11.
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Key concept


For convenience, a single vector can be resolved into two components at right angles to each other. The two components, acting together, would have the same effect as the original vector.
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•  Sometimes a single vector does not act in a direction which is convenient for analysis. If so, the vector can be resolved into two components.



•  The two components can then be considered separately and independently. Figure 1.12 is similar to a figure in the IB Physics data booklet. The two perpendicular components (vertical and horizontal in this example) of vector A are AH = A cos θ and AV = A sin θ.
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Solving vector problems graphically and algebraically
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QUESTIONS TO CHECK UNDERSTANDING





25  List two vectors and two scalars (which are not mentioned above).



26  If the force to the right in Figure 1.11 is 20 N, determine the magnitude and direction of the resultant force.



27  Calculate the resultant of these two velocities: A = 24 m s−1 to the south and B = 15 m s−1 to the east.



28  What is the mathematical difference between the two vectors (A − B) in the previous question?



29  A rope is used to pull a large box across a horizontal floor. The rope is pulled with a force of 247 N at an angle of 25° to the horizontal. Determine the vertical and horizontal components of this force.
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NATURE OF SCIENCE


Models


Many quantities in physics need to be described by their direction (often in three dimensional space), as well as their magnitude. A branch of mathematics had to be developed to deal with these quantities and how they combine with each other: the mathematical modelling of vectors.
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2 Mechanics



2.1 Motion


Essential idea: Motion may be described and analysed by the use of graphs and equations.


Distance and displacement





•  Distance, s, means the length between two points. Depending on the circumstances, a quoted distance may be in a straight line or along a path of changing direction (unit: m). Distance is a scalar quantity.



•  Figure 2.1 shows the path followed by some people walking around a park. The total distance was several kilometres, but the walk finished back at the starting point. The arrows represent the displacement from the starting point at various times. The final displacement was zero.
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•  Displacements (and other vectors) which are in opposite directions are often represented, especially on graphs, by positive and negative signs.
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Key concept


Displacement is a vector quantity defined as the distance in a straight line from a reference point in a specified direction.
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Speed and velocity





•  Velocity may be considered as speed in a given direction.



•  Speed is a scalar quantity; velocity is a vector quantity.







[image: ]


Common mistakes


Physicists generally prefer to refer to the more precise terms of displacement and velocity, rather than distance and speed, but it is easy to confuse distance with displacement, and speed with velocity. This is sometimes because the direction involved is implied (rather than stated explicitly) and does not change. For example, it may be stated simply that a car has a velocity of 15 m s–1, with the assumption that it is travelling in a straight line along a (given) road at a constant speed. However, if there is a reference in a question to the interaction of a moving object with other objects or forces, the vector natures of displacement, velocity, force and acceleration must be considered.
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Key concepts


Speed, v, is defined as the rate of change of distance with time. [image: ] (unit: m s–1).


Velocity, v, is defined as the rate of change of displacement with time. [image: ] (unit: m s–1).
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Acceleration






•  Any object that is changing the way it is moving (changing its velocity) is accelerating. This includes going faster, going slower and/or changing direction.



•  An increasing velocity is known as a positive acceleration. A decreasing velocity is called a negative acceleration, or deceleration.







[image: ]


Key concept


Acceleration, a, is defined as the rate of change of velocity with time. [image: ] (unit: m s–2).
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Determining instantaneous and average values for velocity, speed and acceleration





•  When we calculate an acceleration from a change of velocity/time, we are determining the average value acceleration during that time. However, in physics we are usually more concerned with the precise values of quantities such as speed, velocity and acceleration at an exact instant. These are called instantaneous values (rather than average values) and they can be calculated from measurements made over very short intervals of time, or from the gradients of graphs (see below).
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QUESTIONS TO CHECK UNDERSTANDING





1  X has a displacement of 520 km north of Y.







    a  Estimate the road distance that a car might need to travel to go from Y to X.


    b  A plane takes 45 minutes to fly in a straight line from X to Y. What was its average velocity?








2  Imagine you take a bicycle ride from your home and return one hour later. Explain why it would be pointless to state a value for your average velocity.



3  The velocity of object travelling at 10 m s–1 west changes to 6 m s–1 south.







    a  What is the magnitude of the change of velocity?


    b  If the velocity then changes again to 6 m s–1 north, what is the magnitude of the second change of velocity?








4  A runner completes a 200 m race along a partly curved track in an athletics stadium in a time of 22.4 s.







    a  What was the average speed?


    b  Explain why the greatest instantaneous speed must have been greater than your answer to part a.


    c  Would the magnitude of the average velocity be greater than, less than, or the same as your answer to part a? Explain.
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Graphs describing motion





•  We are mostly concerned with displacement–time, velocity–time and, less often, acceleration–time graphs.





Sketching and interpreting motion (s–t) graphs





•  In Figure 2.2, between points A and B an object is moving away from a reference point with a constant velocity [image: ]. Between points B and C the object is moving back towards the reference point with a slower constant velocity. The motion between points D and E represents an object with an even lower constant velocity moving away from the reference point, but in the opposite direction.
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•  If a speed is changing then the displacement–time graph is curved and gradients of tangents to the curve at any points represent the instantaneous speeds/velocities at those times.



•  In Figure 2.3 the curve A represents an object moving away from a reference point with an increasing velocity (positive acceleration), the magnitude of which at any time (for example, t1) may be determined from the gradient of the tangent at that time [image: ]. The curve B represents an object moving in the opposite direction with a decreasing velocity (negative acceleration).
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Key concept


The gradient of any distance–time graph represents speed. The gradient of a displacement–time graph represents velocity (in either of two opposite directions, for example up or down, or left or right).
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Expert tip


When determining the gradient of any graph, greater accuracy is obtained by using larger triangles. It is often convenient to extend lines to the axes, and triangles should always cover at least half the available range of the graph.


[image: ]





Sketching and interpreting motion (v–t) graphs
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[image: ]


Key concepts


The gradient of a speed–time graph represents the magnitude of the acceleration. The gradient of a velocity–time graph represents acceleration (in magnitude and in either of two directions).


The areas under speed–time or velocity–time graphs represent the change of distance or displacement that occurred with the chosen time interval.
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•  Figure 2.4 represents a constant acceleration [image: ]. In this example a = 1.0 m s−2. The distance travelled between the fourth and ninth seconds can be determined from the shaded area (= 48 m to 2 sig. fig.)



•  The black curved line in Figure 2.5 represents an object that is moving away from a reference point with a decreasing variable velocity. The magnitude of the acceleration at any time (like t1) can be found from the gradient of a tangent to the curve (shown in red) at that time [image: ]. The object eventually stops moving and the total distance travelled can be determined from the shaded area under the graph.
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Expert tips


The units of the area under any graph are determined by multiplying together the units used on the two scales. For example m s−1 × s has the unit of distance: m.


The simplest way to estimate the area under a curve is to determine the area of a regular geometric shape (rectangle or triangle) that has the same area (as judged by eye).
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•  One common kind of motion is that of objects moving under the effects of gravity. If air resistance is negligible (sometimes called free-fall), all masses moving in any direction close to the Earth’s surface accelerate downwards at the same rate. This acceleration is given the symbol g, and its standard value is g = 9.81 m s–2.



•  Figure 2.6 shows a velocity–time graph for an object in free-fall from rest above the Earth’s surface.
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Key concept


The change of velocity that occurs in a certain time interval can be determined from the area under an acceleration–time graph.
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QUESTIONS TO CHECK UNDERSTANDING





5  A car accelerates from rest at a uniform rate along a straight road. After 5.0 s its speed becomes a constant 8.0 m s−1. After a further 10.0 s it begins to slow down. The rate of deceleration becomes less and less, and it finally stops 25.0 s after starting.







    a  Sketch speed–time and distance–time graphs to represent this motion.


    b  What was the car’s initial acceleration?


    c  How far did the car travel in the first 15.0 s?








6  Figure 2.7 shows a displacement–time graph for a train moving along a straight track. After 4 s the train passes through a station without stopping.







    a  What was the initial velocity of the train?


    b  What was the train’s velocity after 6 s?


    c  Make a copy of the graph and add a line to represent a train travelling in the opposite direction at half the speed of the first train (the trains pass at the station).
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7  Figure 2.8 shows how the velocity of a falling object changed over a time of 5.0 s.







    a  Describe the motion.


    b  Determine the acceleration after 3.0 s.


    c  Estimate how far the object fell from rest in 5.0 s.
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8  a  Sketch a velocity–time graph for two oscillations of a swinging pendulum.


    b  Show on your sketch an area which is equal to the amplitude of the swing.








9  Sketch a displacement–time graph for a ball dropped onto the ground, which then bounces up to two-thirds of the original height.
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Equations of motion for uniform acceleration






•  The simplest kind of motion to study is that of objects moving with uniform acceleration. The symbol u is used for the velocity at the start of observation, and the symbol v for the velocity after time t. Problems can be solved using the following equations of motion for uniformly accelerated motion.



•  The first two equations are just definitions of acceleration and average velocity. The second two equations are mathematical combinations of the first two.







    •  v = u + at



    •  [image: ]



    •  v 2 = u2 + 2as



    •  [image: ]
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Expert tips


It should be stressed that the equations of motion can only be used for time periods in which the accelerations remain constant. If a motion consists of two or more sections (each with its own constant acceleration), then each section must be considered separately.


Displacement, velocity and acceleration are all vectors, such that positive and negative signs may be used to represent opposite directions. For example, for an object projected vertically upwards, if the displacement is considered to be positive and increasing, while the velocity is positive and decreasing, then the acceleration (downwards) remains constant but negative.
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Key concept


Given any three of the unknowns u, v, a, s, t it is possible to use the equations of motion to determine the other two.
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Solving problems using equations of motion for uniform acceleration
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QUESTIONS TO CHECK UNDERSTANDING





10  A car travelling at 13 m s−1 accelerates uniformly to 24 m s−1 in 4.6 s.







      a  What was the average speed during this time?


      b  How far did the car travel in the 4.6 s?


      c  The car then braked with constant deceleration to stop after another 5.9 s. How far did it travel during this time?








11  A heavy sphere was dropped from rest from a height of 2.32 m.







      a  What was its speed when it reached the ground?


      b  What assumption did you make?








12  A ball is thrown vertically upwards from a height of 2.0 m with a speed of 18 m s−1.







      a  Assuming that air resistance is negligible, what is its position after 3.0 s?


      b  What is its velocity at the same moment?








13  Explain why the equations of motion cannot be used (on their own) to determine the speed with which a steel sphere falling through water from the surface reaches the bottom of its container.
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Determining the acceleration of free-fall experimentally





•  If the time that a dense object takes to fall a short distance from rest can be measured accurately, then the equations of motion can be used to determine a value for the acceleration of free-fall due to gravity.
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QUESTIONS TO CHECK UNDERSTANDING





14  a  Explain why it was suggested that the object used in the acceleration of free-fall experiment should be ‘dense’.







      b  List one advantage and one disadvantage of using greater distances for the object to fall in this experiment.


      c  Outline a laboratory experiment to determine the acceleration due to gravity.








15  An object falls a distance of 76.2 cm ± 0.2 cm from rest in 0.40 s ± 0.01 s. What value do these results give for ‘g’ (include the absolute uncertainty)?





[image: ]





Fluid resistance and terminal speed





•  The motion of objects through the air is opposed by the force of air resistance. Similar forces arise when any object moves in any direction through any fluid and generally such forces are described as fluid resistance or drag.



•  Fluid resistance arises because the fluid has to be pushed out of the path of the moving object.



•  An object which is able to move through a fluid with low resistance may be described as streamlined.



•  The forces acting on an object falling thorough air are shown in Figure 2.16 in Section 2.2. Similar comments can be applied to the motion of objects moving through all fluids, including liquids.



•  The skydivers in Figure 2.9a have reached their terminal speed.
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Key concept


The amount of fluid resistance acting on any moving object depends on its speed, its cross-sectional area and its shape.


When fluid resistance becomes equal and opposite to the weight, a falling object will reach a constant, terminal speed.
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Projectile motion





•  Any unpowered object moving through the air will follow a trajectory (path) affected by the strength of the gravitational field and (if significant) air resistance. Such objects are often called projectiles.
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Key concept


Because these components of velocity are perpendicular to each other, they can be considered independently. The fact that they do not affect each other is very useful.
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Analysing projectile motion, including the resolution of vertical and horizontal components of acceleration, velocity and displacement





•  We know from Section 1.3 that the instantaneous velocity of any projectile can be resolved into vertical and horizontal components (vV = v sin θ, vH = v cos θ). See Figure 2.9b.
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•  The downwards component of velocity of an object projected horizontally will be exactly the same as for an object dropped vertically from the same height at the same time (assuming negligible air resistance). See Figure 2.10.
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•  Projectiles move in parabolic paths if air resistance is negligible because the horizontal component of velocity remains constant and combines with a constant vertical acceleration.



•  The equations of motion and the conservation of energy (gravitational potential energy to or from kinetic energy) can be used with the vertical and horizontal components to predict the exact motion of a freely moving projectile. Numerical questions will assume air resistance is negligible.
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Expert tip


The first steps in most projectile calculations is to use the initial vertical component of velocity to determine the time taken before the projectile reaches the ground.


[image: ]





Qualitatively describing the effect of fluid resistance on falling objects or projectiles, including reaching terminal speed





•  Air resistance is not usually negligible and Figure 2.11 shows its typical effects on a projectile.
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•  A falling object (like the skydivers in Fig 2.9a) will reach a constant, terminal speed.








•  The effects of air resistance on objects falling vertically has already been discussed.
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Key concept


Air resistance reduces speeds, heights and ranges, so that the trajectories will not be perfectly parabolic.
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QUESTIONS TO CHECK UNDERSTANDING





16  A stone was thrown horizontally from a height of 1.25 m with a speed of 18 m s−1. Assuming negligible air resistance, determine:







      a  the time before it reached the ground,


      b  the horizontal distance travelled before impact with the ground.








17  An air rifle at ground level fired a pellet at an angle of 20° above the horizontal. If the pellet left the rifle with a speed of 175 m s−1 determine the range of the pellet (the horizontal distance to the point where it impacts the ground). Assume negligible air resistance.








18  Sketch possible displacement–time and velocity–time (0–5 s) graphs for an object dropped from rest which reaches its terminal speed after 3 s. Label the vertical scales with suggested values.
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NATURE OF SCIENCE


Observations


Science is based on observations of the natural world and experiments. Detailed observations of various kinds of motion by scientists such as Galileo, Newton and others, started in the sixteenth and seventeenth centuries. These observations and experiments were essential for the development of many fundamental concepts in physics and science.
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2.2 Forces


Essential idea: Classical physics requires a force to change a state of motion, as suggested by Newton in his laws of motion.


The effects of forces





•  Forces can change the motion or shapes of objects. More specifically, resultant unbalanced forces change velocities.
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Key concepts


Resultant forces cause accelerations.


It is often convenient to visualize that all of the mass of an object is at one point called its centre of mass.
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Objects as point particles





•  When considering the action of forces on various objects, in order to avoid complications, it may be convenient to assume that all of the mass of an object is effectively concentrated at one point, which is often assumed to be located at the centre of a regularly shaped object.





Representing forces as vectors





•  Force is a vector quantity and as such can be represented in a drawing by an arrow pointing in the right direction to, or from, the point of application. The length of the arrow should be proportional to the magnitude of the force.



•  Force is given the symbol F and it has the unit newton, N (explained later).



•  Figure 2.12 shows vector arrows representing the weights of two different people. The arrows have different lengths and point downwards from the centres of mass of the people.
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•  Common types of contact forces include reaction forces, tension, compression, friction, fluid resistance (drag), and upthrust.
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Expert tip


When anything is pushed or pulled, the object pushes (or pulls) back, as described by Newton’s third law (see below). This is called a reaction force and it is always perpendicular (normal) to the surface.
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•  Non-contact forces are a very important part of the study of physics: gravitational, electrical, magnetic and nuclear (strong and weak) forces are all studied in this course.



•  The force of gravity pulling a mass towards a planet is called its weight. A vector representing weight is usually drawn acting downwards from the centre of an object (as shown in Figure 2.12).



•  Weight can be calculated from mg, because, from Newton’s second law (see below), force (of weight) = mass × acceleration.



•  Also note that g may be expressed as the ratio of weight to mass. Written in this way g is known as the gravitational field strength and it has an accepted standard value, g = 9.81 N kg−1 anywhere on or close to the Earth’s surface.
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Key concept


The weight of an object is a gravitational force measured in newtons. It depends on the mass of the object and the strength of the gravitational field, g, in which it is located: weight = mg.
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Free-body diagrams






•  Free-body diagrams show all the forces acting on one object, but without showing other objects and the surroundings. It may be convenient to reduce the object to a point (as described above).



•  Figure 2.13 shows a simple free-body diagram of the two forces acting on a swinging pendulum.
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Sketching and interpreting free-body diagrams





•  Examples occur throughout the course
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QUESTIONS TO CHECK UNDERSTANDING





19  A 2.5 kg box is at rest on a slope which has an angle of 30° to the horizontal. There are three forces acting on the box. Represent these forces in a labelled free-body diagram of the box.



20  The gravitational field strength on Mars is 3.8 N kg−1.







      a  What would be the weight of a 620 g basketball on Mars?


      b  What would be its acceleration if the ball was allowed to fall freely?
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Expert tip


From Newton’s third law (see below), we know that all forces occur in pairs, but each force of the pair acts on a different object. The use of free-body diagrams avoids the confusion of showing force pairs on the same drawing.
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Solving problems involving forces and determining resultant force





•  When more than one force acts on an object we often need to determine the overall effect. As an example, consider Figure 2.13. It would be very useful to know the value of the single force which would have the same effect as the actual forces combined. This is known as the resultant force. It is sometimes described as an unbalanced force (assuming it is not zero).



•  If three forces are in equilibrium, the resultant of any two forces is equal in magnitude and opposite in direction to the third force.



•  The effects of two perpendicular components can be considered independently. Taking components can be useful if a force acts on an object at an inconvenient angle, such that we may prefer to know its effects in other directions (most commonly vertical and horizontal).
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Key concept


The resultant of two or more forces can be found using vector addition (see Section 1.3).


A single force, F, can be resolved into two components at right angles to each other: F cos θ and F sin θ.
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QUESTIONS TO CHECK UNDERSTANDING





21  a  If in Figure 2.13 the mass of the pendulum was 68 g, what was its weight?







      b  Use a scale drawing to determine the resultant force if the tension was 0.563 N and the angle between weight and tension was 145°.








22  By taking components, determine the magnitude of the frictional force which is stopping the box in question 19 from slipping down the slope.
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Solid friction





•  Solid friction is a force which opposes motion between surfaces in contact. The amount of friction between two surfaces depends on the nature and roughness of the surfaces, and the normal force acting between them. It should be noted that, in reality, frictional forces can be unpredictable.



•  Figure 2.14a shows a block and masses being pulled to the right across the surface of a table. A pair of frictional forces will occur on the surfaces of the block and the table.



•  Figure 2.14b is a free-body diagram of the block, which has been simplified to a point object. The block will accelerate to the right because there is a resultant horizontal force. If more masses are added the frictional forces will increase.
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Describing solid friction (static and dynamic) by coefficients of friction





•  We need to distinguish between the frictions that occur before and after motion begins. Before any movement occurs, we refer to static friction. The magnitude of a static frictional force varies up to an upper limit, just before motion begins.



•  Ff ≤ μsR, where μs is the coefficient of static friction.



•  After motion has started the friction is called dynamic friction. The coefficient of dynamic friction is usually less than for static friction.



•  Ff = μdR where μd is the coefficient of dynamic friction. Dynamic friction may be assumed to be independent of speed.



•  A common method for determining a coefficient of static friction involves placing an object on an inclined plane and increasing the angle, θ, until the object just begins to slip. At that point μs = tan θ.
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Key concept


The coefficient of friction, μ, is equal to the ratio:
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QUESTIONS TO CHECK UNDERSTANDING





23  Consider Figure 2.14b.







      a  If the total weight was 18 N and the frictional force was 16 N, what was the coefficient of friction?


      b  What kind of friction does this coefficient describe?


      c  Describe what would happen if the weight was increased.








24  a  A 1.2 kg wooden block was resting on an adjustable wooden sloping surface and the angle to the horizontal slowly increased. If the coefficient of static friction between the two surfaces was 0.73, calculate the angle at which the block just begins to slide down the slope.







      b  Suggest any method by which the amount of friction between the surfaces could be reduced.
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Newton’s laws of motion: 1





•  If a resultant force acts on an object, it will accelerate.





Translational equilibrium





•  Translational means moving from place to place. The motion of an object in equilibrium is unchanging.



•  An object in translational equilibrium may be at rest (stationary), or moving in a straight line at a constant speed (constant velocity).
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Key concepts


Newton’s first law of motion states that an object will remain at rest, or continue to move in a straight line at a constant speed, unless a resultant force acts on it.


An object is in translational equilibrium if there is no acceleration.
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Describing the consequences of Newton’s first law for translational equilibrium





•  Newton’s first law may be rephrased as: an object will remain in translational equilibrium unless a resultant force acts on it.



•  All objects on Earth are affected by gravity and all moving objects are affected by frictional forces. Therefore we may assume that any object in translational equilibrium (including those at rest) cannot have zero forces acting on it: it must have one or more pairs of equal and opposite forces acting on it. Such pairs of forces cannot be ‘force pairs in the context of Newton’s third law’ (see below) because they act on the same object.
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Expert tip


It is possible that an object could be in translational equilibrium but not in rotational equilibrium, or vice versa.
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•  Figure 2.15 represents a free-body diagram of a car in translational equilibrium, moving to the left with a constant velocity. There are two pairs of forces maintaining equilibrium. Note how representing the car as a point object avoids the complications of having to consider exactly how the forces are distributed (that would only need to be considered in a more detailed analysis).
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Key concepts


Any object in translational equilibrium will have one or more pairs of equal and opposite forces acting on it.
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•  The motion of objects falling through fluids (air in particular), has already been mentioned (Section 2.1). Figure 2.16 (b and c) shows how the two forces acting on a falling sphere vary as it accelerates from rest (Figure 2.16a).
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•  The air resistance increases as the sphere moves faster, until it becomes equal and opposite to weight, as shown in Figure 2.16c. The object then falls at a constant, terminal speed.



•  All objects accelerating horizontally have a maximum speed for similar reasons: as they move faster, resistive forces increase. Eventually the resistive forces become equal to the forward force (assumed to have a limit), so that the resultant force and acceleration reduce to zero.
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QUESTIONS TO CHECK UNDERSTANDING





25  The Moon moves at approximately constant speed in orbit around the Earth. Is it in translational equilibrium? Explain.



26  Sketch a free-body diagram for a skydiver one second after they have jumped from a plane.



27  Describe two different ways in which a designer could increase the top speed of a car.
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Key concept


Moving objects will reach a terminal speed when their speed has increased to a value such that fluid resistance has become equal and opposite to the force in the direction of motion.
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Newton’s laws of motion: 2





•  Greater masses accelerate less than smaller masses when the same (resultant) force acts on them.



•  Acceleration is proportional to resultant force (for a constant mass) and inversely proportional to mass (for a constant force).



•  One newton (N) is defined as that (resultant) force which accelerates 1 kg by 1 m s−2.



•  (Using the concept of momentum from Section 2.4, Newton’s second law can be expressed in another, more generalised, way which does not assume a constant mass: [image: ].)
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Key concepts


Mass is the property of matter that resists acceleration when a (resultant) force acts.


Newton’s second law establishes a mathematical connection between (resultant) force, mass and acceleration: F = ma.
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Using Newton’s second law quantitatively and qualitatively





•  Once a resultant force has been identified, the equation F = ma can be used to determine the accelerations or decelerations produced on various objects if their mass is known. Such calculations are sometimes combined with the use of the equations of motion.



•  More generally, in qualitative terms, it should be clear that larger forces are involved with greater accelerations or decelerations (of equal masses). During impacts (for example, consider cars colliding or people hitting the ground), any possibly harmful forces involved will be reduced if the decelerations are smaller. That is, there is less risk of injury if impacts take place over longer times and distances.
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Expert tip


The resistance of an isolated object to any change in its motion is known as its inertia. The inertia of an object depends only upon its mass.
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Common mistakes


Many people think that the safest design for a vehicle is one which is strong and very rigid. But the design of vehicles like cars involves sections of the vehicle which can collapse or crumple when large forces act on them. In this way the magnitude of the deceleration during any accident is lessened and the forces involved much reduced.
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QUESTIONS TO CHECK UNDERSTANDING





28  a  What average deceleration is needed in order for a plane to land on a runway in a total distance of 1.5 km if the landing speed is 75 m s−1?







      b  If the plane has a mass of 1.8 × 105 kg, what average force is needed?


      c  Suggest how this force is provided.








29  A bus of mass 1.68 × 104 kg is travelling at a constant velocity of 14.3 m s−1. The forward force provided by the engine is 8.5 × 103 N.







      a  What is the magnitude of the resistive force acting on the bus?


      b  What initial acceleration would be produced by increasing the forward force to 2.7 × 104 N?


      c  Assuming that the resistive force stays constant, what distance is travelled by the bus during the next 10 s?


      d  Explain why, in practice, the resistive force will not be constant.








30  Use Newton’s second law to explain why high jumpers use foam rubber to fall onto.
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Newton’s laws of motion: 3





•  This law represents the fact that all forces occur in pairs. For example, it is not possible to push an object unless it pushes back on you: if it cannot push back on you, then you cannot exert a force on it.



•  See Figure 2.17, in which FA = −FB.
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Identifying force pairs in the context of Newton’s third law
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Key concept


Newton’s third law states that whenever one body exerts a force on another body, the second body exerts exactly same force on the first body, but in the opposite direction.
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•  The two forces of a Newtons third law force pair always act on different objects. Note that the two forces are always of the same type as each other (e.g. both gravitational or both frictional). Clearly, Newton’s third law force pairs cannot be represented on free-body diagrams because only one object is shown on such diagrams.



•  Figure 2.18 shows the gravitational force pair acting on a woman and the Earth.
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Expert tip


When you stand still on the floor you may be considered to be in translational equilibrium under the action of two forces: your weight downwards and the reaction force upwards from the ground on your feet. These are two different types of force acting on the same object (you), so they cannot be a Newton’s third law pair. Your weight down is paired with the same sized gravitational force acting up on the Earth (which has negligible effect). These two forces are present even if there is no physical contact.
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