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Introduction



People rarely come to algebra with neutral attitudes. For many, difficulty with the subject in school defines and dominates their mathematical experience, and they often are quite passionate and expressive about it.


Nor are they historically alone in this feeling either. This intensity of emotion is no recent thing.


In 1749, Frederick the Great of Prussia wrote to the famed man of letters, Voltaire, regarding algebra, “… But to tell you the truth I see nothing but a scientific extravagance in all these calculations. That which is neither useful nor agreeable is worthless. As for useful things, they have all been discovered; and as to those which are agreeable, I hope that good taste will not admit algebra among them.”1


More recently, in 1930, nationally syndicated columnist Dr. Arthur Dean wrote, “If there is a heaven for school subjects, algebra will never go there. It is the one subject in the curriculum that has kept children from finishing high school, from developing their special interests and from enjoying much of their home study work.”2


One can find similar sentiments expressed throughout the last four centuries, from the time symbolic algebra was first taught in schools up to this very day.3


So, what then is this thing called algebra? What is it truly about? What are some of the things that distinguish it from arithmetic? And what advantages, if any, does it really offer to those who know how to use it?


These are questions that Algebra the Beautiful aims to shine a discerning spotlight on, tackling them head on from the jump and continuously throughout the book. Going into great creative detail in explaining some of the basic procedures of the subject (such as why do we use letters of the alphabet to describe unknown and variable quantities), it aims to bring back to life the aura and excitement of their discovery and early use while simultaneously explaining in clear, understandable language why they work and some of the capabilities and enhanced perspectives that they can still give to us today.


Algebra has been in its current symbolic form only since the 1600s CE, but algebraic documentation dates back to the Mesopotamian and Egyptian eras (ca. 1700s BCE) and perhaps even into the Indus River Valley civilization—if we could only decipher their writing. Chinese and Greek documentation has also been noted during the first millennium BCE.


Why did it take so long for smart people to make the conceptual leap to the sleek symbolic representations that we see today?


Algebraic historians still are trying to gain a better appreciation of this, but the gap in time clearly suggests that the symbolic representations in use today may not be as intuitive as some think they are, bypassing many important purposes and details. And therein lies much of their amazing efficiency; yet therein simultaneously lies great difficulty, too, for when we teach symbolic algebra to students, it is easy to make a great many assumptions about their understanding of what the symbols and procedures are actually accomplishing. Assumptions that students, who struggle with algebra, are often tripped up by, especially if they are never explicitly pointed out.


One of the central aims of Algebra the Beautiful is to try to get out in front of those hidden purposes and details, making them far more transparent for readers. It does this by focusing on a few accessible topics in great depth and variety. In pursuing this route, the book takes full advantage of the opportunities that open up for exploring nuanced and important matters such as parameters, how the mixing of variation and stability can be gauged through algebraic representation, and the incredible reach and unifying power of algebraic expressions and equations.


The great educational philosopher John Dewey’s thoughts, from his 1934 book Art as Experience, have been described thus:



An experience occurs when a work is finished in a satisfactory way, a problem solved, a game is played through, a conversation is rounded out, and fulfillment and consummation conclude the experience. In an experience, every successive part flows freely. An experience has a unity and episodes fuse into a unity, as in a work of art. The experience may have been something of great or just slight importance.4





Algebra the Beautiful is a math book that seeks to give you many such experiences—experiences that will hopefully transform, for the better, your entire view of the subject of algebra.


It can be likened to tourists experiencing a national park. If the roads are appropriately placed with adequate turnouts, hiking trails, and interpretive centers, visitors can gain a spectacular appreciation of the dramatic scenery, say of the Grand Canyon, without exhaustively visiting every inch of the park.


Algebra the Beautiful aims to make a definitive and lasting impression by showing that algebra uncloaked is big, varied, dramatic, and relevant, forming an interactive, reliable foundation for all of mathematics and many other areas as well. It communicates this to readers through several distinctive approaches, including the following:



• The Humanistic Approach: Algebra (as well as the rest of mathematics) is not an isolated island but rather shares similarities with other great areas of human activity, expression, and ambition—including science, language, history, art, music, and philosophy—that seek to better understand and describe the world and then use this knowledge in impactful ways.5


• The Aesthetic Approach: Mathematicians and scientists frequently state that mathematics is beautiful, yet most nonexperts don’t see it that way. In Algebra the Beautiful, the aesthetic is interwoven into the very fabric of the book. This is done by reimagining elementary algebra as a vehicle for illuminating the general beauty of mathematics. Ideas work together in concert, and paying nuanced attention to the beauty produced by their interaction serves as a powerful weapon of exposition for the book.


• The Conceptual Approach: Metaphors, Narrative, and History: Algebra the Beautiful demystifies the techniques of elementary algebra by using metaphors, analogies, and history in unique and robust ways to tell the subject’s powerful and holistic story. There is magic in the combination.




Algebra the Beautiful doesn’t seek to dazzle you with a stunning display of facts, nor present you with a long list of mathematical formulas. Rather, the goal of this book is to strike at the heart of your conceptual and emotional understanding of algebra, to put you on more intimate terms with a few of the simple, yet elegant, ideas at the core of the subject while at the same time taking you on an imaginative intellectual journey through mathematics itself. In short, this book aims to inform, bolster, and inspire your mathematical soul.


5















MOVEMENT 1


Variables and Motions


Algebraic letters are pure symbols; we see numerical relationships not in them, but through them; they have the highest “transparency” that language can attain.


—Susanne Katherina Langer (1895–1985), Philosophy in a New Key: A Study in the Symbolism of Reason, Rite, and Art
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Numerical Symphonies


Music is the electrical soil in which the mind thrives, thinks and invents.


—Ludwig van Beethoven (1770–1827), letter from Bettine von Arnim to Johann Wolfgang von Goethe


Algebra is a vast and beautiful continent—at times serene and familiar, at other times mysterious and wild.


Despite the fact that it has been powerfully used for centuries, underwriting some of humanity’s most important innovations, serious questions and riddles remain: especially in regard to its essential nature, its place in education, and why so many intelligent people struggle to understand it.


Consider this an invitation to experience some of the vastness, aura, and beauty of this terrain.


But algebra does not reveal its scenery for free. It requires an intense cocktail of conceptual techniques to bring this beauty into sharp relief. Consequently, I will heavily employ some of the most powerful weapons of exposition available, including metaphor, analogy, history, and narrative.


Of metaphor, mathematics education researcher Anna Sfard states:




Metaphors are the most primitive, most elusive, and yet amazingly informative objects of analysis. Their special power stems from the fact that they often cross the borders between the spontaneous and the scientific, between the intuitive and the formal. Conveyed through language from one domain to another, they enable conceptual osmosis between every day and scientific discourses, letting our primary intuition shape scientific ideas and the formal conceptions feed back into the intuition.1





Of history, mathematician J. W. L. Glaisher said, “I am sure that no subject loses more than mathematics by any attempt to dissociate it from its history.”2


And of narrative, cognitive psychologist Steven Pinker says, “Cognitive psychology has shown that the mind best understands facts when they are woven into a conceptual fabric, such as a narrative, mental map, or intuitive theory. Disconnected facts in the mind are like unlinked pages on the Web: They might as well not exist.”3


Many experts share these sentiments.


In this book, we explore how far we can go with injecting these techniques (with a vengeance) throughout the discussion. My hope is that it will transform your conceptual and emotional understanding of this oft-maligned subject. In this chapter, we begin with music.


MUSIC


Music is one of the most remarkable of all the activities of humankind. Millions willingly subject themselves to its mood-altering effects day after day. Just a simple thirty-second ditty or jingle can launch back to life memories from decades past.


Mute the sound to a video of people vigorously dancing and their energized behavior looks fascinating at best, bizarre at worst. Go to the mall, ride an elevator, or watch a movie, and you will find it there lurking in the background. It is everywhere.


But what exactly is it? Why does it impact people in the ways that it does? How can it launch some into a state of almost pure euphoria while reawakening painful emotions, long thought extinct, in others?


It too is a vast expanse of familiarity, serenity, and mystery.


Of all its forms and manifestations, one of the most grand, vivid, and complex arises in the guise of the symphony: “a lengthy form of musical composition for orchestra, normally consisting of several large sections or movements…”4


The trajectory of sounds in a symphony can be extensive, wide-ranging, and dramatic. Reaching a profound and notably intense form in the work of Ludwig van Beethoven, it is said to be the medium in which many composers still choose to demonstrate their technical prowess and most expressive ambitions.5


Our interest with it here lies primarily in the great variety and scale that can arise around a central well-developed theme (or core)—we will see something similar happen repeatedly in a mathematical context.


One of the most fascinating things about music is that it is possible to capture the dynamic range of a symphony on flat sheets of paper. It is almost as if musicians can freeze the essence of an hour’s worth of lively music and hold it in suspended animation to be viewed later and analyzed at their leisure. This is no small thing and offers great benefits to those who choose to use it.


Written musical notation gave Beethoven (who could barely hear at all by his forties) the inspirational capacity to compose and share wonderful music right on up to the last years of his life, with the release of his highly acclaimed Ninth Symphony occurring in 1824 at age 53.6 It is hard to imagine him doing this without the aid of visual notation. To this very day, orchestras are still able to perform these masterpieces thanks, in large part, to their preservation in written form.


But the sounds of music in a complex performance are not the only phenomena that can vary in our world.


Variations in temperature, moisture, and so on connect up to collectively form the climate of a region.


Variations in events, political leaders, ideas, cultural norms, and so on combine to form the history of a place.


Artificial satellites soar through space constantly changing their individual locations, which, when taken together, collectively form an orbit; whereas weekly variations in time on the job join up to give the yearly earnings of an hourly employee.


Variations in nature differ in kind, too—with some variations being extremely simple (capable of complete description), some being more difficult to tame but still forecastable, and others seeming to totally defy prediction.


A central goal of this book is to learn more about variations of the numerical persuasion and to showcase their accompanying descriptions in symbols. We will find these variations to be relevant, often surprising, and more around us than we might think (often unrecognized). Moreover, we will find that their systematic description opens wide to us an entirely new and vast-reaching branch of mathematics: one that is distinct and separate from elementary arithmetic on the one hand yet critically fused at the hip with it on the other. Together these two branches will team up to form one of the most potent one-two punches in the history of human thought—creating, in the process, a quantitative version of Beethoven’s “electrical soil” in which the sibling spirits of mathematics and science can often materialize in, thrive, and discover masterful expression.


MAGICAL THREE-DIGIT NUMBERS


We now take a look at an artificially created numerical variation and observe how the values it produces can store wide-ranging information. To get a good feel for it requires your participation.


Pick the number of days you like to eat out in a week (choose from 1, 2, 3, 4, 5, 6, 7). Multiply this number by 4. Then add 17. Multiply that result by 25. Next add the number of calendar years it is past 2013 (e.g., if the year is 2016, then add 3). Now if you haven’t had a birthday this year, then add 1587, but if you have had a birthday this year, then add 1588. Finally, subtract the year that you were born from this.


After all is said and done, you should have a very personal three-digit number. Reading it from left to right, the first digit is the number of times you like to eat out in a week and the last two digits are your age. For those younger than 10 years of age, it also works if their age is simply interpreted as a two-digit number with a zero in front (i.e., interpreting 09 as 9 and so on). Try it again, using a different number of days and/or a different date and year. Save your efforts for we shall return to them in later chapters.


Here are a couple of examples of this in action:


1. Let’s say that the current date is November 5, 2030, that Abu Kamil’s birthdate is February 6, 1950, and that he likes to eat out five times a week. This scenario reads for him as follows:


a. Pick the number of days you like to eat out in a week: His number is 5.


b. Multiply this by 4: His number is now 4 × 5 = 20.


c. Add 17: He now has 17 + 20 = 37.


d. Multiply that result by 25: This gives him 25 × 37 = 925.


e. Add the number of calendar years it is past 2013: In 2030 this would be 17, which would give him 925 + 17 = 942.


f. If you haven’t had a birthday this year, then add 1587. If you have had a birthday this year, then add 1588: He had a birthday, so he adds 1588, which gives him 1588 + 942 = 2530.


g. Subtract the year that you were born from this: Since he was born in 1950, this gives him 2530 – 1950 = 580.


h. Reading from left to right, the first digit is 5 (the number of times he likes to eat out a week) and the last two digits are 80 (his age at the current date).


2. Let’s say the current date is May 16, 2018, that Pandrosion’s birthdate is December 26, 1980, and that she likes to eat out twice a week. Then this scenario reads for her as follows:


a. Pick the number of days you like to eat out in a week: Her number is 2.


b. Multiply this by 4: Her number is now 4 × 2 = 8.


c. Add 17: She now has 17 + 8 = 25.


d. Multiply that result by 25: This gives her 25 × 25 = 625.


e. Add the number of calendar years it is past 2013: In 2018 this would be 5, which would give her 625 + 5 = 630.


f. If you haven’t had a birthday this year, then add 1587. If you have had a birthday this year, then add 1588: She has not had a birthday, so she adds 1587, which gives her 1587 + 630 = 2217.


g. Subtract the year that you were born from this: Since she was born in 1980, this gives her 2217 – 1980 = 237.


h. Reading from left to right, the first digit is 2 (the number of times she likes to eat out a week) and the last two digits are 37 (her age at the current date).


There are hundreds of different values that can be generated by this process by varying the number of days, the current date, and the ages of the participating readers. Some such numbers include 123, 457, 720, 485, 323, 389, 717, 649, and 234, as well as possible different ones obtained by you and other readers—it is a veritable “symphony” of numbers!


However, the final scenario involving this three-digit number (and our interpretation of it) will fail for someone who is 100 years of age or older.


What in the world is happening? Why do these varying three-digit numbers simultaneously contain information that is personal to each of you yet different from other readers? Is it possible to describe this and to also show why it fails for centenarians? If so, how do we do it?


ARITHMETIC IS NOT ENOUGH


On its own, arithmetic will encounter great difficulty in conveniently describing what is happening in this number of days and age problem. There is simply too much going on—too much variety.


In generating each number, it is almost as if we are doing the same type of arithmetic process but on a different channel (identified by the number of days we like to eat out, the current year, our year of birth, and whether or not we have had a birthday). In the two examples we worked through above, one channel generates the number 237 while the other channel gives 580.


There are many other channels that generate all of the other values that can be produced.
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Four channels of the hundreds that can be run and the resulting numbers generated


This then is a first example of the great variety (of numbers in this case) that can arise around a central theme or process. We don’t have enough tools yet to tackle this problem directly, so we will scale back to simpler scenarios and cut our teeth there first.


ORDINARY LANGUAGE IS NOT ENOUGH


Let’s begin by considering a different way to express a well-known and basic property of addition: the value we obtain when adding any two numbers doesn’t change if we reverse the order in which we add the two quantities. For example, the value we obtain when we add 3 + 5 is 8, and we obtain the same value if we reverse the order of the two numbers and add 5 + 3. This property is more formally known as the commutative property of addition.


You might ask, isn’t it enough to simply describe the property as we have above; what’s the point of searching for another way? The point being that, while describing mathematical concepts in plain English can be useful for representing and communicating ideas, it is not very useful for systematically rearranging them. Sometimes the key to grasping an idea or concept critically involves the ability to conveniently maneuver it into a simpler or more transparent form. Language simply is not always up to the task of doing this.


As an illustration of this point, let’s look at the simple problem of adding the three numbers one hundred sixty-seven, two hundred seventeen, and six hundred eighty-nine:


Written out this reads as: one hundred sixty-seven plus two hundred seventeen plus six hundred eighty-nine.


Using mathematical symbols this reads as: 167 + 217 + 689.


The mathematical form yields to easy manipulations (once we know the rules):
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Conversely, the addition in English words alone does not yield to simple manipulations. That is, there is no realistic method to work our way to the answer using only what we are initially given—namely, the letters of the alphabet:
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In practice, whenever we are given larger numbers in words to add, most of us resort to using numerals (whether on paper, mentally, or using a calculator) to complete the computation. We don’t think to compute by aligning the words and adding individual letters. That is, we don’t ask ourselves what adding the last letters of each number word (e + n + n) will equal and so forth—letters when used as language components simply don’t work that way.


In a similar fashion, looking at the number of days and age problem as it currently reads doesn’t give a clear idea of what is going on. We can certainly run the numbers as the procedure asks, but why they end up the way they do seems almost like magic.


We need a different way to express the problem. We need a method that transforms the problem the way the symbols “167 + 217 + 689” transform the English statement “one hundred sixty-seven plus two hundred seventeen plus six hundred eighty-nine.” In short, we need to take the entire problem itself, as stated in English, and recast its essence in a new form—into something that can be operated on and meaningfully rearranged.


In the rest of this chapter, we will focus on how to recast quantitative ideas and procedures that can vary or change value into a more malleable form, then in the next chapter we will turn our attention to how to successfully maneuver them after they have been converted to this new form.


STORING IDEAS


Let’s return to the commutative property of addition. We give four more examples of this property in action:
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The total possible occurrences of this property are infinite. And once more we are faced with a “symphony of numbers”: this time involving sets of numerical expressions (such as I, II, III, and IV) as opposed to single numbers.


Lots of variety indeed, yet all of it tied together by a simple core theme—that of commutativity (i.e., the order in which we add two numbers gives us the same answer). Like the number of days and age problem, it is as if all of these different expressions are simply different channels of the same idea.


From here on out, when we refer to a “symphony” or “ensemble” it will mean a collection of numbers, expressions, or objects that are tied together around a specific procedure, rule, or theme.


Let’s now give chase to recasting this idea of commutativity into a more malleable shape by capturing its operational essence, which is that we have two slots, on the left-hand side of the equals sign, into which two numbers can be inserted and added, and then we reverse their positions on the right-hand side of the equals sign. We can describe this as


first number + second number = second number + first number.


An advantage of expressing the idea of commutativity this way (as opposed to writing out “that the order in which we add two numbers doesn’t matter”) is that the arrangement now has the same form as the property does when we write it out with numbers (e.g., 1 + 2 = 2 + 1). That is, the expression now is not very far removed operationally from the thing it is describing (this is not true of the written statement).


In the four numerical examples I, II, III, and IV, the slot described by “first number” takes on the values 1, 8, 452, and 11200, and the slot described by “second number” takes on the values 2, 12, 987, and 876543, respectively. Thus, this expression operationalizes, in a sense, the general idea of commutativity.


If we were text-messaging this idea to someone, we might choose to abbreviate it in either of the following ways:


first number + second number = second number + first number


becomes


fn + sn = sn + fn,


or taking this even further to


f + s = s + f,


with no loss of essential information. If we choose the latter, all of the variety that can be expressed with the different numerical instances of commutativity can be reproduced from this stripped-down alphabetic rendering in the following way:






	Set f to:

	Set s to:

	f + s = s + f






	1

	2

	1 + 2 = 2 + 1






	8

	12

	8 + 12 = 12 + 8






	452

	987

	452 + 987 = 987 + 452






	11200

	876543

	11200 + 876543 = 876543 + 11200







If we let f = 300 and s = 987, then f + s = s + f becomes 300 + 987 = 987 + 300 and so on. The innumerable demonstrations (variations) of the commutative property in action can now all be obtained by simply setting “f” and “s” to the required numerical values in the expression f + s = s + f.


All of the infinite variation (hence the idea of commutativity itself) is now, in effect, captured and becomes stored or seeded in a single easy-to-read expression. This is a major conceptual shift as we are now looking at letters as platforms for storing changing numerical values as opposed to their traditional use as carriers of information for the spoken or written word.


There is great value in this. We store ideas in language, too.


In English, the word tree applies to trillions of distinct and varied plants on Earth.7 Each individual tree is a tangible example of the specific combination of qualities that we give to the word t-r-e-e: meaning that the word serves as a symbolic storage device for every one of these plants. They have properties in common that allow us to quickly refer to the majority of them as trees.


We gain tremendous advantages by being able to refer to lots of different and distinct things by the same expression or name. In this particular case, we can in one statement (“Trees help to remove carbon dioxide from Earth’s atmosphere”) communicate something that applies equally well to processes involving every single living tree on the planet. A single innocent sentence, simple enough to be taken in with a single sweep, is still broad enough to say, all at once, something that is true about trillions of different plants.


Languages, in general, give us this wide-ranging ability to describe lots of objects and ideas with a relatively small glossary of words. Taking these words, then, in combination to form sentences—language expressions—gives us the breathtaking ability to describe nearly everything that we experience in life or are able to think about in the world around us. We seek the same in the world of numerical variations.


OTHER ENSEMBLES OF NUMBERS


There are other numerical ensembles out there awaiting description. Let’s look at a few.


Consider a plane flying at a height of 35,000 feet that is traveling west for four hours at the constant speed of 450 miles per hour. During this time, it travels a total distance of 1800 miles, meaning that, in theory, every distance from 0 to 1800 miles is covered at some point over the four-hour journey.


Now this might be starting to sound like the word problems you remember, and maybe dreaded, from algebra class. However, based on the principles we’ve just established, this is nothing more than another kind of numerical symphony. Let me show you what I mean by including a few members of this ensemble: 450 miles (for the distance traveled in 1 hour), 900 miles (for the distance traveled in 2 hours), 1080 miles (for the distance traveled in 2.4 hours), 1350 miles (for the distance traveled in 3 hours), and 1800 miles (for the distance traveled in 4 hours).


We can visually represent this:






[image: image]







A nice way to store and operationalize all of this variety is by again identifying its core, which in each case here involves multiplying 450 by the time of travel in hours. Here, we will abbreviate “the time of travel” with the letter “t” (for time), and then we can reproduce all of the numbers in the previous diagram by simply writing


450t


(which means 450 multiplied by t) and setting t to the following values:


t = 1; t = 2; t = 2.4; t = 3; t = 4.


The expression 450t stores in a leaner form the variation contained in this situation. We have shown only five distances produced by five different values for t, but there are a host of others. For instance, if t = 3.7 hours, 450t would become 450 multiplied by 3.7, which equals 1665 miles. Or, put another way, the plane travels 1665 miles in 3.7 hours of flight. We could do this, in theory, for any of the values of t between 0 and 4. It is as if the expression acts like a seed or computer folder containing all of the information regarding all possible distances of travel from 0 to 4 hours in this scenario.


A second symphony: suppose we want to calculate the amount of money that we would earn when paid an hourly wage of $16 an hour. This generates the following numerical ensemble:






[image: image]







As before, there are a host of other values for wages earned based on the possible hours worked, which could eventually amount to tens of thousands of hours for a given individual. We can store all of these in the following expression, where “h” stands for hours worked:


16h,


or 16 multiplied by h. For example, all of the earnings in the previous diagram can be easily reproduced by simply setting h equal to each of the following values:


h = 10; h = 25; h = 45; h = 68; h = 237.


Other everyday situations that yield groups of numbers orbiting a common theme include the following:




• The amount owed on a 30-year house loan of $900,000 after making payments of $5000 for a given number of months. To generate the ensemble, let the number of months vary—then compute how much is still owed after each month.


• The amount of sales tax (at 7%) paid by each individual in a certain town for a given year. To get the ensemble, multiply the total retail spending of each person for the year by 0.07.


• The numerical position of Earth as it travels in its orbit around the sun. To get the ensemble, choose different dates and times throughout the year, then locate the position of Earth.


• The batting average of a baseball player for a given season based on the number of hits obtained in so many at-bats. To get the numerical ensemble, choose the number of hits and number of at-bats for a given player—then calculate [image: image].


The individual batting average of each of the thousands of MLB baseball players puts a face on many of the values in this numerical symphony (e.g., 0.344 for Miguel Cabrera in 2011, 0.406 for Ted Williams in 1941, and so on).8




All of the numerical variation possible in these four scenarios can also be captured and stored with expressions that use letter abbreviations rather than words. The expressions in some cases will be much harder to obtain and more complicated than before, but they still accomplish the same goal.


A NEW WAY OF THINKING


Though numbers have been ever-present in these examples, we are no longer dealing with simple arithmetic. Something more is going on now.


Imagine if you will a child engaged in word play. Such a child might play with words in various combinations and, upon stumbling onto the word ram and liking the sound of it, decide to explore further to find other words that sound the same—eventually discovering words like bam, clam, dam, gram, ham, jam, spam, and yam. After this first successful exploration, they may substitute some letters to create new rhymes and eventually learn dozens more new words through this study.


So, the accidental discovery of an unknown word and its pleasant sound has suddenly opened wide, for the child, a whole new way of thinking about words. They can now systematically search for new words that sound alike as well as search for words that have the same meaning.


We are presently at a similar place. But what is it that we have discovered? Is it that we can abbreviate words? Surely there must be more, as abbreviation is not a new technique. In fact, numerals (which go back thousands of years) are themselves shorthand symbols for the quantities they express. And though abbreviation has a significant presence in algebra, it is not what fundamentally differentiates the subject from arithmetic.


What we have inaugurated here that is truly different from arithmetic is a new and deeper way of thinking about certain types of mathematical problems.


For instance, in arithmetic you might be interested in computing your earnings from an hourly wage of $16 an hour. If you worked 40 hours, you would simply multiply 16 by 40 to conclude that you will earn $640. If you work 56 hours another week, then you would calculate 16 × 56 and move on. Question answered.


What we are doing now is not just looking at a single situation and making a computation, but establishing a rule that holds for the wider variety of situations possible (earnings in this case) and how they relate to one another—think weather on a given date versus climate over a decade. If we can do that, then we can generate any value that we care to know about (e.g., 16h).


The possibilities are immense. Now that we know that some variable phenomena—like money earned from an hourly wage, distance traveled by a plane, and the commutative property of addition—can be readily described by written, abbreviated expressions in this new way of thinking, could it be possible that if we reverse the process and first create abbreviated expressions of our own choosing, then we might eventually be able to describe novel things—presently unknown to us?


For example, we have established that “16h” can be used to help an employee who works h hours at $16 an hour calculate their total wages over a specific period of time. What if we now, from simply looking at this object, decide to find other objects that “rhyme with it” by raising the h to the second, third, or fourth power, obtaining 16h2, 16h3, or 16h4, respectively? Could these new expressions possibly describe some kind of variable behavior that we don’t know about yet?


If so, it could be very worthwhile to study these expressions in their own right. This is an exciting prospect as it suggests that we can learn more about sophisticated real-world phenomena by simply studying abbreviated expressions, through the prism of this enlarged outlook, on paper.


However, if we decide to do this, then it leads to an interesting situation. If a car is traveling at the steady speed of 16 miles per hour, we can describe the distance it travels after t hours by 16t. We already know that 16h can be used to describe the earnings of a person who has worked h hours at a rate of $16 per hour. This gives us two separate expressions (16t and 16h) that look different, but we must ask, are they really different?


It turns out that despite their different contexts, they produce the same numerical values when we evaluate them for t = 2, 5, 10 or h = 2, 5, 10. In both cases, we find that we obtain the same numerical values (32, 80, 160) with albeit different interpretations: miles in the first case and dollars in the second.


In fact, this occurs here whenever t and h are set to the same number. So these two expressions in effect generate the same numerical ensemble (in the same way)—meaning that if we divorce them of their interpretations (looking only at the values that they generate from their numerical inputs), they are essentially identical. This scenario will repeat itself with other expressions as well (e.g., “16h2 + 70h” and “16t2 + 70t”).


Given that different-looking expressions can produce equivalent values from the same input numbers, you can see how it could be useful and perhaps less confusing, at first, to standardize the letters we use for this purpose. Think of it as putting the letters we use in the same font and size. This will allow us to focus most of our initial attention on how the expressions behave as opposed to being distracted by their appearance.


We do this with language, too. Sometimes we want to be specific and talk about five apples or five cars or five phones, but sometimes we want to be more general (divorcing the objects from any specific interpretation) and simply say we have five things. In business or economics, the term widget is sometimes used to represent a generic product.


In mathematics, various names have been given to the unspecified object over the centuries. The medieval Muslims sometimes used the word shay to represent unspecified information. Some in India used the abbreviated term yā, whereas the Italians of the Renaissance often used the term cosa.


Once the idea of systematically abbreviating terms took firm hold in the late 1500s and early 1600s, the unspecified entity took several shapes. One of the earlier suggestions, known as the Viète/Harriot protocol, was that vowels in the Latin alphabet (e.g., A, E, and I) be used; but this idea didn’t stick for long.


A later idea employed in the mid-1600s by the French philosopher and mathematician René Descartes was to represent the primary variations in a problem by using letters late in the Latin alphabet (x, y, and z as needed). This is the idea that stuck and is still most often employed in most elementary algebra texts today.


Using this standard means that the expressions we used earlier could translate to the following:






	Commutative property of addition

	f + s = s + f becomes x + y = y + x, where x represents the first number and y represents the second number






	Distance traveled by plane

	450t becomes 450x, where x represents the time of travel in hours






	Amount earned

	16h becomes 16x, where x represents the number of hours







Notice that it is less distracting mathematically to compare 450x to 16x than it is to compare 450t to 16h.


So we have in a sense two ways to express and operationalize situations involving quantities that can vary: the generic sense, in which case we generally employ letters such as x, y, and z; and the interpretive sense, where we abbreviate the variable quantities that we want to describe, using whatever letters work naturally. The generic sense is more commonly used when we are doing a general study of how to represent and manipulate variation. By contrast, the interpretive sense is used more commonly when we employ abbreviations to describe a specific scenario.


Let’s look at an example of this principle in action. If we want to understand the relationship between the area of any rectangle and its length and width, the standard way to represent the numerical ensemble generated by the interaction of these values would be to use abbreviations for each of the words. We can see this in the formula “area equals length times width,” which we shorten to A = lw. Though we could write this as A = xy, where x and y stand in for length and width, respectively, we rarely do so unless we want to operate on the expression as part of a larger problem where there is some benefit to being more generic.


In most applications (such as physics, engineering, and statistics), x, y, and z are usually avoided and single-letter abbreviations are preferred so that the quantities being related to each other are easier to remember. For instance, in Einstein’s famous equation E = mc2, E stands for energy and m for mass, while c follows the universal convention for representing the velocity or speed of light.9 We will come back to this distinction between standard and interpretive notation in later chapters.


CONCLUSION


We have shown that it is possible to capture, in writing, the essence of many phenomena that vary in value. We can then use abbreviations to further simplify what we have captured with no critical loss of information. This can be thought of as creating a written notation, if you will, for describing on paper numerical phenomena that can change value—just as we already have a written notation for music that allows us to describe on paper something as complicated and varied as the sounds from an hour-long Beethoven symphony.


However, this just barely scratches the surface, for we will soon discover that these written expressions truly distinguish themselves through their dazzling capacity for interacting with each other (and numbers) in ways that allow them to systematically discover unknown facts about the world—like almost nothing else. Taking advantage of this ability for interaction will give us the precise tools we need to completely understand and easily dominate the number of days and age problem.


We shall also find that their capacities for representation, combination, rearrangement, and generalization were ultimately the engines that gave rise to such expressions having an immense expanse all their own—one that has been pivotal in the mathematical, scientific, and technical applications of the last half of the second millennium and on into the third. Called Hisab al-jabr w’al-muqabala [calculation by restoration (al-jabr) and reduction (al-muqabala)] by its ninth-century Persian/Arab father, Al-Khwarizmi, and The Analytic Art by its Renaissance European father, François Viète, it is the vast conceptual continent we know today as algebra.
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Art of Maneuver


The mathematics of our day appears to me like a large weapon shop in peace time. The store window is filled with showpieces whose ingenious, artful, and pleasing design enchants the connoisseur. The real origin and purpose of these things, to attack and defeat the enemy, has retreated so far into the background of consciousness as to be forgotten.


—Felix Klein (1849–1925), Development of Mathematics in the 19th Century


In walking, it means going around the muddy puddle to get to the store dry and clean. In photography, it entails looking for the best vantage point to make a sunset sing. To sports goers, it can refer to leaving the game early to avoid traffic. To running back Barry Sanders, it meant getting around defenders in ways that were almost choreographic.


Maneuver is all around us in a wide variety of manifestations. In some domains, its presence is so pervasive and overwhelming that its very name simply cannot be hidden from view—taking on the mantle of entire doctrines even. Military thinking is one such arena, where the original meaning of the word was closely allied with the notion of moving forces on the ground into favorable positions that hastened the defeat of the enemy.1


In its landmark philosophical document, Warfighting (1989), the US Marine Corps gives the following description: “maneuver warfare is a philosophy for generating the greatest decisive effect against the enemy at the least possible cost to ourselves.”2 Methods to achieve this effect now also include deception, surprise, shock, and speed not only on the ground but from the air and from the sea.


Two of the foremost military thinkers in history, Sun Tzu and Carl von Clausewitz, spend attention to the idea in their respective famous works, The Art of War and On War. It remains a hotly debated and energetic topic in strategic circles.


The word maneuver, however, is quite versatile in its other wide-ranging uses and definitions, among them “an action taken to gain a tactical end,” “a clever or skillful action or movement,” and “doing something in an effort to get an advantage or get out of a difficult situation.”3 Our use of the word in this book will contain aspects of each of these definitions. For our purposes, we summarize with the following general description:




Symbolic maneuver includes any introduction, combination, movement, and/or manipulation of symbols (including diagrams) to gain an advantage in knowledge, insight, organization, clarity, efficiency, etc.





Undoubtedly both too broad a description and simultaneously not comprehensive enough, this definition will serve the good-enough purpose here to characterize what is one of the central and foundational features in algebra. In this chapter, we place a magnifying glass on this cornerstone idea.


MANEUVER IN ARITHMETIC


Symbolic stratagems to gain an edge extend beyond mathematics. The use of symbols in language can also be looked upon as a form of sophisticated maneuver. When we tell someone about a vacation last summer photographing waterfalls in Wells Gray Provincial Park (British Columbia), we are actually using language symbols to get around limitations.


We cannot physically re-create the waterfalls, forests, rivers, mountains, wildlife, adventures, and interactions with people that we experienced on the trip, but we can symbolically share them with others using the words we give them in language—to tell stories of our experiences.


Similarly, many of the techniques and algorithms we employ in elementary arithmetic can be looked upon as symbolic maneuvers. Consider multiplication: How much in ticket sales might we expect to earn from an event that is scheduled to be attended by 965 people at a cost of $175 per person? We can obtain a reasonable estimate of what the revenue should be by simply finding the answer to 965 × 175. One way to get this would be to take nine hundred sixty-five 175s (one for each attendee) and add them together:






[image: image]







Though we can obtain the answer this way, almost no one would do so; it is simply too slow and far too painful. What we generally do is take the information (965 × 175) and maneuver it into another form. A millennium ago, folks might have used some sort of device such as the abacus or counting board to find the answer, but today we have several options.


We could take the numerals and directly key them into a calculator and have the machine do the multiplication for us, using procedures coded in electricity. Or we could reformat the information in a way that allows us to perform swift moves in writing (with the aid of a multiplication table) like so:






[image: image]







This is a symbolic maneuver that keeps us from having to do anything close to the original 965 additions—conveniently showing us that the revenue should be $168,875.


Symbolic maneuvering also happens when we add fractions with unlike denominators. Consider the addition of one-half to one-third expressed as [image: image]. Now, we may want to simply add the top two numbers together and the bottom two numbers together to obtain [image: image], but this value is not accurate in the most common interpretation of fractions.


Think of how much pie you will have if you take half of a pie and add it to a third of another—it is certainly more than two-fifths of the same-sized pie.


A way to obtain the correct value is to transform the two fractions into an equivalent form where they both have the same denominators and to add the top numbers together while leaving the bottom number the same. Doing so in this case will yield denominators of sixths, giving






[image: image]







This is different from the multiplication example, because converting the problem into a symbolic form is not enough. To keep the ball rolling requires that we further convert the fractions into their equivalents in sixths.


This can be likened to trying to do laundry in a coin-operated machine that only accepts quarters when you have a ten-dollar bill. We have to change the form of the money to make the machine work, but not its value or worth, which in this case translates to 40 quarters.


Let’s finally suppose that we’re asked to add up all of the counting numbers from 1 to 1000 (1, 2, 3,…, 499, 500, 501,…, 999, 1000) to obtain their total. Straightforwardly, this looks like


1 + 2 + 3 + 4 +… + 499 + 500 + 501 +… + 997 + 998 + 999 + 1000.


This would be quite a bit of work even with the assistance of a calculator. However, with a little bit of maneuvering, we can rearrange and rewrite the problem as






	

	1

	+

	2

	+

	3

	+

	4

	+

	…

	+

	497

	+

	498

	+

	499

	+

	500






	+

	1000

	+

	999

	+

	998

	+

	997

	+

	…

	+

	504

	+

	503

	+

	502

	+

	501







In this form a symmetry is made bare, which shows us that if we add vertically first, as opposed to horizontally, we obtain repeated copies of 1001 (e.g., 1 + 1000 = 1001, and so on):






	

	1

	+

	2

	+

	3

	+

	4

	+

	…

	+

	497

	+

	498

	+

	499

	+

	500






	+

	1000

	+

	999

	+

	998

	+

	997

	+

	…

	+

	504

	+

	503

	+

	502

	+

	501






	

	1001

	+

	1001

	+

	1001

	+

	1001

	+

	…

	+

	1001

	+

	1001

	+

	1001

	+

	1001







There are a total of 500 copies of 1001 in the addition (you can see this by looking at the entries on the top row from 1 to 500), which means that we can swiftly obtain the answer now by simply multiplying 500 × 1001 to obtain 500,500.


Here, a little maneuvering has turned a problem, which would take longer than 25 minutes for most to directly do even with the help of a calculator, into one that can be done by hand in as quickly as a minute.4


These examples point to the fact that maneuvering in mathematics is no small thing and can lead to spectacular savings in the time it takes to find answers to certain types of problems. No less significant is the fact that maneuvering symbols (and thus the ideas they represent) can also lead to sensational gains in insight, clarity, organization, identification, and generalization, too!


The types of maneuvers just discussed depend critically on the specific situation at hand. Imagine a scenario in which we could standardize a much larger class of maneuvers, maneuvers that grant us the ability to systematically solve all kinds of seemingly sophisticated and unrelated problems—enabling us to convert some of the elegance and magic of mathematical ingenuity into routine. In a sense, this is what algebra injects into the mathematical bloodstream: providing a method to reduce the brilliant and extraordinary into the ordinary and reproducible.


Many sixteenth-century mathematicians were simply awestruck by this gift that had fallen into their hands. François Viète was so taken with the sweeping possibilities of algebra that he stated, “The analytic art… claims for itself the greatest problem of all, which is: To solve every problem.”5 Another founding father of modern algebra, Girolamo Cardano, called algebra a “truly celestial gift” and boldly proclaimed that “whoever applies himself to it will believe that there is nothing that he cannot understand.”6


Famed twentieth-century college basketball coach John Wooden (ten national championships at UCLA) spoke of the phenomenon, of turning the sensational into the routine, in the context of his sport. Not a fan of using emotion and other devices to rise to the occasion in a game, Wooden preferred his teams to achieve a consistently high level of excellence through self-discipline, intelligence, and hard practice. His philosophy was to “let others try to rise to a level we had already attained.”7


Let’s now see how learning the art of maneuver in algebra makes it possible to attain a consistently higher level of excellence in our mathematical game.


APPLES AND ORANGES


If we add 3 apples to 4 oranges, what do we get: 7 apple-oranges? Clearly not, but if we add 3 apples to 4 apples, we do get 7 apples. In each case, we can physically join the collections together to obtain seven distinct objects: apples and oranges in the former case and just all apples in the latter. So why can we simplify the latter description and not the former? What’s the difference?


One key difference is that “apple/apples” can refer to any number of apples, and this allows us to absorb two separate descriptions (3 apples and 4 apples), which differ only in number not type of fruit, into the single description of 7 apples. Conversely, apples and oranges are fundamentally different fruits and no such absorption (combining 3 apples and 4 oranges into a single numerical description) is possible if we want to retain their distinction.


So, the fundamental fact that apples and oranges are two different types of fruit is encoded symbolically by the fact that their numerical descriptions can’t be absorbed into a single one.


In adding or subtracting the lettered expressions that represent numerical variation, we will be confronted by similar circumstances (from now on we will call such expressions varying, variable, or algebraic expressions). This will turn out to be both a great strength of algebra, in giving the subject its wide scope for handling the mixing of different and same types of behavior, and a great weakness, in that these new rules of operation can be overwhelming in education.


Also, because our native powers of recognition won’t be as automatically kind to us as they are in distinguishing different kinds of fruit, it will be harder to initially sift out and work with the various types of objects we will encounter. Let’s begin our investigation.


Can we simplify either of the following expressions: (a) 3x2 + 4x or (b) 3x + 4x?


Before answering, let’s first discuss what we mean by the phrase “simplify the expression.” To return to apples, we were able to simplify “3 apples + 4 apples” to “7 apples”: meaning that two descriptions/terms (3 apples, 4 apples) combine to become a single term (7 apples). In working with different fruits, we were not able to symbolically combine the two terms (3 apples, 4 oranges) into a single term without losing essential information.


In the algebraic cases, by “simplify” we mean can we combine either of the sums involving x’s and x2’s into a single term. This is a tall order, for remember that, unlike fruit, both of these expressions can take on a myriad of different values, so the simplification must be equal to the original expression for each and every value that x can represent.


On a first attempt, one might try to combine the expression 3x2 + 4x into 7x3: a common student choice. However, consider the following table outlining the results of these expressions for the four values 0, 1, 2, and 3:






	Set x to:

	3x2 + 4x


	7x3


	Same Value?






	0

	
3 · 02 + 4 · 0 = 3 · 0 + 0 = 0 + 0 = 0


	
7 · 03 = 7 · 0 · 0 · 0 = 7 · 0 = 0


	Yes






	1

	
3 · 12 + 4 · 1 = 3 · 1 + 4 = 3 + 4 = 7


	
7 · 13 = 7 · 1 · 1 · 1 = 7 · 1 = 7


	Yes






	2

	
3 · 22 + 4 · 2 = 3 · 4 + 8 = 12 + 8 = 20


	
7 · 23 = 7 · 2 · 2 · 2 = 7 · 8 = 56


	No






	3

	
3 · 32 + 4 · 3 = 3 · 9 + 12 = 27 + 12 = 39


	
7 · 33 = 7 · 3 · 3 · 3 = 7 · 27 = 189


	No







Note that the dot (·) is a streamlined symbol for multiplication that avoids the potential confusion of the cross symbol (×) with x. Also, the exponent x2 means x · x and x3 means x · x · x.


The table shows that the two expressions give the same values when x is 0 or 1, but different values when x is 2 or 3. This means that these two expressions are not equivalent, and thus we can’t faithfully preserve all of the information stored in 3x2 + 4x by simplifying it to 7x3.


This signifies that, mathematically, 3x2 + 4x ≠ 7x3 for most values of x (where “≠” means “is not equal to”). It can be shown in a similar fashion that 3x2 + 4x can’t be simplified to other expressions such as 7x2, either. The variables x2 and x are like our apples and oranges—they represent fundamentally different types of variation.


What about the expression 3x + 4x? Can it simplify to 7x? Let’s construct another table like the previous one and see what happens:






	x

	3x + 4x


	7x


	Same Value?






	0

	
3 · 0 + 4 · 0 = 0 + 0 = 0


	
7 · 0 = 0


	Yes






	1

	
3 · 1 + 4 · 1 = 3 + 4 = 7


	
7 · 1 = 7


	Yes






	2

	
3 · 2 + 4 · 2 = 6 + 8 = 14


	
7 · 2 = 14


	Yes






	3

	
3 · 3 + 4 · 3 = 9 + 12 = 21


	
7 · 3 = 21


	Yes







This time, we see that the two expressions are equal for all four given values of x. In fact, it turns out here that the original expression and the simplified expression are equal for all values of x.


So in this case, the expression 3x + 4x and the result 7x are interchangeable because the final numerical value obtained from evaluating 3x + 4x can be faithfully preserved. We’ve added apples to apples.


Our task now is to figure out a more efficient way to determine when we can combine terms and when we cannot. What are the criteria? This will be obvious to some of you, but to many it may not be so obvious, and it is worth a bit more discussion: so they too may acquire a firmer grasp of the essential principle.


One way to conceptually sift out the key ingredients is by envisioning the variable terms as more familiar objects. Imagine a set of coins that use variables as their face values, represented as






[image: image]







and






[image: image]







Looking at the expressions 3x2 + 4x and 3x + 4x in this way gives






[image: image]







and






[image: image]







This perspective shows that we have two types of coins: [image: image] and [image: image]. As with the fruit, we can simplify an expression involving coins of the same type, whereas with coins of a different type we cannot:






[image: image]







and






[image: image]







These results match our earlier conclusions using tables. From this, we can immediately surmise that the value of the exponent is an important factor in determining whether we can combine two terms to become one. Although the variables involved both contain the letter x, it appears that the exponent must be the same in both terms or we will have different types of coins.


Let’s now consider the case of 6x3 + 7y3. Here, the exponents are the same, but rendering them as coins still shows them to be two independent and different types of objects (when included in the same expression):






[image: image]







So, though it is true that the exponents have to be the same, it seems that the type of variation (represented by letters) needs to be the same, too.


Let’s add a little variety to the mix by looking at the following two expressions each containing two terms: (a) 12x2y3 + 17x3y2 and (b) 12x2y3 + 17x2y3. Converting the variable parts to coins and simplifying where possible yields






[image: image]







and






[image: image]







Thus, we can simplify the second expression, but not the first. Based on these results, we are ready to make the following assertion: Two terms represent the same “fundamental type” of variation if they have the same variables each raised to the same powers respectively (and can therefore be simplified).


We see this at play in (b), where x and y are raised to the same respective powers in both terms and thus we are able to combine them to a single term.


Circling the variable works well as a visual guide in cases like these where we are dealing with exponents with whole number values, and where the letters are written in alphabetical order; however, it is just that—a guide.


Now that we understand the rule, we can make the following simplifications:


6x + 4y + 12x + 25y simplifies to 18x + 29y;


30x2y5 + 40y4z8 + 60x2y5 – 25y4z8 simplifies to 90x2y5 + 15y4z8.


These simplifications are symbolic maneuvers that improve readability and clarity. They are the most standard of the fare in elementary algebra, but another essential type of simplification has so far been left out—a real game-changer.


It comes from a property that is truly one of the unsung heroes of elementary arithmetic, one whose tracks are often cleverly masked in elegant algorithms such as long multiplication and long division. However, in algebra there is no more denying this property its place in the sun.


A HERO UNMASKED


It is a fact of arithmetic that






[image: image]







(where we interpret 3(4 + 2) to mean 3 times the sum 4 + 2).


This is straightforward to verify because on the left-hand side we have 3(4 + 2), which after adding the numbers inside the parentheses becomes 3(6) or 18, and on the right-hand side we have 3 · 4 + 3 · 2, which becomes 12 + 6 or 18. Here is the long form:




• The expression 3(4 + 2) means three copies of 4 + 2 added together or (4 + 2) + (4 + 2) + (4 + 2).


• Dropping the parentheses gives 4 + 2 + 4 + 2 + 4 + 2.


• Rearranging the values gives 4 + 4 + 4 + 2 + 2 + 2 or








[image: image]







We have attached or distributed the 3 to both the 4 and the 2, and you might recall from arithmetic that this property is often called the distributive property of multiplication over addition, or put more simply the distributive property. It also holds if we replace the addition by subtraction, which yields






[image: image]







Both sides give the value of 6.


This property holds for all real numbers, meaning that another ensemble of infinitely many numerical expressions is thrust upon us. This ensemble includes the following expressions:


230(18 + 99) = 230 · 18 + 230 · 99,


where both sides equal 26,910 [having two hundred thirty (18 + 99)’s means that we individually have two hundred thirty 18s added to two hundred thirty 99s], and


12(11 – 7) = 12 · 11 – 12 · 7,


where both sides equal 48.


As in Chapter 1, we can capture the essence of the phenomenon and store the varied information algebraically by using a different letter (x, y, and z) to represent each of the three varying numbers that we have in these expressions like so: x(y + z) = x · y + x · z. Conceptually when x is a whole number, having x number of (y + z)’s means that we individually have x number of y’s added to x number of z’s. For instance, if we let x = 98, y = 115, and z = 345, this expression becomes 98(115 + 345) = 98 · 115 + 98 · 345, both sides of which equal 45,080.


You might ask: Why we would ever want to explicitly use this property? It seems quicker to add the two numbers in the parentheses first and then multiply (e.g., 3(4 + 2) → 3(6) → 18) instead of distributing first, multiplying each pair, and then adding (e.g., 3(4 + 2) → 3 · 4 + 3 · 2 →


12 + 6 → 18). Now if we were only adding apples to apples, such as we do in elementary arithmetic, you might be right, and this property could possibly stay hidden in the background. But in algebra sometimes we can’t simplify what is in the parentheses first, because we’re frequently dealing with different terms (apples to oranges).


For example, how do we simplify 3(x2 + x) + 7x2? We can’t combine the terms inside the parentheses first as they are different types, so the usual arithmetic route will fail us here. However, we can still simplify this expression by using the distributive property:
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After combining the two terms with x2, this simplifies to


10x2 + 3x.


This simplified expression is easier on the eyes than the original expression. Remember that this simplification simultaneously signifies, in a single expression, infinitely many arithmetic simplifications all at once—one for each numerical value that x can represent.


KEEPING TRACK OF SIGNS


Engaging the distributive property also introduces another hidden difficulty from arithmetic. Once negative numbers enter the picture, the ideas get a little more complicated.


The symbol “–” serves a dual role as a minus sign and a negative sign, indicative of both an arithmetic operation and a part of a number (e.g., appearing when we subtract 6 – 4 and as a negative sign in –4 + 6). The language equivalent would perhaps be to use the same symbol both as a punctuation mark and as a letter in the construction of a word.


This is important because we can think of positive and negative signs as interacting with each other as well as with the operations of addition and subtraction. That is, just like two or more numbers can combine to form one number (e.g., 5 + 8 becomes 13), so can two or more signs combine to form a single sign. This is demonstrated in the case of multiplication here:




• Positive times positive becomes positive, or more compactly (+)(+) = +.


• Negative times positive becomes negative, or more compactly (–)(+) = –.


• Positive times negative becomes negative, or more compactly (+)(–) = –.


• Negative times negative becomes positive, or more compactly (–)(–) = +.




Some positive sign interactions are often implicit and not always traceable by symbols.


These interactions are on full display in algebra when we utilize the distributive property to simplify expressions like the following:


–6(x + 9) + 12(x – 5) + –4(x – 30).


Applying the distributive property like so
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yields


(–6 · x + –6 · 9) + (12 · x – 12 · 5) + (–4 · x – –4 · 30).


Applying the rules of signs given above as well as those from addition/subtraction results in


–6x + –54 + 12x – 60 + –4x – –120,


which, after two “(+)(–) to –” interactions and one “(–)(–) to +” interaction, becomes


–6x – 54 + 12x – 60 – 4x + 120.


Collecting together and combining like terms (x’s to x’s and numbers to numbers) gives
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which simplifies to
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or


2x + 6.


Correctly simplifying this expression requires that we keep track of the distributive property and the rules for addition, subtraction, and multiplication of positive and negative numbers as well as the algebraic rules for combining variable terms of like types.


We can eliminate working through several of the steps in the previous calculations if we remember all of the interactions possible between the + and – signs, where the – sign simultaneously serves its dual roles. This is a skill worth developing and becomes a huge advantage once mastered, but it can be very confusing and frustrating until such mastery has been achieved.


A REMARKABLE CANCELLATION


Sometimes all of the variations in a problem can align themselves in ways that lead to remarkable cancellations. Let’s consider the simplification of the following expression:


5(x + 3) + 6(x2 – 3x) + –2(x – 5) + 15x + 3(–2x2 – 8),


where the values will distribute as indicated:
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Multiplying these out and using the rules for positive and negative signs gives


5x + 15 + 6x2 – 18x – 2x + 10 + 15x – 6x2 – 24.


Collecting like terms together (x2’s together, x’s together, and numbers together) yields


6x2 – 6x2 + 5x – 18x – 2x + 15x + 15 + 10 – 24.


Simplifying (including combining 5x + 15x to 20x and –18x – 2x to –20x) yields


0 + 20x – 20x + 25 – 24,


which gives


0 + 0 + 25 – 24


or


1.


This simplification may look routine at first, but it reveals a surprising result: All of the infinite variation in this problem no matter the value substituted for x will always combine and arrange in such a way to ultimately yield the number 1. Let’s demonstrate this for a few possible values of x.


For x = 10, the original expression becomes


5(10 + 3) + 6(102 – 3 · 10) + –2(10 – 5) + 15 · 10 + 3(–2 · 102 – 8).


We can simplify inside the parentheses first because we are working exclusively with numbers, and this results in
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For x = 20, the expression becomes
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We can see in each case that we ultimately end up with the same final result of 1. This will happen for the billions and trillions of other values (infinitely many in fact) that we can substitute for x. Each case uses a unique path to get there, but they all wind up simplifying to 1. Try it for a few more values yourself to get a better feel for what is happening.


Consequently, in doing the routine simplification of this single innocent-looking algebraic expression, we are not just doing the simplification for the two paths that the expression takes when x = 10 or x = 20. Rather, we are effectively doing, in one fell swoop, the simplifications for all of the infinitely many paths that the expression can ever take on!


Put another way, an infinite ensemble of individual arithmetical moves surprisingly all still have enough in common that the result always winds up yielding the value 1; and the basic rules of algebra allow us to easily communicate this grand fact.


This is an example of algebra making fascinating results look very routine.


We are now ready to put algebra to work to make sense of the number of days and age problem discussed in Chapter 1.


SEPARATING OUT NUMERICAL INTERACTIONS


In January of 1897, the great German chemist and discoverer of the element germanium, Clemens Alexander Winkler (in probably a take on the famous Shakespeare quote), stated: “The world of chemical reactions is like a stage, on which scene after scene is ceaselessly played. The actors on it are the elements.”8


Related statements can be made of quantitative variations, with one possible adaptation being that the world of numerical variations is like a stage, on which scene after scene is ceaselessly played; the storytellers of it are the algebraic expressions we can construct.


We now want to use this stage to orchestrate an algebraic script that provides insight into the number of days and age problem from the previous chapter. As a refresher, you may want to try it again for a few different values:




Pick the number of days you like to eat out in a week (choose from 1, 2, 3, 4, 5, 6, 7). Multiply this number by 4. Then add 17. Multiply that result by 25. Next add the number of calendar years it is past 2013 (e.g., if the year is 2016, then add 3). Now if you haven’t had a birthday this year, then add 1587, but if you have had a birthday this year, then add 1588. Finally, subtract the year that you were born from this.


After all is said and done, you should have a very personal three-digit number. Reading it from left to right, the first digit is the number of times you like to eat out in a week and the last two digits are your age.





Someone running through this problem at a normal pace will generate a fluid sequence of numerical calculations on their way to obtaining their very personal number at the end. A second and third person will do the same thing and so on, each producing a number related to them, but different from hundreds of others. It can seem somewhat magical how all of the various instructions, in the haystack of the many possible outcomes, wind up delivering that very special three-digit number for each individual.


If you read the problem carefully, however, you can see that there are numbers that stay the same in everybody’s calculations (constants) and values that can potentially differ from person to person (variables). That is, stability and variation are both present. See the two examples given for this problem in the previous chapter that generated the numbers 580 and 237, and compare them with your own.


When the problem is performed in the usual manner of simply picking a number and going through the procedure, we are unsuspectingly mixing together different types of behavior (namely, stability and specific instances of different types of variation): dissolving them collectively into the symbolic cauldron and losing critical information. That is fine if producing a specific value is all that we are interested in. However, it is the algebraic way of thinking that we are trying to apply to the situation now rather than the arithmetic way, which means that we want a more comprehensive and global understanding of what is happening in the problem—particularly why it generates three-digit numbers that are so personal to the many individuals participating in the process, all of which requires that we be more studied in how and what we mix.
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